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Abstract: We report herein the design and synthesis of a series of novel 5-bromo-7-azaindolin-2-one
derivatives containing a 2,4-dimethyl-1H-pyrrole-3-carboxamide moiety. These newly synthesized
derivatives were evaluated for in vitro activity against selected cancer cell lines by MTT assay. Results
revealed that some compounds exhibit broad-spectrum antitumor potency, and the most active
compound 23p (IC50: 2.357–3.012 µM) was found more potent than Sunitinib (IC50: 31.594–49.036 µM)
against HepG2, A549 and Skov-3, respectively.
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1. Introduction

Sunitinib (Figure 1) is a new multitargeted oral anti-angiogenic and antitumor drug that has
been recently approved against gastrointestinal stromal tumors (GIST) and advanced renal cell
carcinoma (RCC) [1]. It is in clinical studies for the treatment of other solid tumors, such as pancreatic
neuroendocrine tumors [2], meningioma [3], metastatic breast cancer [4] and non-small cell lung
cancer [5].

Recently, structural modifications mainly at the 3- and 5-positions of the indolin-2-one ring
of Sunitinib have made considerable progress in the ability to increase antitumor activity through
inhibition on different receptors [6–8]. As early lead compounds discovered in our lab, Z24 and
LK-B030 (Figure 1) bearing a (piperidin-1-yl)methyl and a (3-dimethylamino)propyl group at the N-1
position, respectively, display a broad spectrum of antitumor activity by inhibiting angiogenesis in new
blood vessels [9–11]. More recently, we reported a series of novel 5-halogenated-7-azaindolin-2-one
derivatives and found IMB-1501 to have better in vitro activity than Sunitinib against the entire tested
cancer cell lines [12].

As part of our continuing modifications on Sunitinib as a potential antitumor drug candidate,
we planned to explore other possibilities for diversification of the 2-(pyrrolidin-1-yl)ethyl group
and the linker flexibility on the amide bond. Thus, a series of novel 5-bromo-7-azaindolin-2-one
derivatives containing a 2,4-dimethyl-1H-pyrrole-3-carboxamide moiety were designed, synthesized
and evaluated for their antitumor activity in this study. Our primary objective was to optimize the
potency of these compounds against a set of solid tumors and contribute to the development of
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new antitumor agents. A preliminary structure-activity relationship (SAR) study is also explored to
facilitate the further development of 5-bromo-7-azaindolin-2-ones.
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Figure 1. Structures of Sunitinib, Z-24, LK-B030 and IMB-1501. 

2. Results and Discussion 

Detailed synthetic pathways to heterocyclic amine derivatives 5–7 and 14–16, which are 
commercially unavailable, and target compounds 23a–q are depicted in Schemes 1–3, respectively. Amine 
derivatives containing aminoalkyl groups 5–7 were easily obtained from pyrrolidine 1, piperidine 2 and 
N-methylpiperazine 3 by nucleophilic substitution with N-(2-bromoethyl)/N-(3-bromopropyl)/N-(4-
bromobutyl)phthalimides 4a–c in the presence of K2CO3 in DMF at 70–80 °C, respectively, followed 
by treatment of the resulting condensates with hydrazine hydrate in ethanol under reflux condition 
(Scheme 1). 

 
Scheme 1. Synthesis of amine derivatives 5–7. 

Condensation of pyrrolidin-3-one 8, piperidin-3-one 9 and piperidin-4-one 10 with  
O-alkylhydroxyamines gave compounds 11–13. Amine derivatives 14–16 were prepared from oximes 
11–13 by coupling with 4b,c and hydrazinolysis, sequentially (Scheme 2). 

 
Scheme 2. Synthesis of amine derivatives 14–16. 

Amidation of 5-formyl-2,4-dimethylpyrrole-3-carboxylic acid 17 with 5–7, 14–16 and commercially 
available (S)-1-amino-3-morpholinopropan-2-ol (18), N1,N1-dimethylpropane-1,3-diamine (19) and N1,N1-
diethylpropane-1,3-diamine (20) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

Figure 1. Structures of Sunitinib, Z-24, LK-B030 and IMB-1501.

2. Results and Discussion

Detailed synthetic pathways to heterocyclic amine derivatives 5–7 and 14–16, which are
commercially unavailable, and target compounds 23a–q are depicted in Schemes 1–3, respectively. Amine
derivatives containing aminoalkyl groups 5–7 were easily obtained from pyrrolidine 1, piperidine 2 and
N-methylpiperazine 3 by nucleophilic substitution with N-(2-bromoethyl)/N-(3-bromopropyl)/N-(4-
bromobutyl)phthalimides 4a–c in the presence of K2CO3 in DMF at 70–80 ◦C, respectively, followed
by treatment of the resulting condensates with hydrazine hydrate in ethanol under reflux condition
(Scheme 1).
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Scheme 1. Synthesis of amine derivatives 5–7.

