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Abstract: This study tried to clarify the antagonistic effect of the lipopeptides secreted by Bacillus
amyloliquefaciens strain BPD1 (Ba-BPD1) against Pyricularia oryzae Cavara (PO). To determine the major
antifungal lipopeptides effective against PO, single and dual cultures were carried out in solid-state
media. The matrix-assisted laser desorption/ionization–time of flight imaging mass spectrometry
(MALDI-TOF IMS) was used to identify the most effective lipopeptide in situ. Meanwhile, the
morphology of pathogen fungi treated with lipopeptides was observed via the SEM. Of the three
lipopeptide families, surfactin, iturin, and fengycin, the last was identified as the most effective
for inhibiting mycelium growth and conidial germination of PO. The conidia and hyphae of
fengycin-treated PO were shown to become deformed and tumorous under exposure. This study
provides insights into the antagonistic effect of Ba-BPD1 against fungal phytopathogens. Such
insights are helpful in the development of reagents for biological control applications.
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1. Introduction

Consumed by more than 50% of the global population, rice is one of the world’s most important
crops [1]. Rice blast disease, caused by Pyricularia oryzae Cavara (PO), is one of the most destructive and
widely spread diseases [2], resulting in serious yield losses in countries such as India, the Philippines,
and Nigeria [3–5]. In Brazil, rice blast is considered to be the major yield constraint factor [6]. Several
methods, such as the use of fungicides, resistant cultivars, and biotechnological approaches, have
been employed to control the phytopathogen diseases [7]. Chemical fungicides are the most widely
used in-field application; however, they are hazardous to the ecosystem [8]. In contrast, biological
approaches through the use of microbial antagonists are considered to be more environmentally
friendly, effective, and sustainable in an agricultural setting. Several microorganisms, such as Bacillus
spp. and Pseudomonas spp., have been reported to be potential strains for rice blast disease control [9,10].

Bacillus amyloliquefaciens has been proposed for its agricultural disease control properties [11].
Its ability to produce various antifungal lipopeptides has been considered to be the key factor in
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controlling phytopathogen diseases [11,12]. Most of these lipopeptides have a molecular weight
of around 1000–1600 Da and are synthesized non-ribosomally via a multi-enzyme biosynthesis
pathway [12,13]. The representative lipopeptides are classified into three families: surfactin, iturin
(mycosubtilin, iturin A, and bacillomycin), and fengycin [14]. All were reported to possess respective
antifungal activities for inhibiting the growth of filamentous fungi [15–17]. For instance, studies
indicated that surfactin had strong synergistic functions when applied in combination with iturin A [18]
or fengycin [19]. Arrebola et al. proposed that iturin A was the major antagonistic lipopeptide [20];
reports concerning the antimicrobial effect of fengycin are still few compared to reports on iturin.

Pathak et al. have isolated the fengycin lipopeptide family from the antagonistic strains of
B. subtilis [21]; however, no direct evidence of using fengycin as a standard for inhibiting pathogenic
fungi has yet been provided. In addition, none of the reports have studied the effect of lipopeptide
secretion during in situ antagonistic testing, and little has been done to assess the effect of individual
lipopeptides on phytopathogen.

In this study, a strain of Ba-BPD1 with a wide spectrum of antimicrobial capacities was isolated
from local mountain soils. This strain exhibits high antagonistic activity against a large number of plant
pathogens, particularly against PO that causes rice blast disease. Arguelles-Arias et al. indicated that
Bacillus amyloliquefaciens has potent antibiotics and other secondary lipopeptides for biocontrol of plant
pathogens. In this study, three families of lipopeptides, i.e., iturin, fengycin, and surfactin, were found
in the cultivation of strain Ba-BPD1. The antagonistic effect of using lipopeptides to inhibit PO growth
was detected. The lipopeptides produced within the interspecies competition zone were tracked in
situ via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), which
is capable of visualizing the spatial distribution of multiple compounds from the microbial growth
on agar media [22–24]. Scanning electron microscopy (SEM) observation of the morphology of PO
under antagonistic testing was also carried out. The antagonistic effect of the lipopeptides produced
by Ba-BPD1 against PO was illustrated and clarified.

