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Abstract: The severity of infections caused by Candida albicans, the most common opportunistic
human fungal pathogen, needs rapid and effective antifungal treatments. One of the effective ways is
to control the virulence factors of the pathogen. Therefore, the current study examined the effects of
genistein, a natural isoflavone present in soybeans, on C. albicans. The genistein-treated C. albicans
cells were then exposed to macrophages. Although no inhibition effect on the growth rates of
C. albicans was noted an enhancement of the immune response to macrophages has been observed,
indicated by phagocytosis and release of cytokines TNF-α and IL-10. The effect of genistein on the
enhanced phagocytosis can be mimicked by the fungicides fludioxonil or iprodione, which inhibit
the histidine kinase Cos1p and lead to activation of HOG pathway. The western blot results showed
a clear phosphorylation of Hog1p in the wild type strain of C. albicans after incubation with genistein.
In addition, effects of genistein on the phosphorylation of Hog1p in the histidine kinase mutants
∆cos1 and ∆sln1 were also observed. Our results thus indicate a new bio-activity of genistein on
C. albicans by activation of the HOG pathway of the human pathogen C. albicans.
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1. Introduction

Candida albicans is an opportunistic pathogen, which colonizes almost 80% of the human
population without causing disease. However, for immunocompromised patients, it has become the
most frequent human fungal pathogen. C. albicans infections can range from superficial local infections
to life-threatening systemic ones [1]. In healthy people C. albicans infections are controlled by the
activities of both the innate and the adaptive immune systems [2]. Cells of the innate immune system,
such as macrophages and polymorphonuclear leukocytes, possess a variety of pattern recognition
receptors (PRRs) to recognize pathogenic fungi. The most prominent are toll-like receptors, of which
TLR2 recognizes phospholipomannans, and C-type lectins, of which dectin-1 interacts with β-glucans
from the fungal cell wall [3]. Binding of the fungus to these receptors leads to elimination of the fungus
through phagocytosis and to the secretion of cytokines, which regulate the activity of other immune
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cells. Among the relevant cytokines are tumor necrosis factor (TNF-α) and interleukin-10 (IL-10).
In live C. albicans yeast cells β-glucans are covered by a mannan layer, whereas heat-killing enhances
β-glucan accessibility. Accordingly, the immune response is enhanced when heat-killed C. albicans
are used instead of live C. albicans. In particular release of TNF-α and IL-10 was shown to depend on
dectin-1 [3].

Classical antimycotic agents, which mainly target the structure or assembly of either the cell
membrane or the cell wall, are challenged by increasing numbers of resistant strains and by severe
side effects [4]. Thus, new effective therapeutic approaches are urgently needed. Among the recent
treatment strategies which are discussed, is on the one hand the inhibition of virulence of the
microorganism instead of its growth, and on the other hand the application of immune-modulating
therapies [5,6].

Major contributions to virulence of C. albicans are its remarkable capabilities to form hyphae which
allow penetration through the host cell layers, to adapt to various environmental niches in the host and
to survive the immune system attack. Signal transduction pathways mediated by mitogen-activated
protein kinases (MAPKs) play important roles in sensing and responding to changes in the environment.
One of the most important stress response pathways of C. albicans is the high osmotic glycerol (HOG)
pathway, which has been shown to mediate the response to osmotic, oxidative and temperature stress,
to antifungal drugs which interfere with cell wall biosynthesis (adherence to host cells), and is involved
in morphological changes and in the virulence of the organism [7].

