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Abstract: Nitrogen-containing pyridine and quinoline are outstanding platforms on which excellent
ionophores and sensors for metal ions can be built. Steric and stereochemical effects can be used to
modulate the affinity and selectivity of such ligands toward different metal ions on the coordination
chemistry front. On the signal transduction front, such effects can also be used to modulate optical
responses of these ligands in metal sensing systems. In this review, steric modulation of achiral
ligands and stereochemical modulation in chiral ligands, especially ionophores and sensors for zinc,
copper, silver, and mercury, are examined using published structural and spectral data. Although it
might be more challenging to construct chiral ligands than achiral ones, isotropic and anisotropic
absorption signals from a single chiroptical fluorescent sensor provide not only detection but also
differentiation of multiple analytes with high selectivity.

Keywords: pyridine; quinoline; ionophore; sensor; steric effect; stereochemical control; metal ions;
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1. Introduction

As nitrogen-containing aromatic compounds, pyridine and quinoline can form complexes with
many metal ions because the lone pair electrons on the nitrogen are available for coordination since
they are not part of the aromatic systems. The aromatic ring of pyridine or quinoline itself is a rigid
platform, which can be incorporated into many achiral and chiral binding pockets to build ligands
of different affinities to different metal ions. Chiral pyridyl- or quinolyl-containing ligands and their
metal complexes are used as catalysts in asymmetric catalysis [1]. A recent review described the design
principle for selective metal ion binding and sensing using many achiral pyridyl-containing ligands [2].
There are some other examples of achiral pyridyl-containing ligands used for metal sensing and this
article will discuss the structural features of some of them [3–6]. This article mainly focuses on the
stereochemical approach to achieving selective metal binding and sensing using pyridyl-/quinolyl
containing ligands, especially chiral ligands. The structure-activity relationship in the modulation of
coordination chemistry and/or signal transduction using such ligands/sensors will be discussed.

2. Steric and Stereochemical Modulation of Binding Affinity and Selectivity

According to Comba [7], the design of a selective ligand for a metal ion must involve a high degree
of preorganization for the specific metal ion and also a high degree of “disorganization” or mismatch
for competing metal ions. The latter is not an easy task and it has not been addressed in detail. Still
et al. pointed out that an important principle in the rational design of synthetic host molecules is
using substitution and stereochemistry to reduce the populations of conformations unfavorable to
binding [8]. By the same token, substitution and stereochemistry manipulation should be able to reduce
the population of conformations favorable to binding, thus enabling the manipulation of selectivity.
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2.1. Steric Control of Achiral Ligands’ Selectivity to Zn2+ and Cu2+

Many ionophores are incorporated in sensors for metal ions and other species. Signal transduction
of many sensing events depends on the structure and conformation of the analyte-sensor complexes.
In the development of Zn2+ chelators and sensors, specificity to zinc is highly desirable from
many perspectives. Over the years, some sensitive fluorescent sensors for Zn2+, which are mostly
N-containing ligands, have been developed and their selectivity against some other metal ions has
been investigated [6,9–21]. However, as predicted by the Irving-Williams series [22], Cu2+ complexes
with nitrogen donor ligands are typically found to be more stable than Zn2+ complexes by several
orders of magnitude: Complexation with d10 metal ion Zn2+ offers no ligand field stabilization energy
(LFSE) [23]. For example, macrocycles are ideal for the selective coordination of alkali or alkali earth
metals, which can be discriminated from each other solely on the basis of their ionic radii and charge.
However, they may be less useful in distinguishing Cu2+ from Zn2+ because the radii of these ions are
almost identical. This is reflected in the relative binding affinities of macrocyclic ligands toward Zn2+

and Cu2+, where the latter is favored by 10–15 orders of magnitude [21,24].
One simple Schiff base sensor exhibits Zn2+-chelation enhanced fluorescence, which suffers from

interference from Cu2+. A subtle structural change can turn such a ligand platform from an enol-imine
tautomer to a keto-enamine tautomer, which is much more selectively for Zn2+ over Cu2+ [25].

Rorabacher et al. examined the steric effect on CuI/II redox couples [26]. They found that in
aqueous solution for 35 different tripodal ligands, many of which are tris(2-pyridylmethyl)amine
(TPA, Figure 1) analogs with different substituents, the stability constants of their Cu+ complexes are
in the relatively narrow range of 1012–1016 although they are hugely different in terms of coordination
geometry and donor strength, while those of their Cu2+ complexes stretch over 26 orders of magnitude.
It was suggested that ligand coordination geometry mainly impacts the complexation of Cu2+,
while imposing little effect on Cu+.
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Figure 1. Structures of (a) compound 1, tris(2-pyridylmethyl)amine (TPA) and (b) compound 2, 
parabenzobis-TPA (PBTPA). 

