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Abstract: Phenols are among the largest and most widely distributed groups of secondary metabolites
within the plant kingdom. They are implicated in multiple and essential physiological functions.
In humans they play an important role as microconstituents of the daily diet, their consumption
being considered healthy. The physical and chemical properties of phenolic compounds make these
molecules versatile ligands, capable of interacting with a wide range of targets, such as the Carbonic
Anhydrases (CAs, EC 4.2.1.1). CAs reversibly catalyze the fundamental reaction of CO2 hydration
to bicarbonate and protons in all living organisms, being actively involved in the regulation of a
plethora of patho/physiological processes. This review will discuss the most recent advances in
the search of naturally occurring phenols and their synthetic derivatives that inhibit the CAs and
their mechanisms of action at molecular level. Plant extracts or mixtures are not considered in the
present review.
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1. Introduction

1.1. The Carbonic Anhydrases Family, Occurrence and Role

CO2, bicarbonate and protons are an essential molecule and ions for many important physiologic
processes occurring in all living organisms, including Archaea, Bacteria, and Eukarya [1,2]. However
the uncatalyzed rate of interconversion of such species is too slow to meet the physiological needs
of most biochemical processes [2,3]. This task is efficiently accomplished by the carbonic anhydrases
(CAs, EC 4.2.1.1). This superfamily of metalloenzymes possess within their active sites a highly
nucleophilic metal hydroxide species, such as zinc(II), cadmium(II) or iron (II) hydroxide, depending
on the class [2,3]. To date seven not-genetically related CA families are reported, indicated with the
Greek letters α-, β-, γ-, δ-, ζ- η- and θ- [1–9]. All the CA families have been thoroughly characterized
by means of kinetic and structural features, with the exception of the δ-, η- and θ-CAs, for which
only kinetic data are available so far [8–11]. The α-CAs are mainly distributed among the vertebrates,
protozoa, algae, cytoplasm of green plants and in many Bacteria species. Since α-CAs are the only
superfamily expressed in humans, they are also the most investigated ones for medicinal chemistry
purposes [1–5,8,12–17]. Mammals (except the primates) possess 16 α-CA-isoforms, and among them
three are devoid of catalytic activity [1,2]. The distribution of the various isoforms differs within
tissues, cellular compartments as well as in modification of physio/pathological conditions [1,2].
The inhibition and activation mechanisms of CAs are well understood processes at a molecular
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level. The classical CA inhibitors (CAIs) such as the primary sulfonamides and their bioisosters
(the sulfamides and sulfamates) as well as the thiocyanates, tightly bind to the Zn(II) ion within the
enzymatic active site, thus interrupting the carbon dioxide hydration cycle [1,2,12]. Although the
sulfonamides are in clinical use as CAIs for almost 70 years they usually are associated to various
side effects, which among others include hypersensitivity [1,12,13]. In the search for new and more
effective drug candidates, natural products are indeed of particular interest. Up to now coumarins [18],
polyamines, [19] and phenols [20,21] were revealed as interesting alternatives. The coumarins acts
as prodrugs, [18] the simple phenols and polyamines anchor to the Zn(II)-bound water or hydroxide
ion [19–21]. These different modes of action remarked many structural differences occurring between
the CA isoforms and never explored before, thus paving the way for the design of new CAIs with high
isoform selectivity and of particular interest for the future development as drug leads.

All the above considerations are of particular interest, as selective CA targeting is the crucial
aspect for the successful pharmacological treatment of diseases in which such enzymes are involved.
Besides the use of CAI-based drugs for the treatment of glaucoma, oedema and altitude sickness,
CAs are established targets for the prognosis and treatment and of hypoxic tumors [22].

To date the hCA IX monoclonal chimeric antibody girentuximab (Rencarex®), and its iodo
radiolabeled derivative (Redectane®) are marketed for both the treatment of renal cell carcinoma
(RCC) and for imaging purposes respectively. Recent advances account for the introduction in phase
I clinical trials of the primary sulfonamide small molecule SLC-0111 for the treatment of metastatic
solid tumors in patients showing positive response to hCA IX and XII markers [23]. hCAs are also
valid therapeutic targets for the treatment of osteoporosis [24], central-nervous-system (CNS) affecting
diseases such as Alzheimer or epilepsy [17,25–27], as well as for the treatment of obesity [28,29].
A research stream of particular interest is also represented by development of new antiinfectives by
means of the selective targeting of the CAs expressed in bacteria, fungi and protozoa which represent
the etiologic agents of various infectious diseases [30,31]. The development of new and more efficient
antiinfectives is a field of prior interest in medicinal chemistry since many resistant bacterial strains
are seriously jeopardizing the currently used pharmacological drugs. In this context natural products
constitute a remarkable source of highly promising lead compounds for future development as next
generation drugs.

1.2. Plant Phenolics

Phenols and polyphenols constitute one of the largest and most ubiquitous classes of secondary
metabolites in the plant kingdom. They are widely distributed in the Pteridophyta and Spermatophyta
taxa (Gymnospermae and Angiospermae), whereas they are less common in bacteria, fungi and
algae [32].

Simple phenols comprise structures with one aromatic ring, substituted with one or more hydroxyl
moieties (Figure 1). Most phenols of natural origin have at least two hydroxyls in their structure
and are generated biosynthetically from the shikimate (phenylpropanoid) pathway (C6-C3) through a
series of reactions including decarboxylation, dehydration, and oxidative cleavage [33–35].

Polyphenols have at least two phenolic rings in their structure and are characterized by a wide
structural diversity (Figures 2 and 3). They derive from the shikimate (phenylpropanoid) pathway,
the polyketide (acetate) pathway or from a combination of both biosynthetic routes. Historically the
term polyphenol referred to tannins (condensed, hydrolysable and elagitannins, Figure 2), which are
complex polyphenolic compounds of polymeric nature with molecular masses ranging from 500 to
4000 Da, capable of interacting and binding with proteins. This property of tannins to act as protein
precipitants has been exploited since antiquity in the processing of animal skin to leather [33,36,37].
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term polyphenol was expanded to include a wider range of molecules with at least two phenolic rings 
in their skeleton: xanthones, stilbenes and stilbenoids, depsides, phenylpropanoid derivatives, lignans 
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More than 8000 flavonoids and derivatives thereof have been reported to date [38]. The term 
flavonoid refers to yellow (flavus = yellow) pigments which in their classical form incorporate a 
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With the advent of chromatographic techniques and the development of phytochemistry, the
term polyphenol was expanded to include a wider range of molecules with at least two phenolic
rings in their skeleton: xanthones, stilbenes and stilbenoids, depsides, phenylpropanoid derivatives,
lignans and lignin (Figure 3) and, most importantly, flavonoids (Figure 4), which are by far the biggest
group [32] of polyphenolic compounds.