In C. albicans, the HOG pathway is activated by the histidine kinases CaSln1p and CaNik1p
(Cos1p) [8]. Under non-stress conditions, CaSln1p is active, which leads to its autophosphorylation
and to the phosphorylation of the histidine phosphotransfer protein Ypd1p. The phosphate is then
transferred to the response regulator CaSsk1p. Under hyperosmotic stress CaSln1p is inhibited, and
neither Ypd1p nor Ssk1p are phosphorylated. Non-phosphorylated Ssk1p interacts with the MAPK3
Ssk2p, leading to its activation. This activation leads to phosphorylation of the MAPK2 Pbs2p and
of the MAPK Hog1p. A non-functional HOG cascade leads to an increased sensitivity to osmotic
and oxidative stress and as a consequence, to a decreased survival in the presence of phagocytes
(neutrophils and macrophages) [9]. The ∆hog1 mutant shows significantly reduced virulence, it is
more sensitive to immune cells [10]. Different chemical classes of fungicides were shown to target
this pathway, such as phenylpyrroles (fludioxonil), dicarboximides (iprodione) and ambruticins.
They trigger the phosphorylation of Hog1p by targeting the histidine kinase Cos1p.

It is nowadays realized that food constituents have a large effect on health, such as on the risks to
develop metabolic disorders and other chronic diseases and even on the susceptibility to infectious
diseases [11]. The origin of these effects frequently is a modulation of the activity of the immune
system by plant constituents, in particular by polyphenols such as flavonoids. Among a great variety
of natural flavonoids, genistein is one of the best studied. The isoflavone genistein was originally
isolated from fermentation broth of a Pseudomonas sp. [12] and was later found in legumes, particularly
in soybeans. It shows a variety of biological activities, for example as a phytoestrogen, an antioxidant,
and as an inhibitor of a broad range of tyrosine kinases [13,14], and of the histidine kinase Sln1 in
the yeast S. cerevisiae [15]. This leads to its chemoprotectant activities against cancers, cardiovascular
disease and chronic inflammatory disorders [16–20]. However, the influence of genistein on C. albicans
and on microbial pathogen–host interactions is not well understood. Therefore, the present study was
designed to elucidate the implication of genistein on C. albicans and the interaction with immune cells.

2. Results

2.1. Genistein Treatment of C. albicans Enhances the Activity of Macrophages

Previously we had reported that extended treatment of macrophages with genistein inhibited the
immune response to infections by C. albicans, as we had observed decreased phagocytic activity and
TNF-α release when macrophages were incubated for at least 24 h with genistein [21]. This correlated
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well with the frequently reported inhibitory effect of genistein on TNF-α production by LPS
(lipopolysaccharide)–stimulated macrophages [22].

On the other hand, enhanced phagocytosis efficiency of macrophages was reported when
C. albicans was treated with sublethal concentrations of the antimycotic caspofungin, as this uncovered
the glucans from the fungal cell wall and thus stimulated immune recognition via the PRR dectin-1 [23].
Due to the possible effects of genistein on fungal signal transduction cascades, which might influence
as secondary effects also the cell wall structure, we investigated whether genistein could have similar
effects as caspofungin. We treated C. albicans overnight with genistein and analysed the response of
murine macrophages. The chosen genistein concentration of 100 µM had no influence on the growth
of C. albicans (Figure 1a).

The phagocytic efficiency of the macrophages for the genistein-treated C. albicans was determined.
In Figure 1b, the time course of the internalization is shown. The level of phagocytosis was significantly
enhanced after infection with C. albicans for 15 min. and this effect lasted during the whole experimental
period of 60 min.

From the enhanced phagocytosis of genistein–treated C. albicans we concluded that receptor–
ligand interactions between C. albicans and macrophages were changed due to genistein treatment
of the pathogen. As cytokine release is also activated by receptor–ligand interactions, such as
dectin-1–β-glucan interactions, we determined the concentrations of TNF-α and IL-10 in the cell
culture supernatants, as these cytokines are representative for cytokines, which are regulated by
dectin-1 activation, though different signal transduction pathways may be involved [3]. In Figure 1c,
data are shown for the production of TNF-α and IL-10, and a significant enhancement resulting from
genistein treatment of the pathogen was observed (p < 0.01).
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Figure 1. (a) Effects of genistein on growth of C. albicans. The optical density of the suspension was
measured at 620 nm each hour using a µQuant microtiter plate reader; (b) Phagocytosis of genistein
treated C. albicans by the murine macrophage cell line RAW 264.7. RFU: relative fluorescence units.
** p < 0.01, * p < 0.05; (c) Release of TNF-α and IL-10 by macrophages, which were incubated with
genistein treated C. albicans; ** p < 0.01 (comparison with DMSO control).
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2.2. Genistein Treatment of C. albicans Activates the HOG Pathway of C. albicans