2. Results and Discussion

2.1. Identification of the Strain Ba-BPD1

A strain isolated from Taiwan mountain soils was found to possess a wide spectrum of antimicrobial
capacities for inhibiting fungal or bacterial diseases. The results of the antagonistic spectrum were listed
as the Supplementary materials for reference. This strain was identified as Bacillus amyloliquefaciens
via the gyrA rDNA sequence (GenBank accession number: KX819300) and was named Ba-BPD1.
The neighbor-joining phylogenetic tree in Figure 1 shows the similarities within this strain.
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Figure 1. Neighbor-joining phylogenetic tree analysis of Bacillus spp. based on gyrA nucleotide
sequences (2246 bp) using Pseudomonas spp. as an outgroup. The evolutionary distances were calculated
by the p-distance method based on 1000 bootstrap replication. The phylogenetic tree was computed
using the MEGA6.0 program. (Molecular Evolutionary Genetics Analysis, a free software obtained
from http://www.megasoftware.net/).
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2.2. Identification of the Lipopeptides of Ba-BPD1

Strain Ba-BPD1 was cultivated in Luria–Bertani (LB) medium. The fermentation broth was then
harvested and the metabolites were analyzed. The molecular networking analysis based on LC-MS/MS
data demonstrated that Ba-BPD1 produced three distinguishable groups of lipopeptides [25,26].
Surfactins were the first group, including m/z of 980.6276, 994.6445, 1008.6606, 1022.6745, 1036.6905,
1038.6667, 1050.7073, 1054.7013, 1064.7214, and 1078.7374. Iturins were the second group, including
m/z of 1015.5179, 1043.5489, 1057.5686, 1071.5805, and 1085.5958. Fengycins were the third group,
including m/z of 1435.7688, 1447.8038, 1449.7848, 1463.8012, 1477.8159, 1489.8540, 1491.8308, and
1505.8460 (Table 1). Within the same lipopeptide family, the m/z differences of 14 suggested a series of
homologous molecules having different lengths of fatty acid chains (i.e., CH2 = 14). Therefore, the mass
shifts of 14 were considered to occur within the same non-ribosomal lipopeptide family with different
fatty acid chain lengths by methylation. In addition, the m/z differences of 22 in the MS spectrum were
expected to be the same molecule as for the protonation [M + H]+ or the sodium ion form [M + Na]+.
The standard lipopeptides (marked with # in Table 1) were used to check the composition similarity
for the lipopeptides produced in the Ba-BPD1 LMS fermentation broth. To systematically correlate the
relationship of these lipopeptides produced in the broth by this strain, the software Cytoscape was
used to generate the molecular networking of the lipopeptide family clusters, as visualized in Figure 2.

Table 1. Lipopeptide composition of Ba-BPD1 analyzed by LC-ESI MS.

Compounds Molecular Formula tR (min) [M + H]+ [M + Na]+ Observed
[M + H]+ Error (ppm)

Surfactin group

C-12 Surfactin # C49H85N7O13 5.91 980.6284 1002.6104 980.6276 −0.82
C-13 Surfactin # C50H87N7O13 6.22 994.6440 1016.6260 994.6445 0.50
C-13 Surfactin # C51H89N7O13 6.39 1008.6597 1030.6417 1008.6606 0.89
C-14 Surfactin # C52H91N7O13 6.65 1022.6753 1044.6573 1022.6745 −0.78
C-15 Surfactin # C53H93N7O13 7.11 1036.6912 1058.6732 1036.6905 −0.68

C-14 Surfactin *,# C52H91N7O14 5.66 1038.6702 1060.6522 1038.6667 −3.37
C-16 Surfactin # C54H95N7O13 7.16 1050.7059 1072.6879 1050.7073 1.33