More than 8000 flavonoids and derivatives thereof have been reported to date [38]. The term
flavonoid refers to yellow (flavus = yellow) pigments which in their classical form incorporate a
benzo[γ]pyrone system. However, under the same group several biogenetically relative secondary
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metabolites are comprised including the yellow pigments aurones and chalcones, the colorless
flavanones and the red/blue anthocyanidins (Figure 4).
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In plants phenolics play a key role in many vital physiological processes, such as lignification,
pigmentation of flowers and fruits, pollination, as growth factors, and they also govern plant responses
towards environmental stress, such as protection from excess UV radiation, nutrient deficiency, drought
stress, and most importantly they act as chemical defense against herbivores, insects and microbial
pathogens [36,37]. For humans, plant phenolics are important constituents of many edible and
medicinal plants and widely used in the food industry as flavorings, antioxidants and antibacterial
agents [39,40]. Phenols and polyphenols have attracted great interest due to their wide presence
in our daily diet and most importantly due to their antioxidant properties. Many efforts have
been done to estimate the daily intake in plant phenolics. Humans seem to have adapted their
enzymatic systems and only a small portion of the phenolic content in foods reaches the tissues
unaltered [41]. Although the relationships between food phenolics and health are not fully understood,
epidemiological studies in humans demonstrate that consumption of food rich in polyphenolic
constituents might be beneficial especially for some age-related disorders, such as cardiovascular and
neurodegenerative diseases, type II diabetes and cancers [41–43].

The ability of plant phenolics to interact with a plethora of targets and cause such a broad range
of activities should be attributed to the physicochemical properties of the main structural unit, the
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phenolic ring [41]. The phenolic moiety has an amphiphilic character. The presence of the hydrophobic
planar aromatic ring is responsible for hydrophobic interactions (π-stacking), whereas at the same
time the polar hydroxyl groups can participate in hydrogen bonding. This dual behavior allows these
molecules to bind to the amino acid residues of several proteins, enzymes or receptors. Furthermore
the occurrence of ortho-hydroxyl groups renders them excellent antioxidant agents and chelating
factors. These properties render plant phenolics as excellent candidate molecules to study the inhibition
of metalloenzymes.

One such an enzyme is the family of the carbonic anhydrases (CAs, EC 4.2.1.1) which is the subject
of the present review. Simple phenols and polyphenols of natural origin are discussed, along with
their synthetic derivatives. The inhibition mechanisms and possible structure activity relationships
are also presented. Since coumarins are discussed in another article of this special issue they are not
included in the present one. Only reports on pure compounds were taken into consideration. This is
an update of previous reviews [44,45].

2. Phenols and Polyphenols as Effective Carbonic Anhydrase Inhibitors

2.1. Inhibition Mechanism of Phenol

Phenol, the simplest member of this family of compounds was reported to be a competitive
inhibitor of human (h) Carbonic Anhydrase II (hCA II) [46,47]. The X-ray crystal structure of its adduct
with hCA II was studied and revealed the binding of two phenol molecules to the enzyme. The first
one was located in a hydrophobic patch about 15 Å away from the catalytic zinc ion thus it is likely
that this binding does not interfere with the enzymatic catalytic activity. However, the second phenol
molecule was found within the active site and showed a new binding mode. Indeed, this molecule did
not coordinate to the zinc ion, but was anchored to the active site through two hydrogen bonds of the
OH moiety with the zinc-bound water/hydroxide ion and the NH amide of Thr 199. Furthermore, the
aromatic ring was found to lie in a hydrophobic pocket of the active site, delimited by residues Val 121,
Val 143, Leu 198, and 197 Trp 209, thus contributing to the complex stabilization [48] (Figure 5).
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2.2. Simple Phenols

These findings opened the way for the exploration of other phenolic and polyphenolic natural
products. In vitro kinetic studies of a series of phenols widely available on the market such as salicylic
acid, resorcinol, p-coumaric, caffeic, ferulic, gallic acids, etc., showed that these are affective CA
inhibitors in the low micromolar range (Figure 6) [45,46].
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The presence of free hydroxyl groups at position 4’ in combination with the double bond in
the phenylpropanoid skeleton, as in p-coumaric acid, clearly enhanced the inhibitory activity when
compared to the simple phenol moiety. Similar results were obtained in a further study with a small
group of monophenolic constituents, where trans-cinnamic (14), o-coumaric (15) and chlorogenic (16)
acids were more effective than simple phenolic constituents such as benzoic acid (9) [45] (Figure 7 and
Table 1).
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Figure 7. Structures of tested phenols: benzoic acid (9), m-benzoic acid (10), propylparaben (11),
protocatechuic acid (12), vanillic acid (13), cinnamic acid (14), o-coumaric acid (15), chlorogenic acid (16),
guaiacol (17), 4-methylguaiacol (18), 4-propylguaiacol (19), eugenol (20), isoeugenol (21), vanillin (22),
syringaldehyde (23), catechol (24), 3-methylcatechol (25), 4-methylcatechol (26), 3-methoxycatechol
(27) [45].
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Table 1. Inhibition data of compounds 9–16 [45].

Compound
IC50 (µg/mL) a

hCA I hCA II

Benzoic acid (9) 1.31 1.12
m-hydroxybenzoic acid (10) 1.33 1.00

Propylparaben (11) 0.84 0.82
Protocatechuic acid (12) 1.31 1.15

Vanillic acid (13) 0.52 0.36
o-coumaric acid (14) 0.93 0.22
trans-cinnamic (15) 0.11 0.09

Chlorogenic acid (16) 0.98 0.88
a From three different assays, errors ± 5%–10% of the reported value.