As Huang reported an inhibitory effect of genistein on Sln1p of S. cerevisiae [15], and inhibition
of Sln1p leads to the activation of the HOG pathway, we determined whether genistein activated the
HOG pathway in C. albicans. The western blot results clearly showed phosphorylation of Hog1p in the
wild type strain of C. albicans after incubation with genistein for 15 min. In addition, phosphorylation
of Hog1p became phosphorylated, when the histidine kinase deletion mutants ∆cos1 and ∆sln1 were
treated with genistein. However, in the MAPK2 mutant ∆pbs2 and in the mutant of the response
regulator ∆ssk1 the phosphorylation of Hog1p was not observed (Figure 2a).

Usually activation of the HOG pathway leads to increased glycerol production to protect yeast cells
from osmotic stress. Since the HOG pathway was activated in C. albicans after treatment with genistein,
glycerol concentrations were determined in the supernatants of C. albicans cultures. Increased glycerol
concentrations were observed after 4 hour treatment (Figure 2b,c). However, also an increase in ethanol
production was found, which could point to the utilization of fermentative metabolic pathways by
C. albicans due to an inhibitory effect of genistein on the respiratory chain.
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Figure 2. (a) Phosphorylation of Hog1p of C. albicans strains after treatment with genistein and solvent
for 15min. Hog1p was detected by Hog1 (y-215) sc 9079 rabbit polyclonal IgG and phosphorylated
Hog1p (Hog1-P) by Phospho-p38 MAPK (Thr180/182) 3D7 rabbit mAb at a site corresponding to
50 kDa; (b,c) Effect of genistein on glycerol and ethanol production in C. albicans. ** p < 0.01 (comparison
with DMSO control).
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2.3. Enhanced Phagocytosis of Genistein Treated C. albicans Requires an Intact HOG Pathway

As genistein treatment of C. albicans activated the HOG pathway and as there is a complex
relationship between the MAP kinases of C. albicans, we analyzed the relevance of the MAP kinases
Hog1p and Cek1p for the enhanced phagocytic activity of macrophages for genistein treated C. albicans
by using the respective single gene deletion mutants. The result showed that the phagocytosis efficiency
for ∆cek1 and ∆hog1 was not affected by genistein treatment, suggesting that these MAP kinases were
essential for the genistein effect on the phagocytosis efficiency of the wild type strain (Figure 3).
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2.4. Fludioxonil and iprodione Treated C. albicans are More Susceptible to Macrophage

Fludioxonil and iprodione are well known fungicides which are used in agriculture against fungal
plant pathogens. They target fungal type III histidine kinases. The C. albicans histidine kinase CaNik1p
(Cos1p) is also a type III histidine kinase and we had shown that it is the target of iprodione and
fludioxonil [24,25]. Treatment of C. albicans with these compounds did not significantly affect growth
(data not shown), but lead to activation of Hog1p and induce glycerol production in C. albicans [24,25].

As we observed that treatment of C. albicans by macrophage and led to phosphorylation of
Hog1p and that Hog1p was essential for the enhanced phagocytosis of genistein treated C. albicans,
we speculated whether treatment of C. albicans with either fludioxonil or iprodione would also lead
to the enhanced phagocytosis. As shown in Figure 4 also treatment of C. albicans with fludioxonil or
iprodione led to significantly enhanced levels of phagocytosis during the whole experimental period
of 60 min. The result showed the same trend as after genistein treatment.
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3. Discussion

In the current study, genistein effects on the biological activities of C. albicans as well as on the
C. albicans–macrophage interactions have been investigated. The growth rates of C. albicans, either
in rich YPD medium or the buffered RPMI1640 medium, was not affected by genistein. The HOG
pathway of C. albicans was activated in presence of genistein, this was confirmed by the western blot
(phosphorylation of p38) and by detection the extracellular accumulation of glycerol.