Because of its 3d104s0 configuration, Zn2+, like Cu+ [22], is not strongly influenced by constraints 
in its coordination configuration. Therefore, it is necessary to make a ligand which has a high degree 
of predisorganization for Cu2+ so that it can show better Zn2+/Cu2+ selectivity. As a d9 metal, the 
bonding in Cu2+ complexes is partially covalent. At the same time, Cu2+ prefers 4-coordinate square 
planar and 5-coordinate square pyramidal geometries over tetrahedral and trigonal bipyramidal 
geometries according to Crystal Field Theory [27]. C3 or pseudo-C3 symmetrical N-containing TPA 
derivatives bind Cu2+ much better than Zn2+ as predicted by the Irving-Williams series [22]. At the 
same time, they are naturally trigonal bipyramidal geometry providers and all of their Zn2+ 
complexes are of trigonal bipyramidal configuration to the author’s awareness. To accommodate 
Cu2+, this trigonal bipyramidal configuration is often distorted to resemble a square (bi)pyramidal. 
This preference is clearly demonstrated in parabenzobis-TPA (PBTPA, Figure 1) [28], one of the 
tripodal ligands based on TPA. X-ray structures (Figure 2) shows that it forms a trigonal bipyramidal 
complex with zinc (with NPy-Zn-NPy bond angles of 117.3°, 114.9°, and 118.5°) and a square 
bipyramidal complex with copper(II) (with NPy-Cu-NPy bond angles of 85.2°, 95.6°, and 164.4°). Some 
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Figure 1. Structures of (a) compound 1, tris(2-pyridylmethyl)amine (TPA) and (b) compound 2,
parabenzobis-TPA (PBTPA).

Because of its 3d104s0 configuration, Zn2+, like Cu+ [22], is not strongly influenced by constraints
in its coordination configuration. Therefore, it is necessary to make a ligand which has a high degree of
predisorganization for Cu2+ so that it can show better Zn2+/Cu2+ selectivity. As a d9 metal, the bonding
in Cu2+ complexes is partially covalent. At the same time, Cu2+ prefers 4-coordinate square planar
and 5-coordinate square pyramidal geometries over tetrahedral and trigonal bipyramidal geometries
according to Crystal Field Theory [27]. C3 or pseudo-C3 symmetrical N-containing TPA derivatives
bind Cu2+ much better than Zn2+ as predicted by the Irving-Williams series [22]. At the same time,
they are naturally trigonal bipyramidal geometry providers and all of their Zn2+ complexes are of
trigonal bipyramidal configuration to the author’s awareness. To accommodate Cu2+, this trigonal
bipyramidal configuration is often distorted to resemble a square (bi)pyramidal. This preference is
clearly demonstrated in parabenzobis-TPA (PBTPA, Figure 1) [28], one of the tripodal ligands based
on TPA. X-ray structures (Figure 2) shows that it forms a trigonal bipyramidal complex with zinc
(with NPy-Zn-NPy bond angles of 117.3◦, 114.9◦, and 118.5◦) and a square bipyramidal complex with
copper(II) (with NPy-Cu-NPy bond angles of 85.2◦, 95.6◦, and 164.4◦). Some conformationally mobile



Molecules 2016, 21, 1647 3 of 20

chiral TPA analogs also form square pyramidal complexes with Cu2+ [29]. To accommodate other
metals such as Fe3+ [30] and V4+ [31] complexes, such distortion is also needed.Molecules 2016, 21, 1647 3 of 20 
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symmetrical square pyramidal complexes with Cu2+ (Figure 3) [32]. Other researchers found that 
steric overcrowding decreases the formation constants between TPA/TQA type of ligands and metal 
ions. The extent of such a decrease is inversely proportional to the ion sizes. Significant decrease is seen 
with small ions such as Zn2+, while smaller decrease is seen with larger ions such as Pb2+ because the 
Zn-N bond length is distorted in the Zn2+-complex with overcrowded ligands [33]. 
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One of the most widely used fluorescent zinc sensors is TSQ [34,35]. Its analogs Zinquin and  
2-Me-TSQ (Figure 4) show better Zn2+/Cu2+ selectivity than most other fluorescent probes, although 
they still bind Cu2+ stronger than Zn2+ [36,37]. The overall binding constant of the Cu2+ complex  
(logβ2 = 18.3 ± 0.05) of Zinquin is only slightly greater than that of its Zn2+ counterpart (logβ2 = 17.54) 
[12]. A complex between Zn2+ and 2-Me-TSQ can be formed with a 1:2 stoichiometry (Figure 4). The 
methyl groups at the 2-position of each of the two quinolones would clash with each other in a square 
planar or an octahedral complex, although the bite angle of 83° accommodates these two geometries. 
As a result, a distorted tetrahedral geometry is formed to relieve such steric hindrance, as shown in 
its X-ray crystal structure (not shown in Figure 4) [37]. However, it may be energetically less favorable 
for Cu2+, which might account for the lower than expected affinity for Cu2+. Therefore, engineering a 
ligand scaffold that can exert significant steric restrictions upon metal coordination geometry appears 
to be a promising approach for the design of Zn(II)-selective fluorescence probes. 
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Figure 2. X-ray crystal structure of the Zn2+ (a) and Cu2+ (b) complexes of PBTPA. Reprinted with
permission from Reference [28]. Copyright (2003) American Chemical Society.