Condensation of pyrrolidin-3-one 8, piperidin-3-one 9 and piperidin-4-one 10 with
O-alkylhydroxyamines gave compounds 11–13. Amine derivatives 14–16 were prepared from oximes
11–13 by coupling with 4b,c and hydrazinolysis, sequentially (Scheme 2).
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Amidation of 5-formyl-2,4-dimethylpyrrole-3-carboxylic acid 17 with 5–7, 14–16 and commercially
available (S)-1-amino-3-morpholinopropan-2-ol (18), N1,N1-dimethylpropane-1,3-diamine (19) and N1,N1-
diethylpropane-1,3-diamine (20) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDCI), N-hydroxybenzotriazole (HOBt) and Ethyldiisopropylamine (DIEA) yielded
compounds 21a–q. Aldol condensation of 5-formyl-2,4-dimethylpyrrole-3-carboxamides 21a–q
with 5-bromo-7-azaindolin-2-one 23 in the presence of piperidine gave the target compounds 23a–q
(Scheme 3) [10,11]. All of the new synthetic compounds were well characterized by 1H-NMR,
13C-NMR and MS. As expected, the pyrrole-2-methylidene geometry at the 3-position of the
7-azaindolin-2-one ring was confirmed to have the Z-configuration [12–14].
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We first replaced the ethylidyne linker of Sunitinib with propylidyne or butylidyne, and
the diethylamino group with a saturated heterocyclic amine (pyrrolidine, piperidine, piperazine,
or hydroxylmorphine [15]) to synthesize the derivatives 23a–e. For preliminary screening of antitumor
candidates, the target compounds were investigated for cytotoxic activity in vitro against MCF-7
(a breast cancer cell line). It is encouraging that all of the initially designed molecules except 23e
exhibit higher inhibition (81.46%–87.29%) than Sunitinib (27.79%) at the concentration of 30 µM
(Table 1). They were further evaluated for their in vitro antitumor activity in six human cancer
cell lines, including MCF-7, HepG2 (liver carcinoma), HT-29 (colon adenocarcinoma), A549 (lung
adenocarcinoma), PANC-1 (pancreatic carcinoma) and Skov-3 (ovarian carcinoma) by MTT assay [16].

Table 1. In vitro activity of target compounds 23a–e against six cell lines.
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5-bromo-7-azaindolin-2-one 23 in the presence of piperidine gave the target compounds 23a–q 
(Scheme 3) [10,11]. All of the new synthetic compounds were well characterized by 1H-NMR, 13C-NMR 
and MS. As expected, the pyrrole-2-methylidene geometry at the 3-position of the 7-azaindolin-2-one 
ring was confirmed to have the Z-configuration [12–14]. 

 
Scheme 3. Synthesis of target compounds 23a–q. 

We first replaced the ethylidyne linker of Sunitinib with propylidyne or butylidyne, and the 
diethylamino group with a saturated heterocyclic amine (pyrrolidine, piperidine, piperazine, or 
hydroxylmorphine [15]) to synthesize the derivatives 23a–e. For preliminary screening of antitumor 
candidates, the target compounds were investigated for cytotoxic activity in vitro against MCF-7 (a 
breast cancer cell line). It is encouraging that all of the initially designed molecules except 23e exhibit 
higher inhibition (81.46%–87.29%) than Sunitinib (27.79%) at the concentration of 30 μM (Table 1). They 
were further evaluated for their in vitro antitumor activity in six human cancer cell lines, including 
MCF-7, HepG2 (liver carcinoma), HT-29 (colon adenocarcinoma), A549 (lung adenocarcinoma), PANC-1 
(pancreatic carcinoma) and Skov-3 (ovarian carcinoma) by MTT assay [16]. 

Table 1. In vitro activity of target compounds 23a–e against six cell lines. 

 
Compound Z % Inhibition a 

IC50 (μM)
MCF-7 HepG2 HT-29 A549 PANC-1 SKOV-3

23a 

 

87.29 12.790 7.060 8.893 4.993 14.132 5.766 

23b 

 

83.61 27.457 6.852 10.820 6.555 13.672 5.978 

23c 

 

81.46 17.946 7.882 9.524 3.103 9.410 6.669 

23d 

 

84.98 15.052 6.316 10.388 6.250 9.512 3.721 

23e 
 

46.83 65.054 36.964 19.642 26.031 33.314 29.685 

Sunitinib 27.79 65.606 41.805 31.774 29.257 54.916 31.985 
a % inhibition of 23a–e and Sunitinib against MCF-7 (at 30 μM). 