In another study several derivatives of guaiacol and catechol (17–27) were considered for their
CA inhibitory activity against human CA I, II, IX and XII isoforms [49]. Among the compounds
tested in vitro were the volatile constituents eugenol (20), isoeugenol (21) and vanillin (22), which are
major components of many aromatic herbs and spices such as clove, basil, anise seed, Vanilla sp., etc.
All compounds showed micromolar inhibition potencies spanning between 2.2–10.92 µM with
the exception of the catechol (Table 2). Among the tested phenolic derivatives, compounds
4-methyl-catechol (26) and 3-methoxycatechol (27) showed potent activity as inhibitors of the
tumour-associated transmembrane isoforms hCA IX and XII with KI values in the submicromolar range.

Table 2. Inhibition constants of certain phenolic compounds derived from guaiacol and catechol against
four human carbonic anhydrase isoenzymes (hCA I, II, IX and XII) using an esterase bioassay [49].

Compound
KI (µM) a

hCA I hCA II hCA IX hCA XII

Guaiacol (17) 7.50 5.63 9.98 9.83
4-Methylguaiacol (18) 9.15 7.74 9.89 8.55
4-Propylguaiacol (19) 10.34 8.51 9.01 9.12

Eugenol (20) 8.32 7.27 9.62 8.89
Isoeugenol (21) 10.29 6.73 9.32 9.13

Vanillin (22) 11.37 7.15 9.81 8.39
Syringaldehyde (23) 10.92 6.68 9.11 7.70

Catechol (24) 247.50 5.51 373.23 515.98
3-Methylcatechol (25) 5.95 4.69 9.55 7.22
4-Methylcatechol (26) 6.16 2.76 8.11 6.58

3-Methoxycatechol (27) 6.32 2.20 7.83 7.53
a From three different assays, errors ±5%–10% of the reported value.

Combination of the phenolic moiety with other functional groups is a common strategy to obtain
products with enhanced activity. For example, in the so-called “sugar approach” the incorporation of a
hydrophilic moiety of a sugar permits to the molecule to anchor in a different manner to the enzyme
cavity. Furthermore, it increases its selectivity towards the membrane bound CA isoforms over the
cytosolic ones [50,51]. This is desirable since selectivity against specific hCA isoforms might reduce
side effects.

In this concept, a series of synthetic C-cinnamoyl glycosides were synthetized and considered for
the inhibition on twelve mammalian isoforms of carbonic anhydrase (Figure 8) [52]. These compounds
combined two functional groups with known activity against the hCAs: the cinnamoyl and the glucose
group. In order to avoid undesirable degradation, the O-glycosidic bond was replaced by the more
stable C-glycosidic one. The C-cinnamoyl glycosides (28–35) were generally effective CAs, with
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inhibition constants in the low micromolar range against CA I, II, IV, VA, VB, VI, VII, IX, XII, XIII, XIV
and ineffective inhibitors of CA III (Table 3).Molecules 2016, 21, 1649 8 of 27 
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No.
KI (µM) a

hCA
I

hCA
II

hCA
III

hCA
IV

hCA
VA

hCA
VB

hCA
VI

hCA
VII

hCA
IX

hCA
XII

hCA
XIII

hCA
XIV

28 8.5 7.0 >100 5.6 9.8 6.0 8.8 9.5 5.2 6.7 5.1 5.9
29 5.7 3.9 >100 4.9 8.4 4.0 6.2 6.3 5.9 6.2 4.9 5.6
30 5.1 7.1 >100 7.8 9.5 6.9 7.7 7.1 3.3 3.9 7.2 4.6
31 9.3 5.5 >100 6.7 9.3 5.2 7.9 5.8 2.9 4.2 6.7 2.3
32 6.8 7.8 >100 8.3 7.4 >100 >100 4.9 4.5 7.4 8.8 4.3
33 3.7 8.8 >100 7.1 4.4 >100 >100 8.5 8.2 8.7 8.6 7.1
34 3.6 3.1 >100 9.2 3.4 >100 8.1 9.0 9.2 8.4 8.6 >100
35 5.5 6.8 8.4 8.4 8.0 >100 >100 9.3 8.2 6.8 >100 >100
1 10.2 5.5 2.7 9.5 218 543 208 710 8.8 9.2 697 11.5

a From three different assays, errors ± 5%–10% of the reported value, CO2 hydrase, stopped-flow assay.

Another hybrid molecule recently investigated against several hCA isozymes [53] is Dodoneine
36, one of the active principles of the medicinal plant Agelanthus dodoneifolius (DC) Polhilland Wiens.
The plant is used in traditional medicine for the treatment of hypertension. Structurally 36 incorporates
both the phenol and lactone (α-pyrone) moieties. Dodoneine showed to be selective in inhibiting the
hCA isoforms I, III, IV, XIII and XIV with KIs in the range of 5.5–10.4 µM. CA I, III and XIII are cytosolic,
CA IV is localized in plasma membrane and hCA XIV is a membrane bounded isozyme. Further in vitro
and in vivo studies in rat aorta and vascular smooth muscle cells showed that hCA II, III, XIII and
XIV were expressed in rat aorta while only the hCA isoforms III, XIII and XIV were expressed in
smooth muscle cells. Thus it is reasonable to assume that dodoneine induced vasorelaxation by a
dual mode of action including both block of the L-type calcium channels and inhibition of the hCA
isoforms therein expressed [54]. A series of synthetic analogues of dodoneine (37–41), reported in
Figure 9, were prepared and tested for their inhibition properties against the hCAs. Among them the
bicyclic compound 40 which is normally found in the plant in small amounts and its hydroxylated
derivative 41 and the fluorinated analogue 39 (Table 4). Compound 39 inhibited all hCA isoforms,
while 41 inhibited selectively hCA III (KI = 5.1 nM) and mCA XIII (KI = 340 nM).
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Table 4. Structures and hCA inhibition data of dodoneine (36) and its analogues 37–41 by a stopped
flow CO2 hydrase assay [53].

No.
KI (µM) a

hCA
I

hCA
II

hCA
III

hCA
IV

hCA
VA

hCA
VB

hCA
VI

hCA
VII

hCA
IX

hCA
XII

hCA
XIII

hCA
XIV b

36 5.48 _ c 10.35 9.61 _ c _ c _ c _ c _ c _ c 9.27 9.34
37 0.38 _ c _c 4.12 21.6 13.7 _ c _ c 32.6 24.5 8.13 7.24
38 0.76 21.8 13.7 8.55 6.32 15.7 10.8 7.89 12.5
39 0.13 36.9 5.36 7.13 1.36 _ c 24.9 3.57 1.48 0.96 2.44
40 _ c _ c 10.80 _ c _ c _ c _ c _ c _ c _ c 0.91 _ c
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a From three different assays, errors ± 5%–10% of the reported value. b mCA; c Not active > 100.