Karlin et al. found that tris(2-quinolylmethyl)amine (TQA) (Figure 3) and its analogs form Cσ

symmetrical square pyramidal complexes with Cu2+ (Figure 3) [32]. Other researchers found that
steric overcrowding decreases the formation constants between TPA/TQA type of ligands and metal
ions. The extent of such a decrease is inversely proportional to the ion sizes. Significant decrease is
seen with small ions such as Zn2+, while smaller decrease is seen with larger ions such as Pb2+ because
the Zn-N bond length is distorted in the Zn2+-complex with overcrowded ligands [33].
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Figure 3. (a) Tris(2-quinolylmethyl)amine (TQA) and (b) X-ray structure of a TQA-Cu2+ complex.
Reprinted with permission from Reference [32]. Copyright (1994) American Chemical Society.

One of the most widely used fluorescent zinc sensors is TSQ [34,35]. Its analogs Zinquin
and 2-Me-TSQ (Figure 4) show better Zn2+/Cu2+ selectivity than most other fluorescent probes,
although they still bind Cu2+ stronger than Zn2+ [36,37]. The overall binding constant of the Cu2+

complex (logβ2 = 18.3 ± 0.05) of Zinquin is only slightly greater than that of its Zn2+ counterpart
(logβ2 = 17.54) [12]. A complex between Zn2+ and 2-Me-TSQ can be formed with a 1:2 stoichiometry
(Figure 4). The methyl groups at the 2-position of each of the two quinolones would clash with each
other in a square planar or an octahedral complex, although the bite angle of 83◦ accommodates these
two geometries. As a result, a distorted tetrahedral geometry is formed to relieve such steric hindrance,
as shown in its X-ray crystal structure (not shown in Figure 4) [37]. However, it may be energetically
less favorable for Cu2+, which might account for the lower than expected affinity for Cu2+. Therefore,
engineering a ligand scaffold that can exert significant steric restrictions upon metal coordination
geometry appears to be a promising approach for the design of Zn(II)-selective fluorescence probes.
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However, Cu2+ was a significant competitor for Zn2+ in that system, as it is for all ligands based on the 
TPA scaffold [47]. In solution, Canary et al. found that the chiral TQA derivative MeTQA (Figure 6) 
forms Cu2+ complexes with geometries between square pyramidal and trigonal bipyramidal, in some 
cases even predominantly square pyramidal, as revealed by UV [48]. 

Figure 4. The Zn2+ complex of 2-Me-TSQ.

2.2. Stereochemical Control of Chiral Ligands’ Zn2+/Cu2+ Selectivity

Although it sounds outlandish to modulate the behavior of achiral metal ions through
chiral organic ligands, it is not without precedence. Mother Nature utilizes chiral substances in
non-asymmetric processes. Lasalocid is a natural ionophore for Na+ with several asymmetric carbons
in its skeleton. The metal-binding functions of its stereoisomers depend on their stereochemistry,
as do those of some tetrahydropyranoid podand ionophores [8,38,39]. Similar results have been
found in another polyether ionophore and metal-binding antibiotic, monensin, its stereoisomers,
and analogs [40]. Ca2+ is selectively bound by an isomer of the hydroxylated-bistetrahydrofuran
skeleton of a potent antitumor agent, annonaceous acetogenins, against other alkali or alkali-earth metal
ions [41].

Zinc finger peptides bind zinc exceptionally well, with dissociation constants as low
as 5.7 pM [42], because they possess peptidyl domains 25–30 residues in length that form pre-organized
metal binding pockets highly selective for divalent zinc. Imperiali et al. explored the “hybrid approach”
by constructing and attaching peptidyl domains seven residues in length to the 8-HQ fluorophore,
which is structurally similar to TSQ. The peptidyl domain was carefully designed to try to preserve the
architecture of the zinc finger motif using minimized size and complexity. One of the reported ligands
is shown in Figure 5 [43]. The cysteine residue is key to enhancing the zinc selectivity of the ligand.
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peptide sequence.

The (R,R)- or (S,S)-isomer of a bis-chiral crown ether has been reported to bind selectively
sodium against potassium due to the optimized size of the binding pocket, while its optically inactive
(R,S)-isomer does not show such selectivity [44].

Balaz et al. used single-labeled pyridylporphyrin–DNA conjugates to sensitively and selectively
detect Hg2+ in water, although pyridylporphyrin rather than the nucleobase was found to play a
crucial role in Hg2+ binding and sensing [45].

In a study by Castagnetto et al. recognition of Zn2+ by MeBQPA (Figure 6), a chiral derivative of
TPA/TQA, benefited from both fluorescence enhancement as well as chiroptical signal increase [46].
However, Cu2+ was a significant competitor for Zn2+ in that system, as it is for all ligands based on the
TPA scaffold [47]. In solution, Canary et al. found that the chiral TQA derivative MeTQA (Figure 6)
forms Cu2+ complexes with geometries between square pyramidal and trigonal bipyramidal, in some
cases even predominantly square pyramidal, as revealed by UV [48].
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To improve Zn2+/Cu2+ selectivity, further preorganization to impose a trigonal bipyramidal
coordination geometry is needed. Rigidification is a common approach to preorganization, and
in principle it should also work in predisorganization. The orientation and interaction between
substitution groups can also exert influences on selectivity as shown in Zinquin complexes. Therefore,
one can envision that it is possible to construct a ligand whose structure is chirally synchronized and
mechanically rigidified so that its trigonal pyramidal configuration cannot be bent to a planar geometry.
Such manipulation would depress its Cu2+ affinity, while exerting much smaller compromise, if any,
on its Zn2+ affinity. In Rorabacher’s words [26], one can construct tripodal ligands which are incapable
of adapting to a planar geometry but could readily accommodate tetrahedral or distorted tetrahedral
geometries. In this way, the higher affinity of TPA/TQA derivatives to Cu2+ over Zn2+ might be
reversed. Toward this end, a stereochemical control approach was developed to engineer improved
Zn2+/Cu2+ selectivity through controlling ligand stereochemistry: a ring was incorporated into the
TPA ligand by connecting two of the arms to give compounds 5 and 6 (Figure 7), in which the piper
dine ring reduces conformational mobility by rigidifying the compounds and two chiral centers are
introduced to further control the stereochemistry [49].