46.83 65.054 36.964 19.642 26.031 33.314 29.685

Sunitinib 27.79 65.606 41.805 31.774 29.257 54.916 31.985
a % inhibition of 23a–e and Sunitinib against MCF-7 (at 30 µM).
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity
(IC50: 3.103–65.054 µM) compared to Sunitinib (IC50: 29.257–65.606 µM) against all of the tested
cancer cell lines (Table 1). In particular, compound 23c exhibits a value of 3.103 µM against A549
and 23d exhibits a IC50 value of 3.721 µM against Skov-3, which are 9.4- and 8.6-fold more potent
than Sunitinib, respectively. It seems likely that the linker between the amide and the pyridine ring is
well tolerated with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or
piperazine moiety with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy
group on the alkyl linker (23a–d vs. 23e).

Being encouraged by the above results, we further explored other possibilities for diversification
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 µM) than Sunitinib
(IC50: 31.594–49.036 µM). However, replacement of the butylidyne linker (23i) with a propylidyne
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding
compounds (23h, 23j, 23k) demonstrate similar activity.

Table 2. In vitro activity of target compounds 23f–q against three cell lines.
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

Compound Z
IC50(µM)

HepG2 A549 SKOV-3

23f
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

7.144 6.982 5.023

23g
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

7.803 6.137 7.507

23h
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

11.543 13.506 15.126

23i
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

7.657 6.254 6.470

23j
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

14.916 13.443 14.916

23k
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

12.229 10.273 10.998



Molecules 2016, 21, 1674 5 of 10

Table 2. Cont.

Compound Z
IC50(µM)

HepG2 A549 SKOV-3

23l

Molecules 2016, 21, 1674 4 of 9 

 

The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 

60.617 59.319 40.087

23m
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The data reveal that 5-bromo-7-azaindolin-2-ones 23a–e demonstrate increased activity (IC50: 
3.103–65.054 μM) compared to Sunitinib (IC50: 29.257–65.606 μM) against all of the tested cancer cell 
lines (Table 1). In particular, compound 23c exhibits a value of 3.103 μM against A549 and 23d exhibits 
a IC50 value of 3.721 μM against Skov-3, which are 9.4- and 8.6-fold more potent than Sunitinib, 
respectively. It seems likely that the linker between the amide and the pyridine ring is well tolerated 
with an alkyl chain of C3/C4 (23a–b). Moreover, bearing a pyridine or piperidine or piperazine moiety 
with an alkyl chain of C2–4 is more favorable than the introduction of a hydroxy group on the alkyl 
linker (23a–d vs. 23e). 

Being encouraged by the above results, we further explored other possibilities for diversification 
of the linker or/and heterocyclic amine to design and synthesize the derivatives 23f–q which were 
evaluated for their activity in selected cell lines HepG2, A549 and SKOV-3 (Table 2). When the 
ethylidyne linker (23c, 23d) was replaced by a propylidyne or butylidyne moiety, the resulting 
compounds (23f, 23g, 23i) were found to have better activity (IC50: 5.023–7.803 μM) than Sunitinib 
(IC50: 31.594–49.036 μM). However, replacement of the butylidyne linker (23i) with a propylidyne 
moiety or opening of the piperidine ring (23f) led to decreased potency, although the corresponding 
compounds (23h, 23j, 23k) demonstrate similar activity. 

Table 2. In vitro activity of target compounds 23f–q against three cell lines. 

 

Compound Z 
IC50 (μM)

HepG2 A549 SKOV-3 

23f 7.144 6.982 5.023 

23g 7.803 6.137 7.507 

23h 11.543 13.506 15.126 

23i 7.657 6.254 6.470 

23j 14.916 13.443 14.916 

23k 12.229 10.273 10.998 

23l 60.617 59.319 40.087 

23m 99.667 119.493 25.090 99.667 119.493 25.090

23n
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23n 22.054 36.509 17.296 

23o 6.828 7.731 7.747 

23p 3.012 2.357 2.659 

23q 5.878 6.681 4.075 

Sunitinib  33.999 31.594 49.036 

Considering the importance of an oxime functional moiety of the C-7 side chain with respect to 
the antibacterial and/or antitumor activity of quinolones [17–19], the impact of an alkoxyimino group on 
the pyrrolidine or piperidine ring was also investigated. It is clear that the introduction of a methoxyimino 
group on the pyrrolidine ring is detrimental (23l). For the piperidine ring, the nature and position of the 
oxime group and linker greatly influence activity. For instance, the presence of a methoxyimino group at 
the para-position is more favorable than the meta-position (23n vs. 23m). In addition, the propylidyne 
linker (23o) displays MIC values of 6.828–7.747 μM, which are 2.2- to 4.7-fold more potent than the 
ethylidyne linker (23n). It is also shown that the methyl group of the oxime moiety (23o) could be replaced 
by an ethyl (23p) or a benzyl (23q) one without obviously affecting the antitumor potency. Among the 
three, the most active compound 23p (IC50: 2.357–3.012 μM) was found to be 11.3- to 18.4-fold more 
potent than Sunitinib against all of the tested cell lines, respectively (Table 2). 