C-15 Surfactin *,# C53H95N7O14 5.41 1054.7029 1076.6849 1054.7013 −1.52
C-17 Surfactin C55H97N7O13 7.32 1064.7223 1086.7043 1064.7214 −0.85
C-19 Surfactin C57H101N7O13 7.51 1078.7379 1100.7199 1078.7374 −0.46

Iturin group

C-11 Iturin # C45H70N12O14 2.92 1015.5221 1037.5041 1015.5179 −4.14
C-13 Iturin A1 # C48H74N12O14 3.43 1043.5526 1065.5346 1043.5489 −3.55
C-14 Iturin A2 # C49H76N12O14 3.62 1057.5682 1079.5502 1057.5686 0.38
C-16 Iturin A6 # C50H78N12O14 3.96 1071.5839 1093.5659 1071.5805 −3.17
C-17 Iturin A8 # C51H80N12O14 4.14 1085.5995 1107.5815 1085.5958 −3.41

Fengycin group

C-14 Fengycin A # C70H106N12O20 4.01 1435.7725 1457.7545 1435.7688 −2.58
C-16 Fengycin A *,# C72H110N12O19 4.72 1447.8088 1469.7908 1447.8038 −3.45
C-15 Fengycin A # C71H108N12O20 4.29 1449.7881 1471.7701 1449.7848 −2.28
C-16 Fengycin A # C72H110N12O20 4.36 1463.8038 1485.7858 1463.8012 −1.78
C-15 Fengycin B # C72H110N12O20 4.49 1477.8194 1499.8014 1477.8159 −2.37

C-17 Fengycin D *,# C73H112N12O19 5.05 1489.8576 1511.8396 1489.8540 −2.42
C-16 Fengycin B # C74H114N12O20 4.52 1491.8351 1513.8171 1491.8308 −2.88
C-17 Fengycin B # C75H116N12O20 4.67 1505.8510 1527.8490 1505.8460 −3.12

* Linear form of lipopeptides; # The lipopeptides were detected both in BPD1 crude extract and the
commercial standards.
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Figure 2. Molecular networking of lipopeptide family clusters produced by Ba-BPD1 in LB medium.
The lipopeptides were grouped into three clusters: surfactins, iturins, and fengycins. Values of m/z
[M + Na]+ were used to present each group of lipopeptides.

2.3. MALDI-TOF IMS Analysis

To test the antagonistic effect of Ba-BPD1 against PO, both a single culture and a dual culture were
set up. PO was clearly growth-inhibited by Ba-BPD1 in the dual culture (See Section 3.4 and Figure 3).
To determine the major antifungal lipopeptides produced by Ba-BPD1, the spatial distribution of the
lipopeptides in the inhibition zone was evaluated in situ via the MALDI-TOF IMS. Results indicated
that three lipopeptides, i.e., iturin, fengycin, and surfactin, were produced by Ba-BPD1. In the
MALDI-TOF analysis in Figure 3A, surfactin was marked with blue; iturin was marked with yellow
and fengycin was marked with red. In addition, to identify the lipopeptides’ spatial distribution on the
plates, Ba-BPD1 colonies were labeled as zones (a)-1 and (b)-1, and the inhibition zones were labeled
as (a)-2 and (b)-2 for the single and dual cultures, respectively; the PO colony was labeled as position
(b)-3 in dual culture and the same location was marked as (a)-3 in the single culture.

As shown in Figure 3A, it was found that in the single culture, surfactin was produced uniformly
and wholly around zones (a)-1 to (a)-3, and iturin was observed mainly in zone (a)-1, where Ba-BPD1
cells existed; however, only a small amount of fengycin was found in zone (a)-1. In contrast, in the dual
culture, surfactin was decreased clearly at zone (b)-3, where the PO strain grew. This indicated that
some of the metabolic pathways for surfactin production might have shifted to iturin and fengycin,
or the surfactin close to PO was decomposed or degraded by the PO strain. In the antagonistic dual
culture, iturin was increased at zones (b)-1 and (b)-2, whereas fengycin was dramatically enhanced
mainly at zone (b)-2 (the inhibition zone). This suggests that surfactin is spontaneously secreted,
whereas most fengycin and iturin are produced when Ba-BPD1 meets the competition stress from
pathogen PO.