2.3. Polyphenols

Recently rosmarinic acid (42) was reported to be a potent inhibitor of the hCA I and II isoenzymes
at low micromolar range with KI values of 86.0 µM and 57.0 µM, respectively (Figure 10) [55].
Rosmarinic acid is a powerful antioxidant found in many aromatic, medicinal and culinary herbs of the
Lamiaceae family, such as rosemary, sage, oregano and thyme [56]. Chemically it belongs to the class
of depsides, or the so-called labiataetannins [41], which are obtained by condensation of caffeic acid
units or by combination of caffeic acid with 3,4-dihydroxyphenyl lactic acid, to form dimers, trimers
and tetramers.
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Based on these results further investigations were carried out with the salvianolic acids 43–45
(Figure 11) isolated from Salvia miltiorrhiza (Lamiaceae) [57,58]. Salvia miltiorrhiza or Danshen is one
of the most important herbal medicinal drugs in the Chinese Traditional Medicines (TCM) to treat
bleeding disorders (e.g., menstrual bleeding) and blood stasis [59]. Salvianolic acids are together
with tanshinones (lipophilic, diterpenic quinones) the main active principles of the herbal drug.



Molecules 2016, 21, 1649 10 of 27

These hydrophilic derivatives, abundant in the roots of the plant, incorporate three to four units of
caffeic/3,4-dihydroxyphenyl lactic acids. They have attracted interest due to their protective roles
in CNS neuronal injuries and degeneration. The main mechanism involved in such processes is the
decrease of reactive oxygen species (ROS) levels. Furthermore, there is evidence of the protective
role of salvianolic acids in several cardiovascular diseases, osteoporosis, liver fibrosis and hepatic
failure [59–61].
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p-hydroxy-phenethoxy-phenethyl moieties, which were investigated for their inhibitory effects against 
the mammalian isozymes of human (h) or murine (m) origin, hCA I–hCA XII, mCA XIII and hCA 
XIV [62]. These enzymes were inhibited in the submicromolar range by many of these derivatives (with 
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The CAs inhibition studies reported in Table 5 clearly showed that depsides 43–45 were ineffective
hCA I and weak hCA II inhibitors. On the other hand, they were inhibitors of the hCA IV with KI

values in the range of 62.2–102.1 nM and comparable to the standard drug acetazolamide AAZ
(74.0 nM). Even if a proper structure–activity-relationship (SAR) consideration is difficult to be drawn
it is noteworthy that the flexible and more containing catechol moieties salvianolic acids A and B
(43 and 45) were better inhibitors when compared to the lithospermic acid 44. Furthermore, salvianolic
acids A and B were medium and high nanomolar inhibitors (KI 39.8 and 453.6 nM of the tumor
associated CA XII. By contrast, lithospermic acid (44) showed to be a very potent hCA XII inhibitor
with a KI value of 4.8 nM. The presence of ortho-hydroxyl moieties in these molecules, the possibility
to release in situ caffeic acid or even the presence of free carboxyl groups are some of the structural
characteristics that play an important role in the CA inhibitory activity. In any case such results put in
evidence a new class of natural products which deserves further investigation in order to decipher a
proper SAR correlation.

Table 5. Inhibition data of human CA isoforms hCA I, II, IV, VII and XII with salvianolic acids 43–45
reported here and the standard sulfonamide inhibitor acetazolamide (AAZ) by a stopped flow CO2

hydrase assay [58].

No.
KI (nM) a

hCA I hCA II hCA IV hCA VII hCA XII

Salvianolic Acid A (43) >10,000 9594.4 66.6 71.4 39.8
Lithospermic Acid (44) >10,000 >10,000 101.2 268.3 4.8
Salvianolic Acid B (45) >10,000 >10,000 65.6 35.5 453.6

AAZ 250 12 74 2.5 5.7
a From three different assays, errors ± 5%–10% of the reported value.

Another recent example is constituted by a series of phenolic acid esters (Scheme 1)
incorporating caffeic, ferulic, and p-coumaric acid, and benzyl, m/p-hydroxyphenethyl- as well as
p-hydroxy-phenethoxy-phenethyl moieties, which were investigated for their inhibitory effects against
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the mammalian isozymes of human (h) or murine (m) origin, hCA I–hCA XII, mCA XIII and hCA
XIV [62]. These enzymes were inhibited in the submicromolar range by many of these derivatives (with
KIs of 0.31–1.03 µM against hCA VA, VB, VI, VII, IX and XIV). The off-target, highly abundant isoforms
hCA I and II, as well as hCA III, IV and XII were poorly inhibited by many of these esters, although
the original phenolic acids were micromolar inhibitors. These phenols, like others investigated earlier,
possess a CA inhibition mechanism distinct of the sulfonamides/sulfamates, clinically used drugs for
the treatment of a multitude of pathologies, but with severe side effects due to hCA I/II inhibition.
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Scheme 1. Synthesis of phenolic derivatives 46–53 Reagents and conditions: (i) THF, Ph3P, DIAD,
0 °C [62].

In an attempt to find new chemotypes, two floroglucinol derivatives 54, 55 were prepared and
tested against hCA I and hCA II (Scheme 2). Unfortunately, none of the compounds proved to be
active [63].
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Scheme 2. Synthesis of floroglucinol derivatives 54 and 55. Reagents and conditions: NaBH4, EtOH,
0 ◦C, 30 min, 98%; (ii) PBr3, diethylether, 0 ◦C, 1 h, 85%; (iii) NaH, THF, r.t., 17 h, 26%.

2.4. Flavonoids

Data of the interaction of flavonoids with CAs indicate that these may be another category of
CAIs of interest, which can be used as leads for generating more potent CAIs. Preliminary test of a
small number of basic flavonoid structures 56–59 (Figure 12) against hCA I, II, IX and XII showed
that these act as low micromolar inhibitors and their effect is independent of the incubation time [64].
This fact indicates that flavonoids inhibit CAs probably through a mechanism similar to the one of
phenol rather than hydrolysis of the chromenone as in the case of coumarins.
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Figure 12. Structures of compounds 56–59.