3. Experimental Section 

Melting points were determined in open capillaries and are uncorrected. 1H-NMR and 13C-NMR 
spectra were determined on a Varian Inova-500 spectrometer (Varian, Inc., Palo Alto, CA, USA) in 
DMSO-d6 using tetramethylsilane as an internal standard. Electrospray ionization (ESI) mass spectra 
were obtained on an MDSSCIEX Q-Tap mass spectrometer (AB Sciex, Redwood City, MA, USA) and 
Advion Mass Express 2.1.243 (Advion BioSciences, Inc., Ithaca, NY, USA). The reagents were all of 
analytical grade or chemically pure. TLC was performed on silica gel plates (Merck, ART5554 60F254, 
Kenilworth, NJ, USA) 

A mixture of heterocyclic amines (1–3, 5.9 mmol), 2-(2-bromoethyl/propyl/butyl)isoindoline-1,3-
diones (4a–c, 7.0 mmol) and potassium carbonate (7.0 mmol) in N,N-dimethylformamide (10 mL) was 
stirred for 8–16 h at 70–80 °C. Then the reaction mixture was cooled to temperature and was added water. 
The aqueous layer was extracted with dichloromethane (30 mL × 3) and the combined organic layer was 
concentrated under reduced pressure. The residue was solved in ethanol (10 mL) and treated with 80% 
hydrazine hydrate (10.5 mmol). The reaction mixture was stirred at reflux for 4–6 h and concentrated 
under reduced pressure to give the title compounds 5b–c, 6a–c and 7a–c as yellow oils or off-white solids. 

A mixture of pyrrolidin-3-one/piperidin-3-one/piperidin-4-ones (8–10, 15.0 mmol), O-alkylhydroxyl 
amine hydrochlorides (18.0 mmol) and potassium carbonate (30.0 mmol) in ethanol (50 mL) was 
stirred for 6–8 h at 25–50 °C. Then the mixture was cooled to temperature and filtered, the filter cake 
washed with ethanol. The filtrate was concentrated under reduced pressure to afford the oximes 11–13 as 
oils. Amine derivatives 14, 15 and 16a–d were prepared from the oximes 11–13 by coupling with 4b,c 
and hydrazinolysis sequentially as described above. 

A mixture of 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (17, 3.0 mmol), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (4.5 mmol) and HOBt (4.5 mmol) in N,N-
Dimethylformamide (10 mL) was stirred for 0.5 h at room temperature. Then compounds 5–7, 14–16 
or 18–20 (4.5 mmol) and DIEA (6.6 mmol) were added. The reaction mixture was stirred for 12–24 h 

22.054 36.509 17.296

23o
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23n 22.054 36.509 17.296 

23o 6.828 7.731 7.747 

23p 3.012 2.357 2.659 
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Considering the importance of an oxime functional moiety of the C-7 side chain with respect
to the antibacterial and/or antitumor activity of quinolones [17–19], the impact of an alkoxyimino
group on the pyrrolidine or piperidine ring was also investigated. It is clear that the introduction of a
methoxyimino group on the pyrrolidine ring is detrimental (23l). For the piperidine ring, the nature
and position of the oxime group and linker greatly influence activity. For instance, the presence of
a methoxyimino group at the para-position is more favorable than the meta-position (23n vs. 23m).
In addition, the propylidyne linker (23o) displays MIC values of 6.828–7.747 µM, which are 2.2- to
4.7-fold more potent than the ethylidyne linker (23n). It is also shown that the methyl group of
the oxime moiety (23o) could be replaced by an ethyl (23p) or a benzyl (23q) one without obviously
affecting the antitumor potency. Among the three, the most active compound 23p (IC50: 2.357–3.012 µM)
was found to be 11.3- to 18.4-fold more potent than Sunitinib against all of the tested cell lines,
respectively (Table 2).

3. Experimental Section

Melting points were determined in open capillaries and are uncorrected. 1H-NMR and 13C-NMR
spectra were determined on a Varian Inova-500 spectrometer (Varian, Inc., Palo Alto, CA, USA) in
DMSO-d6 using tetramethylsilane as an internal standard. Electrospray ionization (ESI) mass spectra
were obtained on an MDSSCIEX Q-Tap mass spectrometer (AB Sciex, Redwood City, MA, USA) and
Advion Mass Express 2.1.243 (Advion BioSciences, Inc., Ithaca, NY, USA). The reagents were all of
analytical grade or chemically pure. TLC was performed on silica gel plates (Merck, ART5554 60F254,
Kenilworth, NJ, USA).