Figure 7. Structures of piperidine derivatives of TPA.

For the cis-piperidine derivative 5, Cu2+ and Zn2+ complexation gave logβ = 14.8 and 10.1,
respectively, and for trans-ligand 6 the numbers were found to be 12.0 and 11.2, respectively [49,50].
The parent compound TPA shows logβ = 16.15 for its Cu2+ complex compared to 11.00 for its Zn2+

complex. Thus, the ratio of the association constants for the binding of Cu2+ over Zn2+ for TPA, 5, and
6 is 1.4 × 105, 5 × 104, and 6, respectively. As a pair of diastereomers, piperidine compounds 5 and 6
are expected to exhibit somewhat different affinities toward metal ions. However, the difference here is
so large mainly because the trans-piperidine ligand 6 enforces a C3 coordination environment through
the identical stereochemistry at the two chiral centers and the rigid piperidine ring, which makes it less
favorable to Cu2+ binding. This qualitatively explains its dramatically improved Zn2+/Cu2+ selectivity.

Semi-empirical calculations and X-ray structures show greater similarity of the [Cu(TPA)Cl]+

Cu-N bond lengths in the complex with 5 than in 6 [49]. Thus, trans-ligand 6 appears to distort the
coordination sphere of the Cu2+ ion, resulting in a less stable complex, while ligand 5 is preferred
significantly for Cu2+. This agrees with the observation that the binding of Cu2+ is quite dependent on
ligand stereochemistry while that of Zn2+ is not.
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The trans-ligand 6 was tagged with naphthalene fluorophores to prepare ligands 7 [49] and
8 [51,52] (Figure 7). The fluorescence of the naphthalene moieties is diminished by photo-induced
electron transfer (PET) in the absence of metal ion, but increases nearly 20-fold upon binding
Zn2+ for compound 7. The sensitivity of compound 8 for Zn2+ was found to be nanomolar in
4-(2-hydroxyethyl)-1-pieperazineethanesulfonic acid(HEPES) buffer with 1% methanol at physiological
pH. The improved selectivity that had been found for the trans chiral piperidine scaffold was also
preserved with compounds 7 and 8. Thus, stereochemical engineering of ligands by constructing an
unfriendly environment for Cu2+ to depress their Cu2+ affinity and enhance their Zn2+/Cu2+ selectivity
has proven to be feasible.

2.3. Steric and Stereochemical Control of Ligands’ Selectivity to Ag+

Some pyridyl-containing macrocycles (Figure 8) are used as ionophores for Ag+. Their structures
and conformations affect their affinities to ions. Compounds 9, 10, and 13 are somewhat planar. Since
there is intramolecular NPy-HN-amide hydrogen bonding in these free ligands, each of their cavities
has to undergo significant conformational changes during complexation, resulting in poor affinity to
Ag+. However, since the steric requirement of methyl/benzyl substituents on amide N in 11 and 12
takes themselves out of the cavities and positions the amide C=O toward their respective cavities, they
may undergo fewer conformational changes during complexation, thus showing higher affinities to
Ag+ over Pb2+, Tl+, alkali, and alkaline earth cations. The increased spacer length in 14 removes such
steric arrangement, resulting in poor selectivity [53].
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symmetrical arrangement of three pyridine rings for the binding of the Ag+ ion, which is equally 
coordinated by two terminal pyridine rings, while the two terminal pyridine nitrogen atoms coordinate 
with the Ag+ ion in an asymmetrical fashion in the Ag+ complex with (S,R)-15. The energy calculations 
indicate that the Ag+-(S,S)-15 complex is more stable by 3.46 kcal/mol than the Ag+-(S,R)-15 complex. 
Such differences are also observed in the derivatives of these two diastereomers. It was concluded 
that a combination of ligand geometry and stereo-controlled substitution can improve Ag-specificity 
in this class of ligands [54,55]. 

Figure 8. Pyridyl-containing macrocyle ligands for Ag+. Reprinted with permission from Reference [53].
Copyright (1996) American Chemical Society.