The effects on the biological activities of C. albicans, and HOG pathway, may play a role on the
virulence capability of the pathogen organism. From an enhancement level of phagocytosis and also
the stimulated production of the pro-inflammatory cytokine TNF-α and of the anti-inflammatory
cytokine IL-10, we could confirm that genistein could influence the pathogenesis of C. albicans.
Releasing TNF-α can at early stages of infection has been reported to have a positive feedback on
phagocytosis [26]. Therefore, the increased secretion of TNF-α may be the reason for the enhanced
phagocytosis of C. albicans.

The histidine kinase Sln1p of S. cerevisiae was reported to be inhibited by genistein [15] and
increased glycerol production is a well-established response to Sln1p inhibition due to osmotic stress.
Moreover, genistein has been found to regulate the molecules in the MAPK pathway in different
ways: genistein inhibits TGF-β-mediated p38 MAP kinase activation and matrix metalloproteinase
type 2 [27]. It has been found to be effective in preventing cytokine-induced ERK1/2 activation
and promoted apoptotic cell death [28]. On the other hand, genistein also could potentiate the
phosphorylation of p38, ERK1/2 in breast cancer lines and macrophage [21,29–31]. Therefore, we
speculated that genistein could activate the HOG pathway in C. albicans, which is further proved by
western blot results. Genistein activates the HOG pathway by phosphorylation of Hog1 after 15 min.
This activation is through Ssk1p and Pbs2p, but not due to the inhibition of histidine kinase Sln1p
and Cos1p. Moreover, genistein stimulated glycerol and ethanol synthesis in C. albicans; phagocytosis
efficiency for ∆cek1 and ∆hog1 was not affected by genistein treatment, suggesting that the genistein
effect of the wild type could be related to the pathways. Those results for the first time showed that
genistein activates the HOG pathway in C. albicans.

Furthermore, in comparison with fludioxonil and iprodione, we found those inhibitors treated
C. albicans show the similar effect like genistein treated C. albicans. For example, fludioxonil and
iprodione treated C. albicans cells are more susceptible to macrophage.

In conclusion, our results show for the first time that genistein activates the HOG pathway of
C. albicans and enhances the immune responses, using phagocytosis and cytokines production as
indicators. Our results highlight a new effect of genistein on the human pathogen C. albicans and point
out new pharmacological activities of genistein and alternative strategies for immunostimulation in
host-pathogen system by treatment of the pathogen instead of the immune cells.

4. Experimental Section

4.1. Materials

Genistein was purchased from Sigma (St. Louis, MO, USA); a stock solution of genistein at a
concentration of 200 mM was prepared in dimethyl sulfoxide (DMSO, Biomol GmbH, Hamburg,
Germany), the working concentration was 10 mM diluted from stock solution by DMSO and frozen at
´20 ˝C. Fludioxonil and iprodione was purchased from Fluka (Hamburg, Germany), 10 mg/mL stock
solution was prepared in methanol. Dulbecco’s modified Eagle’s Medium (DMEM), fetal bovine serum
(FBS), and RPMI 1640 media with L-glutamine were from Lonza (Verviers, Belgium). MOPS were
purchased from Geyer (Hamburg, Germany). Glycerol dehydrogenase (GDH) (1 KU) from cellulomonas
sp. was purchased from Sigma and 1 KU was solved in 3.33 mL MQ water. Nicotinadenine dinucleotide
(NAD+) was from Biomol (Hamburg, Germany). Fluorescein isothiocyanate (FITC) was from Sigma
and a stock solution (100 mg/mL) was prepared in DMSO. Phospho p-38 MAPK (Thr180/182) 3D7
rabbit mAb together with HRP-linked anti-rabbit IgG antibody were from Cell Signaling Technology
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(Danvers, MA, USA). Hog1 (y-215) sc 9079 rabbit polyclonal IgG was from Santa Cruz Biotechnology
(Dallas, TX, USA).