To further confirm the observation, mass-spectra were provided in Figure 3B. The m/z peak value
of 1064 was used to represent surfactin; m/z of 1057 for iturin and m/z of 1485 for fengycin. In the
spectra, surfactin was decreased at zones (b)-2 and (b)-3 in the dual culture plate. This suggests that
surfactin diffusion was inhibited or surfactin was degraded by PO during dual culture. Hoefler et al.
proposed that microbial antagonists might secrete metabolites against the growth of competing species.
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The competitors might also develop resistance to the antagonistic metabolites [27]. Additionally, in
dual culture, iturin increased slightly in zones (b)-1 and (b)-2, and fengycin increased three-fold in zone
(b)-2 compared to in zone (a)-2 (single culture). This indicates that both iturin and fengycin might be
inducible defense metabolites of Ba-BPD1 against PO. This observation is consistent with that reported
by Liu et al. that iturin and fengycin exerted synergistic functions on pathogen inhibition [15]. It is of
interest that the marked increase of fengycin in dual culture might imply that fengycin is the most
critical antagonistic metabolite secreted by Ba-BPD1 under external stimulation.
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Figure 3. (A) MALDI-TOF IMS profiles of Ba-BPD1 (BPD1) in (a) single culture with P. oryzae (Po) and
(b) dual culture. Lipopeptides (surfactin, iturin, and fengycin) were detected in different zones, 1–3, on
the agar plate, respectively; (B) The mass spectra of compounds detected in zones 1–3 are shown.

2.4. Fermentation Medium Tested for Fengycin Production

Although LB medium is a common medium for Bacillus sp. cultivation, it is still unsuitable for
industrial use due to cost concerns. To design a medium fit for industrial scale-up use, a complex
medium LMS (10 g/L lactose, 5 g/L molasses, and 20 g/L soy protein) was chosen after the preliminary
tests. To understand the effect by the use of LMS medium, the two media, LB and LMS, were used
to test the production of fengycin by Ba-BPD1. The harvested broths were collected and analyzed by
LC-MS. Figure 4 shows the results. The levels of C-14 fengycin A and C-16 fengycins A and B in LMS
broth were almost twice those in LB broth. In addition, the use of LMS can produce similar lipopeptide
metabolites as are produced by using LB. Since fengycin is the key compound in the broth, the marked
enhancement of fengycin in LMS medium means it is a good substitute for LB medium.
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2.5. Antifungal Bioassay and SEM Observations

In order to find the major lipopeptide attributed to the antagonistic effect against PO, all the
lipopeptide standards were used in the preparation of antagonistic plate tests. Figure 5 shows the
results. Fengycin standard revealed a significant inhibitory effect on hyphal growth of PO; however,
as shown in Figure 5A-a, treatment with surfactin and iturin standards did not show any inhibitory
effect. In addition, the combination tests in Figure 5A-b showed that all combinations with fengycin
gave biocontrol activity against PO. Based on the above observation, it is evident that fengycin is the
major lipopeptide effective against PO in this study.