Proper handling of ligand stereochemistry can lead to improved Ag+ affinity in some podand
ligands bearing pyridine moieties and two chiral arms (Figure 9, top) [54,55]. In principle, as a pair of
diastereomers, (S,S)- and (R,S)-15, respectively, can exhibit different binding abilities toward cations.
The (S,S) ligands can extract Ag+ more selectively and more slowly in the presence of Pb2+, Cu2+, Ni2+,
Co2+, and Zn2+ than their corresponding meso ligands. Computer modeling and energy calculations
showed that in the optimized structures of their Ag+ complexes (Figure 9, bottom), (S,S)-15 has a
symmetrical arrangement of three pyridine rings for the binding of the Ag+ ion, which is equally
coordinated by two terminal pyridine rings, while the two terminal pyridine nitrogen atoms coordinate
with the Ag+ ion in an asymmetrical fashion in the Ag+ complex with (S,R)-15. The energy calculations
indicate that the Ag+-(S,S)-15 complex is more stable by 3.46 kcal/mol than the Ag+-(S,R)-15 complex.
Such differences are also observed in the derivatives of these two diastereomers. It was concluded that
a combination of ligand geometry and stereo-controlled substitution can improve Ag-specificity in this
class of ligands [54,55].
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Figure 9. Ag+ complexes of ligands whose Ag+-specificities are controlled by stereochemistry and
optimized structures of such complexes. Reprinted with permission from Reference [54]. Copyright
(1998) American Chemical Society.

3. Steric and Stereochemical Modulation of Signal Transduction

Many ionophores are incorporated in sensors for metal ions and other species. Signal transduction
of many sensing events depends on the structure and conformation of the analyte-sensor complexes.

3.1. Modulating Fluorescence or Luminescence

Many metal ions sensors employ fluorescence as their signal output. Generally “switch-on”
fluorescent sensors are preferred to “switch-off” ones. There have been significant endeavors to make
fluorescent sensors for Hg2+. Although a number of reversible “switch-on” fluorescent sensors for
Hg2+ have been reported [56–59], many other sensors exhibit fluorescence “switch-off” upon binding
Hg2+, which as a heavy metal turns to quench its sensors’ fluorescence through spin-orbit coupling.
Hancock et al recently shed some light on the structural requirements for Hg2+ sensors that exhibit
chelation enhanced fluorescence (CHEF) when their photo-induced electron transfer (PET) processes
are handicapped by Hg2+ [60]. The secret is that the formation of a π-complex between the heavy metal
and the fluorophore needs to be disrupted or eliminated. By examining some pyridyl-containing sensor,
including N-(9-anthracenylmethyl)-N-(2-pyridylmethyl)-2-pyridinemethanamine (ADPA) (Figure 10),
and other nitrogen-containing sensors from a few research groups, it is generalized that the Hg2+

ion should be held far enough away from the fluorophore, or covalently binding donor atoms,
such as S and Br, need to be employed to limit the strength of interaction between the Hg2+ ion
and the fluorophore. This might be able to account for the “switch-on” fluorescence of chiroptical
mercury sensors that contain quinolyl and methionine/S-methylcysteine moieties made by the author
of this article [61].
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that the Zn-N bonds are all of normal lengths (Figure 11), which means the level of steric crowding in 
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their corresponding cousins formed with (R,R)-16 ligand. Lanthanide complexes of another pyridyl-
containing ligand with two chiral centers also exhibited interesting properties in luminescence [63]. 

Figure 10. Effect of co-valent donor species on the fluorescence Hg2+/N-(9-anthracenylmethyl)-N-
(2-pyridylmethyl)-2-pyridinemethanamine (ADPA) complex. Reprinted with permission from
Reference [60]. Copyright (2012) American Chemical Society.

Steric crowding in ligands can compromise the (CHEF) effect by small metal ions such as
Zn2+ ion as compared to larger ions such as Cd2+ ion [33]. Steric crowding distorts the Zn-N
bond length, which allows some quenching of fluorescence by the PET mechanism. The steric
crowding increases in the following sequence for tripodal pyridyl-/quinolyl-containing ligands: TPA
< TQA < tris(6-methyl-2-pyridyl)amine (TMPA). In a complex formed between Zn2+ and TQA, X-ray
crystallography shows that the Zn-N bonds are all of normal lengths (Figure 11), which means the
level of steric crowding in TQA is not severe enough to cause significant Zn-N bond length distortion.
As a result, there is larger enhancement of TQA fluorescence by Zn2+ than by Cd2+, in contrast to
similar but more sterically crowded TMPA where Cd2+ induced CHEF effect is stronger. The CHEF
effect for TQA increases with the decrease in metal ions sizes.
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not distorted. Therefore, the CHEF effect induced by Zn2+ is stronger that induced by bigger ions.
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Open chain TPA analogs with two chiral arms (Figure 12) have been used to tune lanthanide
luminescence [62]. Lanthanide complexes formed with (R,S)-16 ligand give stronger fluorescence
than their corresponding cousins formed with (R,R)-16 ligand. Lanthanide complexes of
another pyridyl-containing ligand with two chiral centers also exhibited interesting properties in
luminescence [63].
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Figure 12. Bis-chiral TPA-analogs that can modulate lanthanide fluorescence.

More recently, a chiral pyridyl/quinolyl-containing tripodal ligand was demonstrated to form a
series of lanthanide complexes exhibiting multiple anion-sensing profiles, which can be explained by
the presence of a fluorescent quinoline and a stereocontrolled methyl group resulting in differences in
fluorescence, CD, and Ln(III)-luminescence signals of the anion-bound complex, which are controlled
by the nature of the targeted anions [64]. It is more specific than regular fluorescence sensing.