A mixture of heterocyclic amines (1–3, 5.9 mmol), 2-(2-bromoethyl/propyl/butyl)isoindoline-1,3-
diones (4a–c, 7.0 mmol) and potassium carbonate (7.0 mmol) in N,N-dimethylformamide (10 mL) was
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stirred for 8–16 h at 70–80 ◦C. Then the reaction mixture was cooled to temperature and was added
water. The aqueous layer was extracted with dichloromethane (30 mL × 3) and the combined organic
layer was concentrated under reduced pressure. The residue was solved in ethanol (10 mL) and treated
with 80% hydrazine hydrate (10.5 mmol). The reaction mixture was stirred at reflux for 4–6 h and
concentrated under reduced pressure to give the title compounds 5b–c, 6a–c and 7a–c as yellow oils or
off-white solids.

A mixture of pyrrolidin-3-one/piperidin-3-one/piperidin-4-ones (8–10, 15.0 mmol), O-alkylhydroxyl
amine hydrochlorides (18.0 mmol) and potassium carbonate (30.0 mmol) in ethanol (50 mL) was
stirred for 6–8 h at 25–50 ◦C. Then the mixture was cooled to temperature and filtered, the filter cake
washed with ethanol. The filtrate was concentrated under reduced pressure to afford the oximes 11–13
as oils. Amine derivatives 14, 15 and 16a–d were prepared from the oximes 11–13 by coupling with
4b,c and hydrazinolysis sequentially as described above.

A mixture of 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (17, 3.0 mmol), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (4.5 mmol) and HOBt (4.5 mmol) in
N,N-Dimethylformamide (10 mL) was stirred for 0.5 h at room temperature. Then compounds
5–7, 14–16 or 18–20 (4.5 mmol) and DIEA (6.6 mmol) were added. The reaction mixture was stirred for
12–24 h and later water was added. The aqueous layer was extracted with dichloromethane/methanol
(10:1, 30 mL × 2) and the combined organic layer was concentrated under reduced pressure. A solution
of the residue and 5-bromo-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one (22, 3.0 mmol) in ethanol
(10 mL) was stirred at temperature for 8–16 h. The precipitate was filtered, purified via silica gel
column chromatography (methanol/dichloromethane 40:1) and recrystallized from ethanol to afford
the title compounds 23a–q (26%–33%, two steps) as yellow solids.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[3-(pyrrolidin-
1-yl)propyl]-1H-pyrrole-3-carboxamide (23a): Yield: 26%. m.p.: 222–224 ◦C. 1H-NMR (500 MHz,
DMSO-d6) δ: 13.44 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H),
7.74 (t, J = 5.5 Hz, 1H), 3.26 (q, J = 12.5 Hz, 2H), 2.46–2.47 (m, 6H), 2.44 (s, 3H), 2.42 (s, 3H), 1.65–1.71
(m, 6H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 151.1, 144.2, 137.8, 131.8, 127.7, 126.7,
126.0, 122.2, 121.4, 112.5, 111.0, 53.5, 53.3, 52.0, 37.2, 28.0, 23.0, 13.4, 10.5, 7.2. MS-ESI (m/z): 472.6
(M + H)+, 474.6 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[4-(pyrrolidin-
1-yl)butyl]-1H-pyrrole-3-carboxamide (23b): Yield: 28%. m.p.: 230–232 ◦C. 1H-NMR (500 MHz, DMSO-d6)
δ: 13.44 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H), 7.74 (t,
J = 5.5 Hz, 1H), 3.22 (q, J = 12.5 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.37–2.40 (m, 6H), 1.65–1.67 (m, 4H),
1.48–1.53 (m, 4H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.3, 151.1, 144.1, 137.6, 131.8, 127.7,
126.8, 126.0, 122.3, 121.8, 112.5, 110.9, 55.4, 53.6, 38.6, 27.4, 26.0, 23.0, 13.3, 10.5. MS-ESI (m/z): 486.6
(M + H)+, 488.6 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[2-(piperidin-
1-yl)ethyl]-1H-pyrrole-3-carboxamide (23c): Yield: 28%. m.p.: 239–241 ◦C. 1H-NMR (500 MHz, DMSO-d6)
δ: 13.45 (s,1H), 11.63 (s, 1H), 8.48 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.86 (s, 1H), 7.52 (t,
J = 5.5 Hz, 1H), 3.34 (t, J = 6.5 Hz, 2H), 2.46 (s, 3H), 2.44–2.45 (m, 6H), 2.44 (s, 3H), 2.17–2.36 (m, 6H)
ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.3, 151.1, 144.2, 138.0, 131.8, 127.8, 126.7, 126.0, 122.2,
121.2, 112.5, 111.1, 57.2, 53.7, 52.0, 35.9, 25.3, 23.7, 13.4, 10.6, 7.2. MS-ESI (m/z): 472.6 (M + H)+, 474.6
(M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[2-(4-
methylpiperazin-1-yl)ethyl]-1H-pyrrole-3-carboxamide (23d): Yield: 32%. m.p.: 244–246 ◦C. 1H-NMR
(500 MHz, DMSO-d6) δ: 13.24 (s, 1H), 9.48 (s, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.77 (d, J = 2.0 Hz, 1H), 7.26
(s, 1H), 6.54 (t, J = 5.5 Hz, 1H), 3.55–3.58 (m, 2H), 2.64–2.66 (m, 4H), 2.58 (s, 3H), 2.43–2.50 (m, 4H), 2.37
(s, 3H), 2.30 (s, 3H), 1.60–1.64 (m, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.2, 151.1, 144.1,
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137.9, 131.7, 127.7, 126.7, 126.0, 122.2, 121.3, 112.5, 111.0, 56.7, 54.8, 52.5, 45.8, 36.1, 13.3, 10.6. MS-ESI
(m/z): 487.7 (M + H)+, 489.7 (M + H)+.