In the test using fengycin treatment, the hyphae at the antagonistic border were observed as being
burned or corroded. To study more clearly the hyphal morphology at the demarcation line, SEM was
applied; Figure 5B shows the results. SEM observation displayed that the hyphal morphologies of PO
around the demarcation line were deformed, i.e., swollen (Figure 5B-a) or even cracked (Figure 5B-b).
This observation is consistent with that reported by Tang et al. concerning the effects of fengycin on
morphological damages in fungal pathogens [28]. In contrast, the untreated hyphae were even and
uniform (Figure 5B-c). In addition, globular hyphae were found on the fengycin-treated plate but
were rarely seen on the untreated one. These results further indicate that fengycin is likely the major
compound for PO inhibition. The findings mentioned above provided understanding of the function
of fengycin in the antagonism of Ba-BPD1 against PO, which might be helpful in rice blast biocontrol.
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Figure 5. (A) Antifungal assay of commercial lipopeptide standards against P. oryzae, where I: iturins,
F: fengycins, S: surfactins, and M: methanol; (B) The morphology for P. oryzae hyphae collected at the
inhibition border via SEM observation. The fengycins-treated P. oryzae hyphae were (a) swollen or (b)
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2.6. The Effect of Ba-BPD1 Broth on the Germination of Conidia of P. oryzae

To test the inhibition effect of Ba-PBD1 broth on the germination of PO conidia, the procedure
described in Section 3.6 was followed. SEM was used to observe the change in morphology. As shown
in Figure 6a, no germination was observed when PO was treated with LMS broth, whereas the
untreated PO’s growth was unlimited (Figure 6b). It is of interest that the germ tube (marked as the
yellow circle in Figure 6a) of PO conidia was deformed, swollen, and unable to form appressoria
(marked as the red circle in Figure 6b) when treated with Ba-BPD1 broth (1.25 × 108 CFU/mL). This
revealed that the compounds in LMS broth, especially fengycin, can inhibit conidia germination via
deforming the conidia and germ tube of PO. Furthermore, the formation of fungi appressoria can also
be stopped, which might prevent fungal uptake of essential nutrients from plants [29].
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3. Experimental Section

3.1. Chemicals

Lipopeptide standards, i.e., iturin A (CAS No. 52229-90-0), surfactin (CAS No. 24730-31-2) and
fengycin (CAS No. 102577-03-7), were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).
Luria–Bertani medium was purchased from Sigma Chemical Co. All other chemicals were of analytical
grade and were purchased from the local dealer.

3.2. Strain and Culture Conditions

The strain Ba-BPD1 was isolated from the soil in Lishan, Taichung County, Taiwan. Then it
was incubated, identified, and deposited at the Bioresource Collection and Research Center in
Taiwan (BCRC 910395) and the Leibniz-institut DSMZ-Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH in Germany (DSM 21836). A patent was also applied in the USA
(US 2010/0143316A1). Ba-BPD1 was cultured on Luria–Bertani (LB) medium at 30 ◦C for 16 h,
followed by centrifugation to collect the cells’ pellet and then mixing with fresh LB broth plus 20%
glycerol. It was then deposited at −80 ◦C as the stock. For the LB and LMS (10 g/L lactose, 5 g/L
molasses and 20 g/L soy protein) fermentation, 1 mL of Ba-BPD1 stock was inoculated to 60 mL LB
and LMS medium, respectively, and then cultured at 30 ◦C, at 200 rpm for 72 h. Then the fermentation
broth was collected for the LC-MS analysis. LMS medium was used for lipopeptide production,
MALDI-TOF IMS analysis, and conidial morphology observation experiments.

3.3. LC-MS and LC-MS/MS Analysis

For the LC-MS analysis, Ba-BPD1 was inoculated in LB and LMS broth at 30 ◦C for 72 h and
then extracted by either ethyl acetate or n-butanol. The extracts were concentrated to dryness by
rotary evaporation at 45 ◦C and then dissolved in methanol for LC-MS analysis. A C18 column
(ACQUITY UPLC BEH-C18, 130 Å, 1.7 µm, 2.1 × 100 mm) was used with the following gradients:
0–6 min at 5%–99.5% of acetonitrile (ACN), 6–8 min at 100% of ACN, 8–8.2 min at 99.5%–5% of ACN
and 8.2–10 min at 5% of ACN. The flow rate was set at 0.4 mL/min. The mass data were acquired
in triplicate using the Thermo Orbitrap Elite system. Mass data were acquired in profile mode and
positive mode, with mass range m/z 100–1500 with a resolution of 30,000 at m/z 400. For tandem mass
data, the top five intense ions from each full mass scan were selected for collision-induced dissociation
(CID) fragmentation. For CID, the isolation width was 2 m/z and the selected ions were fragmented
with a normalized collision energy of 30.0 or 35.0 eV, activation Q 0.250 ms, activation time 10.0 ms,
and a resolution of 15,000 at m/z 400. The mass data were converted to mzXML file formats followed by
applying to software GnPS (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) to generate
molecular networking; data were then visualized in Cytoscape (Institute of Systems Biology, Seattle,
WA, USA).