This hypothesis was further confirmed in several studies including flavonoids lacking the C-4
carbonyl group. A series of flavonoids 60–64 with different substitution patterns were investigated for
their inhibitory effects against four α-CA isozymes from human and bovine (hCA I, hCA II, bCA III,
hCA IV) tissues: the flavones apigenin (60) and luteolin (61), the flavonols quercetin (62) and morin
(63) and the flavan-3-ol, catechin (64) (Figure 13) [65]. As it can be observed from Table 6, flavonoids
60–64 were quite effective, similar to the standards used. The four hCA isozymes showed quite diverse
inhibition profiles with these compounds suggesting that the type of flavonoid and/or substitution
pattern are important for the activity. As briefly outlined above, the C-4 carbonyl group is not so
important for the inhibition, as shown by the example of catechin (64). This is another indication that
the inhibition mechanism does not proceed via hydrolysis (CA esterase activity). Instead, the presence
of one or two neighboring hydroxyl groups is essential, as shown by the example of morin 67 which
is the less potent compound compared to quercetin 62 or luteolin 61. The latter, 61 showed the most
effective inhibitory activity with KIs in the low micromolar range.
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Figure 13. Structures of compounds 60–64.

Comparison with the relative monophenols, catechol, phenol and resorcinol (Figure 14), which
were considerably less active, suggests that also the ring A of flavonoids may be involved in the
inhibitory mechanism. Whether this is due to a different mechanism or simply stronger binding to the
enzyme cavity (e.g., by further hydrogen bonds) is to be investigated in the future.
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Table 6. Inhibition of hCA isozymes I, II and IV and bCA III with compounds 60–64, EZA, ZNA and
AZA by the esterase activity.

No.
IC50 Value (µM) a

hCA I hCA II bCA II hCA IV

Apigenin (60) 4.1 2.7 11.6 9.1
Luteolin (61) 2.2 0.74 5.4 4.4

Quercetin (62) 3.6 2.4 9.1 13.8
Morin (63) 12.8 4.4 21.3 15.7

Catechin (64) 6.8 6.2 b 2.2 5.6
Phenol 17.3 7.4 4.6 14.3

Catechol 4014 11.4 6.5 11.9
Resorcinol 828 9.4 219 634

EZA 3.7 0.32 9.4 0.84
ZNA 14.8 1.1 8.5 38.4
AZA 36.2 0.37 263 0.58

a From three different assays, errors ±5%–10% of the reported value; b Values from Ref. [66].

Two further studies [46,67] with several flavonoids 60, 62, 64–71 (Figure 15, Tables 7 and 8) against
human CA I, II, IV, VI and bovine CA III isoforms gave further evidence that the catechol moiety on
C-2 enhances the activity, as demonstrated in the case of fisetin (66), rhamnetin (67) and rutin (69).
Although a comparison between results of Tables 7–9 is not feasible due to the different enzymatic
assays used and to different enzyme purities, it can be observed that catechin (64) and epicatechin
(70) have similar activities despite different stereochemistry on C-3. Similarly, the hydroxyl group of
C-3 seems to be of little importance for the activity. This is evident if we compare luteolin (61) with
quercetin (62) (Table 6) and apigenin (60) with kaempferol (65) (Table 7). Therefore, the keto-enol
system apparently does not take part in the inhibition mechanism. The better inhibitory activity of
fisetin (66) and rhamnetin (67) should be attributed to structural differences in ring A. Interestingly,
rutin (69) compared to flavonol aglycones such as quercetin (62) or rhamnetin (67) is more active
suggesting that sugars may play an important role, as discussed previously.
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Table 7. hCA isoforms I and II inhibition with compounds 60, 64–70 by a stopped-flow, CO2 hydration
assay [46].

No.
IC50 Value (µg/mL) a

hCA I hCA II

Apigenin (60) 1.22 1.14
Catechin (64) 1.24 0.87

Kaempferol (65) 0.83 0.76
Fisetin (66) 0.72 0.55

Rhamnetin (67) 0.95 0.86
Isorhamnetin (68) 0.52 0.36

Rutin (69) 1.44 0.52
Epicatechin (70) 1.47 1.02

a From three different assays, errors ±5%–10% of the reported value.

Table 8. KI values (µM) for compounds 60, 62, 64, 69–71 and AZA of some human (h) and bovine (b)
α-carbonic anhydrase isoforms (by an esterase assay) [67].

No.
KI (nM) a

hCA I hCA II bCA III hCA IV hCA VI

Apigenin (60) 0.97 0.113 2.21 1.12 1.49
Quercetin (62) 2.68 b 2.54 b 3.73 7.89 b 6.17 b

Catechin (64) 1.73 0.83 4.77 3.76 7.82
Rutin (69) 2.42 b 1.84 b 9.71 4.09 b 4.91 b

Epicatechin (70) 2.32 1.24 8.93 3.98 4.36
Silymarin (71) 1.49 c 2.51 c 5.68 8.96 c 9.70 c

AZA 36.2 0.37 263 0.578 0.34
a From three different assays, errors ±5%–10% of the reported value; b Values from Ref. [68]; c Values form
Ref. [66].

Table 9. Inhibition constant KI values (µM) of human carbonic anhydrase I, II, VA, IX, and XII isoforms
for compounds 60, 62, 65, 68, 72–77 and acetazolamide (AZA).

No.
KI (nM) a

hCA I hCA II hCA VA hCA IX hCA XII

Apigenin (60) 4.10 2.70 b 0.30 0.46 1.00
Quercetin (62) 2.95 0.41 2.82 2.52 0.38

Kaempferol (65) 3.13 0.31 0.15 3.57 2.18
Isorhamnetin (67) >10 0.42 1.92 0.44 0.29

Diosmetin (72) >10 >10 2.10 3.39 0.24
Eriocitrin (73) 3.66 0.34 4.24 0.43 0.19

Hesperidin (74) 3.60 b 2.40 b 2.65 2.22 0.45
Naringin (75) >10 0.41 4.08 3.59 0.17
Taxifolin (76) 2.53 0.26 3.93 0.45 0.11

Quercetin-3-O-glucoside (77) >10 0.44 >10 2.79 0.22
AZA 0.10 0.008 0.38 0.041 0.038

a From three different assays, errors ±5%–10% of the reported value, CO2 hydrase, stopped-flow assay; b Values
from Ref. [65].