(S,Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-(2-hydroxy-3-
morpholinopropyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (23e): Yield: 25%. m.p.: 284–286 ◦C.
1H-NMR (500 MHz, DMSO-d6) δ: 13.45 (s, 1H), 11.64 (s, 1H), 8.48 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz,
1H), 7.86 (s, 1H), 7.61 (t, J = 5.5 Hz, 1H), 4.76 (s, 1H), 3.78–3.80 (m, 1H), 3.55–3.59 (m, 4H), 3.13–3.18 (m,
2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.27–2.36 (m, 6H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.6,
151.1, 144.2, 137.9, 131.9, 127.7, 126.7, 126.0, 122.2, 121.3, 112.5, 111.0, 66.7, 66.2, 63.0, 54.0, 43.9, 13.4,
10.6 ppm. MS-ESI (m/z): 504.6 (M + H)+, 506.6 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[3-(piperidin-
1-yl)propyl]-1H-pyrrole-3-carboxamide (23f): Yield: 27%. m.p.: 236–238 ◦C. 1H-NMR (500 MHz, DMSO-d6)
δ: 13.44 (s, 1H), 11.64 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H), 7.56 (t,
J = 6.5 Hz, 1H), 3.24 (q, J = 12.5 Hz, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.17–2.37 (m, 6H), 1.38–1.67 (m, 8H)
ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 151.1, 144.1, 137.7, 131.8, 127.7, 126.7, 126.0, 122.2,
121.6, 112.5, 111.0, 56.3, 54.0, 37.3, 26.5, 25.4, 24.0, 13.3, 10.5 ppm. MS-ESI (m/z): 486.0 (M + H)+, 488.0
(M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[4-(piperidin-
1-yl)butyl]-1H-pyrrole-3-carboxamide (23g): Yield: 33%. m.p.: 238–240 ◦C. 1H-NMR (500 MHz, DMSO-d6)
δ: 13.44 (s, 1H), 11.64 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H), 7.73 (t,
J = 5.5 Hz, 1H), 3.22 (q, J = 12.0 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.22–2.37 (m, 6H), 1.43–1.53(m, 8H),
1.33–1.40 (m, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 151.1, 144.1, 137.6, 131.8, 127.7,
126.7, 126.0, 122.2, 121.8, 112.5, 110.9, 58.2, 54.0, 38.6, 27.3, 25.4, 24.1, 23.8, 13.2, 10.4 ppm. MS-ESI (m/z):
500.3 (M + H)+, 502.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[3-(4-
methylpiperazin-1-yl)propyl]-1H-pyrrole-3-carboxamide (23h): Yield: 30%. m.p.: 238–240 ◦C. 1H-NMR
(500 MHz, DMSO-d6) δ: 13.44 (s, 1H), 11.62 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H),
7.85 (s, 1H), 7.71 (t, J = 5.5 Hz, 1H), 3.22 (q, J = 12.5 Hz, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.22–2.35 (m,
10H), 2.13 (s, 3H), 1.62–1.68 (m, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 151.1, 144.2,
137.7, 131.8, 127.8, 126.8, 126.0, 122.3, 121.7, 112.6, 111.0, 55.7, 54.7, 52.7, 45.7, 37.3, 26.6, 13.3, 10.5 ppm.
MS-ESI (m/z): 501.3 (M + H)+, 503.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-2,4-dimethyl-N-[4-(4-
methylpiperazin-1-yl)butyl]-1H-pyrrole-3-carboxamide (23i): Yield: 31%. m.p.: 238–240 ◦C. 1H-NMR
(500 MHz, DMSO-d6) δ: 13.43 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85
(s, 1H), 7.73 (t, J = 5.5 Hz, 1H), 3.22 (q, J = 12.0 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.16–2.37 (m, 10H),
2.13 (s, 3H), 1.45–1.50 (m, 4H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 151.1, 144.1, 137.6,
131.8, 127.7, 126.8, 126.0, 122.3, 121.8, 112.5, 110.9, 57.6, 54.8, 52.7, 45.7, 38.6, 27.3, 23.9, 13.3, 10.5 ppm.
MS-ESI (m/z): 515.3 (M + H)+, 517.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-[3-(dimethylamino)propyl]-
2,4-dimethyl-1H-pyrrole-3-carboxamide (23j): Yield: 29%. m.p.: 258–260 ◦C. 1H-NMR (500 MHz,
DMSO-d6) δ: 13.44 (s, 1H), 11.61 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H),
7.73 (t, J = 5.5 Hz, 1H), 3.25 (q, J = 12.5 Hz, 2H), 2.45 (s, 3H), 2.42 (s, 3H), 2.30 (t, J = 6.5 Hz, 2H), 2.16 (s,
6H), 1.62–1.68 (m, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.3, 151.1, 144.1, 137.8, 131.8,
127.7, 126.7, 126.0, 122.2, 121.5, 112.5, 111.0, 57.1, 45.2, 37.3, 27.1, 13.3, 10.5 ppm. MS-ESI (m/z): 446.2
(M + H)+, 448.2 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-[3-(diethylamino)propyl]-
2,4-dimethyl-1H-pyrrole-3-carboxamide (23k): Yield: 30%. m.p.: 234–236 ◦C. 1H-NMR (500 MHz,
DMSO-d6) δ: 13.45 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.11 (d, J = 2.0 Hz, 1H), 7.86 (s, 1H),
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7.74 (t, J = 5.5 Hz, 1H), 3.25–3.31 (m, 2H), 3.06–3.15 (m, 6H), 2.47 (s, 3H), 2.44 (s, 3H), 1.86–1.92 (m, 2H),
1.21 (t, J = 7.2 Hz, 6H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.8, 151.2, 144.2, 137.9, 131.8,
127.8, 126.8, 126.0, 122.2, 121.1, 112.5, 111.2, 48.4, 46.0, 36.0, 23.5, 13.4, 10.6, 8.4 ppm. MS-ESI (m/z):
474.3 (M + H)+, 476.3 (M + H)+.