3.2. Modulating Chiroptical Signals

Compared with achiral ligands, chiral ones can yield additional spectroscopic information such
as chiroptical signals [65]. Zinc greatly enhances the fluorescence of MeBQPA [46], while other
metal ions induce fluorescence responses. More interestingly, the ligand generates strong signals
in exciton-coupled circular dichroism (ECCD) upon formation of complexes with some metal ions
(Zn2+, Cu2+), while complexes with octahedral metal ions (Cd2+, Fe2+) do not give strong CD signals
(Figure 13). Both isotropic (fluorescence) and anisotropic absorption (CD) signals from the optical
response of this single chiral ligand are employed to provide not only detection but also differentiation
of multiple analytes: Zn2+ (strong fluorescence and ECCD response), Cu2+ (strong ECCD but no
fluorescence), Cd2+ (strong fluorescence but no ECCD) and Fe2+ (neither fluorescence nor ECCD).
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Figure 13. Circular dichroism spectra of (R)-MeBQPA and complexes with Zn(ClO4)2, Cd(NO3)2,
Cu(ClO4)2, and FeCl2 in aqueous 4-(2-hydroxyethyl)-1-pieperazineethanesulfonic acid (HEPES) buffer.
Adapted with permission from Reference [46]. Copyright (1998) the Royal Society of Chemistry.

Metal ion detection by a multimode switchable chiroptical fluorescent sensor containing both
S-methylcysteine and quinoline moieties through both fluorescence enhancement and anisotropic
absorption distinguish even more metal ions [61]. We will discuss these sensors in more detail in the
“Modulating Switchable Binding Pockets in One Ligand” section.

A pyridyl-containing bidentate Hg2+ sensor with a chiral-center near its naphthalene chromophore
has been reported more recently (Figure 14). The sensor exhibits significant CD changes when titrated
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with Hg2+, while many other metal ions do not induce such changes. Cold ESI-MS and 1HNMR data
suggest that Hg2+ and the ligand form a 1:1 coordination polymer, which gives a negative exciton
coupled CD (ECCD) signal, suggesting that the naphthalene units in the coordination polymer are
arranged in a counterclockwise screw sense in solution. The complex’s X-ray crystallography indeed
shows a polymer-like structure, although the naphthalene units in the solid state are arranged in an
ECCD-inactive eclipsed form, likely caused by a packing effect [66].
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Figure 14. Hg2+ induces circular dichroism (CD) changes in a chiral sensor while many other metal ions
do not. Reprinted with permission from Reference [66]. Copyright (2012) American Chemical Society.

There are other chiroptical sensors for metal ions that show changes in CD. However, they do not
contain pyridyl or quinolyl groups [67–69] and will not be discussed in further detail.

A new approach, differential circularly polarized fluorescence excitation (CPE), to metal ion
sensing using fluorescence-detected circular dichroic detection was developed, which integrates
fluorescence and exciton coupled circular dichroism methods to give better contrast than can be
achieved in either of the two parent methods. This approach uses the ∆F (∆F = FL − FR, FL,
FR = fluorescence with left and right circularly polarized excitation, respectively) [70] component of
fluorescence-detected circular dichroism (FDCD) for metal sensing. The contrast in ∆F signals between
a sample with both a large quantum yield and a large CD and a sample with both a small quantum
yield and a small CD will be much larger than the contrast in either fluorescence or CD signals.
The corresponding spectra of one of the sensors employed, compound 9 ((S,S) form, structure shown
in Figure 7), titrated with Zn(II), are shown in Figure 15 [52]. Apparently, measurements in ∆F gave
greatly enhanced contrast over other spectroscopic methods. On the coordination chemistry front,
stereochemical control and rigidification employed in these sensors ensures improved Zn2+/Cu2+

selectivity. On the photophysical signal transduction front, the CPE approach has the potential to
improve contrast and diminish interference from background fluorescence, such as that from the
protein lyzozyme which contains tryptophan (a common source of background fluorescence in cells)
(Figure 16).
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Figure 15. Spectral response of 2 µM (S,S)-9 to Zn2+ in acetonitrile. (a) Fluorescence (Ex: 300 nm);
(b) CD; (c) Fluorescence-detected circular dichroism (FDCD); (d) ∆F, inset: titration curve of 2 µM
(S,S)-9 with Zn(ClO4)2. Reprinted with permission from Reference [52]. Copyright (2004) American
Chemical Society.



Molecules 2016, 21, 1647 11 of 20
Molecules 2016, 21, 1647 11 of 20 

 

 

Figure 16. Spectral responses of 3.2 µM (R,R)-9 to Zn2+ at the presence of 1.0 mg/mL hen egg white 
(HEW) lysozyme in 60% acetonitrile/water. (a) Fluorescence (Ex: 280 nm); (b) CD; and (c) ΔF [52]. 
Reprinted with permission from Reference [52]. Copyright (2004) American Chemical Society. 