A possible explanation of the way that flavonoids interact with the CA active site was given in a
very interesting docking study by Gidaro et al., [69]. In this work a structure-based virtual screening
was performed against five carbonic anhydrase isoforms using, as a ligand library, natural components
of Citrus bergamia (Bergamot) and Allium cepa var. tropea (red onion). Both plants are edible and part
of the Calabrian (Italy) diet. By use of virtual screening, the flavone apigenin 60 and the flavanone
glycoside eriocitrin (eriodictyol-7-O-rutinoside) 73 (Figure 16) were identified together with other eight
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flavonoids. In vitro tests against CA I, II, VA, IX, and XII isoforms showed that eriocitrin was the best
hCA VA inhibitor with a KI value of 0.15 µM. On the contrary, the computational prediction failed for
apigenin. Docking studies revealed that eriocitrin probably binds by both the catechol and rutinoside
portions. The catechol moiety is linked by additional H-bond interactions with the enzymatic residue
Thr 199 located in the catalytic site, while the rutinose group connects by an extended H-bond network
with several external mCA VA amino acid residues (Gln 67, Glu 69, Gln 92, Asp 171) at the entrance of
the binding pocket. Apigenin instead, which was not as active as predicted, seems to interact only by
its ring B which is involved in the zinc coordination into the mCA VA active site.
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The above reported results spurred us to investigate a larger number of flavonoids against a line
of human CAs. In total, 18 flavonoids (Figure 18) were selected both from commercial sources and
lab isolates [71]. The selection of the compounds was done on the basis of the flavonoid subgroup
and the substitution pattern. Flavones, flavonols, flavanones, isoflavones and some glycosylated
derivatives were considered for assays. Chrysin (79) is one of the main flavonoids of Passiflora incarnata,
a medicinal plant used phytotherapy as a mild sedative and anxiolytic [72]. It is a flavone without any
substitution of ring B. The flavone luteolin (61), the two flavonols kaempferol (65) and isorhamnetin
(68), as well as the flavonol glycosides quercetin-3-O-glucoside (77), quercetin-3-O-rhamnoside (87) and
kaempferol-3-O-glucoside (88) are ubipresent flavonoids in most vegetables and fruits daily consumed,
while galangin (80) is present in honey and propolis [73,74]. Among the flavonoids considered were
the flavanones naringenin (81), eriodictyol (82) and hesperitin (83), which are abundant in edible
Citrus spp. (e.g., orange, mandarin) and possess antioxidant, anti-inflammatory and antitumoral
properties [75]. The isoflavones 84–85 are abundant in legumes, soy and show potent estrogenic
activity by interacting with the estrogenic receptors [76,77]. Puerarin (86) is the main active principle
of Pueraria lobata root (Fabaceae) and it used in clinical practice in China to treat cardiovascular
diseases, cerebrovascular disorders, Parkinson’s disease, Alzheimer’s disease, diabetes and diabetic
complications [78]. The flavonols 89–91 were isolated from leaves of Quercus ilex (Fagaceae) and belong
to the group of acylated flavonoids (Figure 19). Since they combine the flavonol nucleus and the
coumaric acid moieties, they were selected with the aim to see whether we would have an additional
inhibitory effect on the CAs. For the in vitro inhibitory activities five physiological relevant hCA
isoforms were considered: the cytosolic I, II, VII and the membrane bound CA IV and XII. Results are
displayed in Table 10.
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Table 10. Inhibition data of human CA isoforms hCA I, II, IV, VII and XII with flavonoids 59, 63, 66, 74,
75, 76–88 reported here and the standard sulfonamide inhibitor acetazolamide (AAZ) by a stopped
flow CO2 hydrase assay.

Entry Name
KI (nM) a

hCA I hCA II hCA IV hCA VII hCA XII

79 Chrysin >10,000 >10,000 537.75 171.41 34.7
61 Luteolin >10,000 3691.6 293.0 b 4.7 60.3
80 Galangin >10,000 >10,000 568.3 24.5 41.8
65 Kaempferol >10,000 9525.7 >10,000 25 145.9
67 Isorhamnetin >10,000 >10,000 212.9 4.4 54.9
81 Naringenin >10,000 >10,000 79.5 4.3 44.3
82 Eriodictyol >10,000 >10,000 72.8 4.3 31.1
83 Hesperitin >10,000 >10,000 102.1 3.3 454.1
76 Taxifolin >10,000 >10,000 9098.2 493.1 32.5
84 Daidzein >10,000 >10,000 718.7 4.2 56.4
85 Biochanin A >10,000 >10000 7078.5 371.5 52.5
86 Puerarin >10,000 >10,000 >10,000 452.6 515.0
77 Quercetin-3-O-glucoside >10,000 6211.2 75.7 3.8 52.1
87 Quercetin-3-O-rhamnoside >10,000 6367.7 67.3 3.9 43.5
88 Kaempferol-3-O-glucoside >10,000 168.0 5591.2 423.7 4.9
89 Tiliroside >10,000 >10,000 5468.7 4.6 134.3

90 Kaempferol-3-O-(2”,6”-di-E-
p-coumaroyl)-β-glucopyranoside >10,000 8790.2 344.2 4.7 408.9

91 Kaempferol-3-O-(3”,4”-diacetyl-2”,6”-di-E-
p-coumaroyl)-β-glucopyranoside >10,000 6863.3 62.2 26.6 399.7

AAZ 250 12 74 2.5 5.7
a Mean from three different assays, errors were in the range of ±5%–10% of the reported values; b From Ref. [65].

Although a SAR is difficult, some general remarks can be made. As can be observed from Table 10,
none of the compounds considered here show a significant inhibitory activity against the cytosolic
hCA I, but rather showed selectivity against isoforms hCA IV and hCAV II. Concerning the inhibition
of hCA II, the presence of ortho-hydroxyl groups on ring B seems to be important for the activity as
long as the double bond in ring C remains intact. This is shown comparing luteolin with eriodictyol
and taxifolin. Instead, glycosylation of the C-3 hydroxyl enhances the activity, as demonstrated by
Kaempferol-3-O-glucoside which was the most active of all tested compounds with a KI of 168 nM.