4.2. Strains and Culture Condition

The test organism C. albicans strains (Table 1) were grown overnight in YPD broth (Sigma) at 30 ˝C
on a shaker. The yeast suspensions were diluted to an OD620nm (optical density) of 0.2 (determined
with a sample volume of 180 µL with the µQuant microtiter plate reader (BioTek Instruments GmbH,
Bad Friedrichshall, Germany) in YPD medium or in RPMI 1640 medium (with 165 mM MOPS and
0.2% glucose pH 7.5) and allowed to grow for 2–3 h.

Table 1. C. albicans strains used in this study.

Strains Synonym Genotype Reference

CAF2-1 ∆ura3::imm434/URA3 [32]
∆casln1 CaSLN1 ∆ura3::imm434/∆ura3::imm434 ∆casln1::hisG/∆casln1/hisG-URA3-hisG [8]
∆cos1 LAC17 ∆ura3::imm434/∆ura3::imm434 ∆cos1::hisG/∆cos1/hisG-URA3-hisG [8]
∆pbs2 BRD3 ∆ura3::imm434/∆ura3::imm434 ∆his1::hisG/∆his1::hisG∆pbs2::cat/∆pbs2::cat-URA3-cat [33]
∆ssk1 CSSK21 ∆ura3::imm434/∆ura3::imm434 ∆cassk1::hisG/∆cassk1/hisG-URA3-hisG [34]
∆cek1 CK43B-16 ura3/ura3∆cek1::hisG/∆cek1::hisG-URA3-hisG [35]
∆hog1 CNC13 hog1::hisG/hog1::hisG-URA3-hisG ∆his1::hisG/∆his1::hisG [36]

The murine macrophage cell line RAW 264.7 was purchased from the American Type Culture
Collection (ATCC, Rockville, MD, USA). The cells were grown in DMEM supplemented with 10%
fetal bovine serum (FBS) and 100 U/mL penicillin and 100 µg/mL streptomycin at 37 ˝C in a 5% CO2

air atmosphere. The human epithelial carcinoma cell line A431 cell was also purchased from ATCC.
The cells were grown in RPMI 1640 media with L-glutamine supplemented with 10% FBS at 37 ˝C in a
5% CO2 air atmosphere.

4.3. Preparation of Candida albicans for Phagocytosis Assay

C. albicans CAF2-1 pre-culture was diluted to OD = 0.1 in 20 mL YPD medium supplemented or
not with genistein (the final concentration was 100 µM) and fludioxonil (20 µg/mL) and iprodione
(20 µg/mL) were grown overnight at 30 ˝C with orbital shaking at 160 rpm. For fluorescence-labeling,
1 ˆ 108 yeasts were harvested by centrifugation (13,000 rpm, 5 min, 24 ˝C), washed twice in 1 mL PBS
and stained overnight with 1 mL of 500 µg/mL FITC at 4 ˝C. Yeasts were washed three times in PBS to
remove excessive dye before use. Even though we always followed the same staining protocol for the
yeasts we observed deviations in staining efficiency depending on the storage time of the fluorescent
dye (FITC).

4.4. Phagocytosis Assay

Phagocytosis of C. albicans by macrophages was quantified as described previously [37].
Briefly: 100 µL of 2 ˆ 106 macrophages/mL were seeded in each well of 96 well microtiter plates
(Nunc, Darmstadt, Germany) followed by incubation for 2 h to let the cells adhere to the plates.
The supernatant was removed from the macrophage cell culture and 100 µL of the yeast suspension in
medium were added. Phagocytosis was allowed to proceed at 37 ˝C in 5% CO2 for different periods
of time. The medium was removed and 100 µL trypan blue (250 µL/mL in PBS) were added to
quench the fluorescence of yeasts which were not internalized. After an incubation of 1 min at room
temperature, the trypan blue solution was removed. The number of internalized yeasts was estimated
from fluorescence measurements (λEx 480 nm and λEm 520 nm) through the bottom of the plates by
a fluorescence multi-well plate reader (Syngery 4® BioTek Instruments GmbH). In our diagrams we
show the real data from the fluorescence multi-well plate reader. They are influenced by the staining
efficiency achieved in the respective batch (see Section 4.3), but also by the chosen sensitivity of the
photomultiplier of the reader. Thus, these absolute data can be compared in a series of experiments.
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However, for comparison between series, normalization would be required. In our diagrams we show
a representative example for the described results.