4. Modulating Two Binding Pockets in One Ligand 

4.1. Modulating Ditoptic Ligands for Zn2+ 

There can be two or more binding pockets in one ionophore. The Zhu group designed a series of 
fluorescent sensors based on a pyridyl-containing platform bearing two binding pockets with different 
affinities to Zn2+ (Figure 17) [71–78]. Through the modulation of PET, internal charge transfer (ICT), 
conformation rigidification, and substitution, such ditopic ligands can bind low concentration Zn2+ 
through the high-affinity pocket (bis- or tris-(2-methylpyridyl)amine) to give fluorescence enhancement 
in one wavelength channel and bind high concentration Zn2+ through both the high-affinity and low-
affinity(2,2′-bipyridyl) pockets to result in fluorescence enhancement at another wavelength channel. 
Such sensors have been proven to be useful in live-cell imaging of free Zn2+ over a concentration range 
of six orders of magnitude [79]. 

 
Figure 17. Schematic representation of pyridyl-containing ditoptic sensors (A) for both low (B) and 
high concentrations (C) of Zn2+ with fluorescence enhancement at two different wavelength channels, 
respectively (left); and one of such sensors (right). Reprinted with permission from Reference [72]. 
Copyright (2008) American Chemical Society. 

4.2. Modulating Switchable Binding Pockets in One Ligand 

Sauvage et al made a molecular muscle system [80,81] employ a rotaxane dimer 17: its Cu+ 
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Figure 16. Spectral responses of 3.2 µM (R,R)-9 to Zn2+ at the presence of 1.0 mg/mL hen egg white
(HEW) lysozyme in 60% acetonitrile/water. (a) Fluorescence (Ex: 280 nm); (b) CD; and (c) ∆F [52].
Reprinted with permission from Reference [52]. Copyright (2004) American Chemical Society.

4. Modulating Two Binding Pockets in One Ligand

4.1. Modulating Ditoptic Ligands for Zn2+

There can be two or more binding pockets in one ionophore. The Zhu group designed a series
of fluorescent sensors based on a pyridyl-containing platform bearing two binding pockets with
different affinities to Zn2+ (Figure 17) [71–78]. Through the modulation of PET, internal charge
transfer (ICT), conformation rigidification, and substitution, such ditopic ligands can bind low
concentration Zn2+ through the high-affinity pocket (bis- or tris-(2-methylpyridyl)amine) to give
fluorescence enhancement in one wavelength channel and bind high concentration Zn2+ through
both the high-affinity and low-affinity(2,2′-bipyridyl) pockets to result in fluorescence enhancement at
another wavelength channel. Such sensors have been proven to be useful in live-cell imaging of free
Zn2+ over a concentration range of six orders of magnitude [79].
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4.2. Modulating Switchable Binding Pockets in One Ligand

Sauvage et al. made a molecular muscle system [80,81] employ a rotaxane dimer 17: its Cu+

complex 182+ is the extension state in which the bidentate phenanthrolinyl of a macrocyle are pulled
near to the bidentate phenanthrolinyl in the middle of the molecule by Cu+, and its Zn complex 194+

is the contraction state in which the bidentate phenanthrolinyl of the macrocycle is pulled near the
tridentate terpyridyl at the two ends of the molecule by Zn2+ (Figure 18).
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Figure 18. A terpyridyl and phenanthrolyl-containing rotaxane can switchably bind Cu+ and Zn2+,
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4.3. Modulating Switchable Chiroptical Sensors for Metal Oxidation States

Pyridyl and phenanthrolinyl groups were incorporated in catenane [82] and rotaxane [83,84]
systems with two binding pockets that can switchably bind copper ions at different oxidation states
by turning a bischelating macrocycle containing both bidentate (phenanthroline) and tridentate
(terpyridine) moieties around a bidentate (phenanthroline) axel.

Pyridyl groups have also been used in the design of chiral sensors whose coordination chemistry
and signal transduction are sensitive to the metal ions’ oxidation states.

Shanzer et al. reported such a sensor which employs a triple-stranded system that accommodated
a single metal ion in one of two sites, either a “hard” binding cavity bearing three hydroxamate
moieties preferable to Fe3+ or a “soft” cavity with three bipyridyl moieties preferable to Fe2+

(Figure 19) [85]. A split CD spectrum in the UV region was three times more intense for the Fe2+

than for Fe3+, suggesting exciton interactions involving the bipyridyl groups, which originate from
the helical arrangement of each of the three strands. Since switching metal oxidation states can
be achieved through redox processes, such processes can be monitored by switchable chiroptical
sensors. Chiral tripodal ligands bearing a chiral arm and two achiral 2-methylquinolyl arms can
form propeller-like metal complexes whose configuration is dictated by the chiral centers in such
ligands as proven in many crystallographic structures in the solid state and ECCD in solution. Such
a ligand, N,N-Bis(2-quinolylmethyl)-L-methionine (L-MethBQA) (Figure 20) [86], derived from the
amino acid methionine forms a tetradentate complex with Cu2+ involving three nitrogen atoms and a
carboxylate. Upon binding Cu+, the ligand reorganizes and the sulfide moiety replaces the carboxylate
from coordination. Binding Cu2+ and Cu+ produce opposite helical orientation of the two quinolyl
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moieties, resulting in mirror images in the ECCD spectra for the Cu+ vs. Cu2+ complexes. Other such
tripodal derivatives of methioninol and S-methylcysteine can also sense the oxidation states of copper
ions following the same mechanism (Figure 21) [87–90].Molecules 2016, 21, 1647 13 of 20 
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Figure 21. Redox-induced inversion of helicity in copper complexes of L-MethBQA. As a result of the
presence of gearing among the three arms of the tripod near the sterically crowded tertiary amine of
the ligand, a pivot about a C-N bond results in the inversion of the propeller, giving give opposite
exciton-coupled circular dichroism (ECCD) spectra. Reprinted with permission from Reference [90].
Copyright (2006) American Chemical Society.