Results were quite surprising regarding the inhibition hCA IV. The flavanones naringenin,
eriodictyol and hesperitin, lacking the C2-3 double bond as well as the glycosides 77, 87, 91 were
quite effective against the with KI values close to the standard CAI acetazolamide (74.0 nM). Especially
comparing the activity of compounds 65, 89–91 it could be suggested that the optimum activity of
compound 91 is not due to the flavonoid scaffold but to the acetyl/coumaric functionalities which may
hydrolyze and released in situ. This hypothesis requires further investigation.

The kinetic data on the cytosolic hCA VII showed that several of the investigated compounds
were low nanomolar inhibitors of the hCA VII with KI very close to the standard acetazolamide.
Among the investigated constituents are the flavone luteolin (with ortho-hydroxyl groups) the flavonol
isorhamnetin, the flavanones naringenin, eriodictyol and hesperitin, the isoflavone daidzein, the
quercetin flavonols 77 and 87 and the acylated glycosides 89 and 90. With the exception of catechin, this
is the first time that flavonoids are tested against this particular hCA isoform [68]. The heterogeneity of
constituents does not permit any SAR conclusion or it is possible that some other common structural
feature may be responsible for the inhibition, such as ring A or combination of rings A and B. Similarly,
the inhibition data on the tumor associated hCA XII isoform (Table 10) showed a complex and different
SAR. Generally most of the substances were high nanomolar inhibitors with KI values spanning
between 515.0 and 134.3 nM. The best inhibitor evidenced was Kaempferol-3-O-glucoside with a KI

value of 4.9 nM. The results in both hCAV II and XII show that flavonoids merit further attention
and warrant future investigation to comprehend the mechanism of action in order to design new,
selective inhibitors.
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A series of synthetic bischalcones 92–103 bearing a C–N=N–C linkage has been prepared and
tested against human hCA I and II (Figure 20) [79]. Most of the compounds had one to three methoxy
groups as substituents on their phenolic rings. Compounds 93, 97, 101, and 103 were among the best
inhibitors (Table 11). Furthermore, similarly to AZA, some of the investigated bischalcone compounds
act as competitive inhibitors with 4-NPA as substrate, that is, they bind to the same regions of the
active site cavity as the substrate. However, the binding site of 4-NPA itself is unknown, but it is
presumed to be in the same region as that of CO2, the physiological substrate of this enzyme.
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2.5. Phenols and Polyphenols as Effective Mycobacterial CA Inhibitors

The discovery of the α-, β-, and η-families of carbonic anhydrase in parasitic bacteria, fungi
protozoa and helminths with different structure than human CAs has created new opportunities in
the search for new drugs against pathogens [29]. Since many pathogen carbonic anhydrases belong
to different enzyme families, which are either absent in humans (like β- and η-CAs) or have marked
structural differences with the human isoforms they consist attractive targets for the development
of new anti-infective agents in terms of selectivity and efficacy. Given the continuous development
of resistance of several pathogens to the existing therapeutic schemes, CA inhibition represents a
new, complementary mechanism of action worth of investigation. Among the most investigated CAs,
are the β-CAs from Helicobacter pylori, Brucella suis and Mycobacterium tuberculosis, which have been
cloned and characterized [80,81]. Other β-CAs which have been intensely studied are the CAs from the
fungal strains Candida albicans, Candida glabrata and Cryptococcus neoformans: CaNce103 and CgNce103
(from C. albida and C. glabrata, respectively) and Can1, Can2 from C. neoformans. In these pathogens
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CAs regulate the physiological concentrations of CO2/HCO3. Both fungal strains are adapted to
extremely low concentrations of CO2. However, once the infection occurs, elevated concentrations of
CO2 promote distinct structural and developmental procedures which influence the survival, virulence
and pathogenesis of these fungi [82].

The first evidence that phenols can inhibit pathogenic CAs came from the screening of a natural
product library [83] against β-CAs from M. tuberculosis, C. albicans, and C. neoformans. Screening of
libraries of plant extracts and isolated constituents, although time consuming, is a valuable tool
in the exploration of new scaffolds in order to discover new chemotypes to combat diseases.
The Queensland Compound Library reported by Davis et al., [83] comprised a wide range of natural
and synthetic products incorporating the phenol group. Overall 21 constituents 104–124 were selected
and tested (Figures 21 and 22) including eight fungal (compounds 104–109a, 112, 113), two ascidian
(compounds 107, 108), and three plant (compounds 111–113) secondary metabolites. The tested
structures were diverse comprising a series of simple mono- or disubstituted phenols 104–108,
(−)-xylariamide A (109a) and its synthetic enantiomer (+)-xylariamide A (109b), polyandrocarpamine
A (110), polyandrocarpamine B (111), xanthones 112 and 113, endiandrin A (114), endiandrin B (115)
and (−)-dihydroguaiaretic acid 116. The synthetic phenolic compounds 117–124 (Figure 22) were eight
secondary amides inspired by the fungal metabolite 108.
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Inhibition studies over human CAs were carried out in parallel in order to assess the selectivity of
the tested compounds. As it can be observed from Table 12, several phenolic natural products were
selective inhibitors of mycobacterial and fungal β-CAs.

Table 12. Enzyme inhibition of pathogenic M. tuberculosis β-CA isozymes Rv3273 and Rv1284,
C. albicans isozyme Nce103, C. neoformans isozyme Can2 and human α-CA isozymes I and II, with the
NP-Based Library (104–124), known CA Inhibitors (SA, AZA, ZNS, and TPM) and phenol.