4.5. Cytokine Determination

TNF-α and IL-10 were determined following previously published protocols [21]. 3 ˆ 105

macrophages/mL (100 µL) were seeded in each well of 96 well microtiter plates and allowed to
adhere for 2 h. 3 ˆ 106 C. albicans/mL were harvested from an overnight culture with or without
genistein by centrifugation (13,000 rpm, 5 min, 24 ˝C), and washed twice with 1 mL PBS. They were
suspended in DMEM cell culture medium. The supernatant was removed from the macrophage
cell culture and 100 µL of the yeast suspension were added. The ratio of macrophages: yeast was
1:10. TNF-α concentrations were determined after a yeast-macrophage incubation time of 1 h, IL-10
concentrations were determined after 5 h. The concentrations of IL-10 and TNF-α were quantified by
ELISA (eBioscience, Inc., San Diego, CA, USA) according to the instructions given by the manufacturer,
only that half area high binding 96 well microtiter plates (Greiner Bio-One GmbH, Frickenhausen,
Germany) were used, so that volumes of antibody solutions and samples were reduced to half of the
amounts given by the kit manufacturer. The results are expressed in pg/mL.

4.6. Protein Analysis

Western blot for phosphorylation of Hog1 after genistein treatment was detected according
to Buschart et al. [25]. Briefly, C. albicans strains were grown as described above. The culture was
diluted to OD620nm 0.2, and subjected to treatments with or without genistein for 15 or 30 min. Cells
were harvested by centrifugation at room temperature and frozen in liquid nitrogen. Frozen cell
pellets were disrupted with a Mini-Dismembrator U (B. Braun Biotech, Melsungen, Germany) in the
presence of lysis buffer (10 mM sodium phosphate buffer pH 8.5, supplemented with 5 mM NaCl,
5 mM KCl, 11 g/L glucose, protease and phosphatase inhibitors (complete, mini and PhosSTOP, Roche,
Wurmisweg, Switzerland). After centrifugation at 10,000ˆ g, the supernatant are collected. Protein
concentration of the supernatant was determined by BCA methods.

Twenty µg of protein was separated by SDS-PAGE (12.5%), proteins were blotted and
phosphorylated Hog1 was detected using phospho p-38 MAPK (Thr180/182) 3D7 rabbit mAb
(Cell Signaling Technology) together with HRP-linked anti-rabbit IgG antibody (Cell Signaling
Technology). The anti-phospho p-38 MAPK antibody had to be used, as there are only some antibodies
available, which are specific for proteins from C. albicans. However, Hog1p is the Candida–homologue
to the mammalian MAPK p-38 and the relevant epitopes of the phosphorylated proteins are so similar
that they are recognized by the same antibody.

The membrane was stripped and total Hog1 was detected using Hog1 (y-215) sc 9079 rabbit
polyclonal IgG (Santa Cruz Biotechnology) and HRP-linked anti-rabbit antibody, and visualized using
chemiluminescence (ECL Advance Western Blotting Detection Kit, GE Healthcare, Freiburg, Germany).
At least three independent experiments were conducted and data from one representative experiment
is shown.

4.7. Ethanol and Glycerol Determination

Both glycerol and ethanol concentrations were determined by enzymatic assays based on glycerol
dehydrogenase (GDH) and ethanol dehydrogenase, respectively [38]. Quantification in supernatants
was based on the photometric determination of NADH at 340 nm, and the assays were performed in
volume reduced 96-well transparent microtiter plates (Corning®, Corning, NY, USA).

4.8. Statistical Analysis

Statistical significances were determined by Student’s t-test and statistical significance was
assumed by p < 0.05.
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