3.4. MALDI-TOF IMS Analysis

For the MALDI-TOF IMS analysis, the PDA agar plate was smeared with a streak of Ba-BPD1 from
LMS broth, 2 cm from the plate edge. Meanwhile, a 1 cm diameter agar plug of PO was inoculated onto
the same plate. The distance between Ba-BPD1 and PO inoculum was 5 cm. The plates were incubated
at 30 ◦C for 12 days and the regions of interest containing side-by-side inoculated microorganisms or
singly grown microorganisms were cut and placed on an indium tin-oxide-coated glass slide. All slides
with target samples were then covered with a thin layer of universal MALDI matrix using the sieve
method and were dehydrated at 37 ◦C to generate a uniform distribution of crystalline matrix. The
sample slides were subjected to a Bruker Autoflex Speed MALDI-TOF/TOF MS for collecting IMS
data with a typical mass range of 100–2000 Da. The IMS data were analyzed using Bruker FlexImaging
3.0 software (Bruker, Bremen, Germany).

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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3.5. Antifungal Bioassay

The antifungal activity of lipopeptide standard agents toward PO was tested on PDA plates. Some
30 µL of 0.25% standard agents, iturin A (consisting of at least six iturin A isomers), fengycin, and
surfactin, were loaded on an 8-mm paper disc and placed 2 cm from the edge of the plates. An agar
plug of PO (about 1 cm in diameter) cut from the leading edge of the culture (grown on PDA at
25 ◦C for five days) was simultaneously placed in the center of the antagonistic plate. The plates
were incubated at 25 ◦C for 12 days. A slice of sample agar was cut from the antagonistic plate and
stuck on the specimen holder, followed by freezing using liquid nitrogen. Then the specimen was
transported to the vacuumed chamber via a specimen exchange rod. The hyphae of PO at the border
line were examined under the field emission scanning electron microscope (JEOL JSM-6330F, JEOL Ltd.,
Tokyo, Japan).

3.6. Observation of Conidial Morphology

The LMS broth of Ba-BPD1 was also tested for the effect on conidia. Conidia of PO were used as
targets, and the concentration of conidial suspension was adjusted to 5 × 105 conidial/mL. In each
test, 25 µL of 20-fold diluted LMS broth of Ba-BPD1 (stock concentration of 5 × 109 CFU/mL) was
mixed with 25 µL of conidial suspension and incubated at 25 ◦C for 12 h. The conidial morphology
was observed under the field emission scanning electron microscope (JEOL, JSM-6330F).

4. Conclusions

In this study, a novel strain Ba-BPD1 was isolated and tested for its antagonistic activity. SEM
observation and MALDI-TOF IMS analysis were adopted to clarify the effect of the major antagonistic
lipopeptides. The MALDI-TOF IMS analysis indicated that fengycin was inducible and distributed
mainly in the inhibition zone in dual culture, whereas iturin and surfactin were distributed in both
the cell and inhibition zones in single culture. The use of standard lipopeptides showed that fengycin
was a key compound secreted by Ba-BPD1 and was responsible for the antifungal effect toward PO.
In addition, via SEM observation, fengycin could cause the deformation of hyphae and conidia of PO.
In this study, it was evident that fengycin acted as the major antagonistic compound toward PO. This
understanding might help in the preparation of biocontrol reagents for the rice blast disease control.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
12/1670/s1.
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