Compound
KI (µM) a

Rv3273 Rv1284 Nce103 Can2 CA I CA II

104 12.1 0.85 1.10 1.08 430 8.711.4
105 11.4 10.8 1.02 0.90 309 10.3
106 9.12 0.85 0.91 0.84 309 11.2
107 10.8 10.3 1.08 1.12 265 8.6
108 11.2 10.5 1.00 0.85 237 131

109a 11.3 0.84 1.03 1.15 239 8.3
109b 10.9 0.71 1.06 1.11 231 8.0
110 0.91 11.8 0.92 0.89 10.5 9.6
111 0.92 0.91 0.90 0.95 355 13.1
112 11.4 10.5 1.06 1.12 201 8.4
113 10.9 0.99 1.01 1.08 374 9.2
114 8.92 0.82 0.73 0.77 368 11.7
115 0.89 0.80 0.70 0.95 354 12.1
116 9.10 0.85 0.62 0.81 307 230
117 0.98 12.2 0.78 0.72 10.5 11.4
118 0.97 0.80 0.93 0.81 9.6 9.8
119 0.91 1.27 0.72 0.94 11.2 10.8
120 0.90 1.78 0.75 0.86 11.9 11.5
121 0.85 1.16 0.79 0.74 0.70 0.018
122 1.14 11.0 0.99 0.95 158 10.4
123 10.2 12.3 0.96 0.91 11.4 10.8
124 10.4 11.6 0.81 0.73 10.7 9.4
SA 7.11 9.84 7.63 0.77 25.0 0.24

AZA 0.10 0.48 0.13 0.01 0.25 0.012
TPM 3.02 0.61 1.11 0.37 0.25 0.010
ZNS 0.21 286.8 0.94 0.97 0.056 0.035

Phenol 79.0 64.0 17.3 25.9 10.1 5.5
a Errors in the range of ±5% of the reported value, from three determinations.

Among the natural products tested the best inhibitors was (−)-dihydroguaiaretic acid (116)
which inhibited β-CA in the submicromolar range with up to 495-fold selectivity over hCA I and
371-fold selectivity over hCA II. From the library of synthetic derivatives, compound 108 was a low
micromolar inhibitor of the fungal CAs and displayed 130- to 280-fold selectivity over the two human
CAs. These compounds were the first non-sulfonamide inhibitors that displayed β- over α-CA enzyme
selectivity. This selectivity could be explained if the different structure of α- and β-isozymes is taken
into consideration. Although both enzymes contain a zinc ion in the active site, they have several
differences. Unlike α-CAs, the β-class of CAs exist as dimers (Figure 23). Whilst the catalytically
important residues in the active site of β-CAs are provided exclusively from one monomer, access to
the catalytic center may be constituted by residues from both monomers leaving a cleft of limited space
for the inhibitor to enter. Therefore, it seems unlikely that the phenolic hydroxyl groups of the tested
constituents directly interact with the active site zinc of the pathogen CAs, especially for the spacious
one 116. It was suggested that the compounds might cause either monomerization or considerable
conformational changes in the access area to the active site. To prove this concept crystallization of the
adduct, and X-ray analysis is necessary. Unfortunately none of the tested compounds gave crystals
with Can2, Nce103, Rv3273, and Rv1284 enzymes.
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CA II (right, PDB accession code 3NB5). The individual monomers of the dimeric β-CAs are colored in
green and blue, respectively. The catalytic zinc ion is shown in magenta. The figure was prepared with
PyMol [84].

A series of phenolic acids 6–8 and some of their esters 125–132, derivatives of p-coumaric (6),
caffeic (7) and ferulic acid (8), was investigated for the inhibition of three β-carbonic anhydrases (CAs,
EC 4.2.1.1) from the pathogenic bacterium Mycobacterium tuberculosis, Rv1248, Rv3588 and Rv3273
β-CAs (Figure 24) [85]. Some of these compounds were low micromolar inhibitors of the pathogenic
enzymes and they did not show inhibitory activity against the human widespread cytosolic isoforms
CA I and II. As it can be observed from Table 13, simple phenolic acids 6–8 are active against Mtb
β-CAs but suffer of low selectivity. The presence of additional phenolic rings in the structure makes
the compounds more selective as it increases the ratio of β- over α-CA inhibitory activity. This is
possibly due to additional interactions with the dimeric structure of the β-CA.
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Table 13. Inhibition of human CA isozymes I and II and Mtb CAs Rv1248, Rv3273 and with phenolic
acids 6–8 and esters 122–129 by a stopped flow CO2 hydrase assay.

Compound
KI (µM) a,b

hCA I hCA II Rv1248 Rv3273 Rv3588

6 1.07 0.98 6.05 2.69 4.33
7 2.38 1.61 5.92 6.70 5.36
8 2.89 2.40 7.13 2.40 5.64

125 5.23 >50 5.32 5.10 7.13
126 9.62 >50 3.95 6.83 8.03
127 >50 >50 4.51 3.19 7.05
128 >50 >50 5.67 3.20 7.26
129 >50 >50 4.69 2.32 5.40
130 >50 >50 3.78 1.84 5.04
131 3.87 >50 4.67 1.87 5.13
132 3.66 >50 5.74 2.30 6.09

a Errors in the range of ±5% of the reported data from three different assays; b h = human.

Unfortunately it was not possible to obtain good quality crystals which would permit the
study of the adduct by X-ray crystallography. To overcome this problem, the binding mode of
these inhibitors to the bacterial enzymes Rv3588 and Rv1248 was investigated by computational
approaches (Figures 25 and 26). A protocol consisting of classic MD and SMD simulations with
molecular docking and rescoring was applied. It was proposed that the inhibitors anchor to the
zinc-coordinated water molecule from the CA active site interfering with the nucleophilic attack
of the zinc hydroxide on the substrate CO2. These compounds may be considered as interesting
anti-mycobacterial lead compounds.
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3. Conclusions

Since the first discovery of activity of simple phenol as a competitive CA inhibitor and the
elucidation of its inhibition mechanism, several phenolic derivatives have been investigated in detail
for their interactions with the major physiological isoforms of hCAs. Among the natural products
screened so far, phenols and polyphenols remain the most investigated ones. Studies including both
natural products and synthetic derivatives have allowed the identification of selective inhibitors and
demonstrated the enormous potential of this class of compounds. Due to their structural variety, these
products are characterized by different selectivity profiles compared to the primary sulfonamides.
The latter are the classical CA inhibitors with long use in clinical practice, which nevertheless suffer
from pharmacological side effects. In the search for alternative isoform-selective inhibitors phenols
and polyphenols are among the most promising constituents. The different mode of mechanism, which
in many cases is unknown, creates new opportunities for drug design and development. However,
given the immense variety of chemotypes of natural phenolics, there is still much to be explored.
Quite recently they emerged as important probes against pathogen CAs with exceptional selectivity,
opening a new way for the development of novel anti-infective agents. Further studies including
in vitro and in vivo tests and disease models are necessary to confirm these results.
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