5-[(Z)-(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-{3-[(E)-3-(methoxyimino)
pyrrolidin-1-yl]propyl}-2,4-dimethyl-1H-pyrrole-3-carboxamide (23l): Yield: 27%. m.p.: 226–228 ◦C.
1H-NMR (500 MHz, DMSO-d6) δ: 13.45 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz,
1H), 7.85 (s, 1H), 7.75 (t, J = 5.5 Hz, 1H), 3.95–4.10 (m, 4H), 3.78 (s, 3H), 3.48–3.56 (m, 2H), 3.28–3.32
(m, 2H), 2.63–2.69 (m, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 1.80–1.85 (m, 2H) ppm. 13C-NMR (400 MHz,
DMSO-d6) δ: 169.1, 164.5, 154.1, 151.1, 144.2, 137.7, 131.8, 127.7, 126.7, 126.0, 122.2, 121.4, 112.5, 111.0,
62.7, 61.4, 45.6, 43.8, 35.6, 28.9, 18.5, 13.3, 10.5 ppm. MS-ESI (m/z): 515.1 (M + H)+, 517.1 (M + H)+.

5-[(Z)-(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-{2-[(E)-3-(methoxyimino)
piperidin-1-yl]ethyl}-2,4-dimethyl-1H-pyrrole-3-carboxamide (23m): Yield: 26%. m.p.: 198–200 ◦C.
1H-NMR (500 MHz, DMSO-d6) δ: 13.45 (s, 1H), 11.61 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz,
1H), 7.85 (s, 1H), 7.80 (t, J = 5.5 Hz, 1H), 3.98–4.24 (m, 4H), 3.74 (s, 3H), 3.46–3.48 (m, 4H), 2.44 (s, 3H),
2.42 (s, 3H), 2.22–2.36 (m, 2H), 1.63–1.69 (m, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.6,
153.9, 151.1, 144.2, 137.8, 131.9, 127.8, 126.8, 126.0, 122.2, 121.2, 112.5, 111.1, 63.8, 61.0, 56.0, 43.3, 38.2,
22.8, 18.5, 13.3, 10.4 ppm. MS-ESI (m/z): 515.3 (M + H)+, 517.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-{2-[4-(methoxyimino)
piperidin-1-yl]ethyl}-2,4-dimethyl-1H-pyrrole-3-carboxamide (23n): Yield: 29%. m.p.: 262–264 ◦C. 1H-NMR
(500 MHz, DMSO-d6) δ: 13.44 (s, 1H), 11.62 (s, 1H), 8.46 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85
(s, 1H), 7.58 (t, J = 5.5 Hz, 1H), 3.71 (s, 3H), 3.33–3.39 (m, 2H), 2.56 (t, J = 6.0 Hz, 2H), 2.47–2.52 (m, 6H),
2.46 (s, 3H), 2.44 (s, 3H), 2.23 (t, J = 6.0 Hz, 2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.2,
156.3, 151.1, 144.2, 137.9, 131.8, 127.7, 126.7, 126.0, 122.2, 121.4, 112.5, 111.0, 60.6, 56.2, 53.1, 51.7, 36.4,
30.8, 24.9, 13.3, 10.5 ppm. MS-ESI (m/z): 515.2 (M + H)+, 517.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-{3-[4-(methoxyimino)
piperidin-1-yl]propyl}-2,4-dimethyl-1H-pyrrole-3-carboxamide (23o): Yield: 32%. m.p.: 233–235 ◦C.
1H-NMR (500 MHz, DMSO-d6) δ: 13.44 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz,
1H), 7.85 (s, 1H), 7.71 (t, J = 5.5 Hz, 1H), 3.71 (s, 3H), 3.25 (q, J = 12.5 Hz, 2H), 2.45–2.49 (m, 6H), 2.44 (s,
3H), 2.42 (s, 3H), 2.38 (t, J = 5.9 Hz, 2H), 2.22 (t, J = 7.0 Hz, 2H), 1.65–1.71 (m, 2H) ppm. 13C-NMR
(400 MHz, DMSO-d6) δ: 169.1, 164.4, 156.4, 151.1, 144.2, 137.7, 131.8, 127.7, 126.8, 126.0, 122.2, 121.6,
112.5, 111.0, 60.5, 55.0, 53.3, 52.0, 37.2, 30.7, 26.9, 24.8, 13.3, 10.5 ppm. MS-ESI (m/z): 529.3 (M + H)+,
531.3 (M + H)+.

(Z)-5-[(5-Bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-ylidene)methyl]-N-{3-[4-(ethoxyimino)
piperidin-1-yl]propyl}-2,4-dimethyl-1H-pyrrole-3-carboxamide (23p): Yield: 31%. m.p.: 237–239 ◦C.
1H-NMR (500 MHz, DMSO-d6) δ: 13.44 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz,
1H), 7.85 (s, 1H), 7.71 (t, J = 5.5 Hz, 1H), 3.97 (q, J = 7.0 Hz, 2H), 3.25 (q, J = 12.5 Hz, 2H), 2.45–2.48 (m,
6H), 2.44 (s, 3H), 2.42 (s, 3H), 2.37–2.40 (m, 2H), 2.22–2.24 (m, 2H), 1.65–1.71 (m, 2H), 1.16 (t, J = 7.0 Hz,
3H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 156.0, 151.1, 144.1, 137.7, 131.8, 127.7, 126.7,
126.0, 122.2, 121.6, 112.5, 111.0, 67.8, 55.0, 53.4, 52.0, 37.2, 30.8, 26.9, 24.9, 14.5, 13.3, 10.5 ppm. MS-ESI
(m/z): 543.3 (M + H)+, 545.3 (M + H)+.

(Z)-N-{3-[4-(Benzyloxyimino)piperidin-1-yl]propyl}-5-[(5-bromo-2-oxo-1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-
3-ylidene)methyl)]-2,4-dimethyl-1H-pyrrole-3-carboxamide (23q): Yield: 30%. m.p.: 226–228 ◦C. 1H-NMR
(500 MHz, DMSO-d6) δ: 13.44 (s, 1H), 11.63 (s, 1H), 8.47 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.85
(s, 1H), 7.71 (t, J = 5.5 Hz, 1H), 7.27–7.36 (m, 5H), 4.99 (s, 2H), 3.25 (q, J = 12.5 Hz, 2H), 2.51–2.53 (m,
2H), 2.47–2.48 (m, 4H), 2.44 (s, 3H), 2.42 (s, 3H), 2.37–2.40 (m, 2H), 2.22 (t, J = 5.8 Hz, 2H), 1.65–1.71 (m,
2H) ppm. 13C-NMR (400 MHz, DMSO-d6) δ: 169.1, 164.4, 157.2, 151.1, 144.1, 138.2, 137.7, 131.8, 128.2,
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127.7, 127.5, 126.7, 126.0, 122.2, 121.6, 112.5, 111.0, 74.3, 55.0, 53.3, 52.0, 37.2, 30.8, 26.9, 25.0, 13.3, 10.5
ppm. MS-ESI (m/z): 605.3(M + H)+, 607.3 (M + H)+.

4. Conclusions

In summary, a series of novel 5-bromo-7-azaindolin-2-one derivatives containing a
2,4-dimethyl-1H-pyrrole-3-carboxamide moiety were designed, synthesized and evaluated for their
in vitro antitumor activity by MTT assay. Our results reveal that many target compounds exhibit
broad-spectrum antitumor potency which is better than Sunitinib. The most active compound 23p
(IC50: 2.357–3.012 µM) was found 11.3- to 8.4-fold more potent than Sunitinib against all of
the tested cell lines, HepG2, A549 and Skov-3, respectively. Studies to determine the in vivo
pharmacokinetics and efficacy of compounds 23c, 23d and 23p against some selected tumor cell
lines are currently underway.
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