4.4. Modulating Switchable Chiroptical Sensors for Multiple Metal Ions

L-MehtBQA and a similar compound N,N-Bis(2-quinolylmethyl)-L-S-methylcysteine (L-CysBQA)
(Figure 20), were found to be multimode switchable chiroptical fluorescent sensors for multiple ions
including but not limited to Hg2+, Cu2+, and Zn2+ [61]. Quinolyl groups serve as the fluorophore
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and possess nitrogen lone pairs capable of chelating metal ions. Upon exposure to Hg2+ or Zn2+

these sensors show signal enhancement in fluorescence in 30:70 acetonitrile/water. It is likely that
the interaction between the Hg2+ ion and the fluorophore is limited by the covalently binding S
atom, disrupting the heavy atom effect and resulting in fluorescence enhancement [60]. However,
Cu2+ quenches their fluorescence. L-CysBQA complexes with Hg2+, giving rise to an exciton-coupled
circular dichroism spectrum with a positive couplet (a positive Cotton effect at a longer wavelength
followed by a negative Cotton effect at a shorter wavelength). However, Cu2+ or Zn2+ complexation
produces a negative ECCD couplet (Figure 22). This remarkable differentiation of Hg2+ from Cu2+

and Zn2+ stems from the different structures of the CD active products. The Cu2+ ion binds with the
tertiary amine, the two quinolones, and the carboxylate moieties of the ligand. The two quinoline
groups form a propeller whose orientation is dictated by the stereocenter of the S-methyl cysteine arm.
However, Hg2+ prefers coordination by the sulfur atom. As shown in Figure 22, for the sulfide to bind
to the metal center, the amino acid arm must pivot about the C-N bond, which inverts the orientation
of the quinoline moieties, leading to an exciton coupled CD with the opposite sign. Although crystals
of L-CysBQA complexes with these metal ions are not available, Zn2+ and Cu2+ coordinate with the
carboxylate instead of the sulfide in the crystals of their complexes with L-MethBQA and other similar
compounds [88–90]. In solution, the soft Cu+ ion coordinates with the sulfur atoms of such ligands in
solution as demonstrated by NMR data and other evidence [88,91], which indicates that Hg2+ should
coordinate the sulfur atom since it is also soft.
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Figure 22. L-CysBQA complexes with Cu2+/Zn2+ and Hg2+. The chiral center of the amino acid
dictates the orientation of the quinoline chromophores via a gearing mechanism as illustrated.
The transition dipoles in the quinolines in the two complexes invert in the sense of absolute orientation
and therefore give opposite ECCD spectra. Adapted with permission from Reference [61]. Copyright
(2011) Wiley.

The design of such sensitive and selective chiroptical fluorescent sensors for metal ions includes
innovations on both coordination chemistry and signal transduction. Take the above mentioned
mercury sensors for example. On the coordination chemistry front, ionophores are equipped with
two sets of coordination “teeth”, switchable by exposure to different metal ions. One set of “teeth”
offers high affinity for Hg2+, determining the sensitivity of the probe; the other set preferably binds
other metal ions. On the photophysical signal transduction front, the binding between Hg2+ and
its preferred set of “teeth” leads to fluorescence enhancement and a positive exciton coupled CD
by design; and the coordination of the other set of “teeth” with other metal ions, such as Zn2+ and
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Cu2+, triggers a fluorescence change (enhanced or quenched) and a negative exciton coupled CD.
Other metal ions produce other combinations of fluorescence and exciton coupled CD. In this way,
metal ion sensing by such chiroptical fluorescent sensors through both fluorescence and anisotropic
absorption distinguishes (Figure 23), for example, Hg2+ (enhanced fluorescence with strong positive
exciton coupled CD (ECCD)), Zn2+ (enhanced fluorescence and strong negative ECCD), Cu2+ (strong
negative ECCD but quenched fluorescence), Ni2+ (strong positive exciton coupled CD but quenched
fluorescence), Pb2+ (quenched fluorescence but no ECCD), Cd2+ (enhanced fluorescence but no ECCD).
More ions such as Cd2+(enhanced fluorescence and no exciton coupled CD), Ag+ (no fluorescence
change and strong positive exciton coupled CD) and alkali metal ions (no change in fluorescence or
CD) can be added to the list [92]. L-MethBQA offers similar advantages. These results further illustrate
that recognition involving both isotropic and anisotropic detection tools may be utilized to maximize
the information transmitted by a single sensor molecule [46].
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Figure 23. Chiroptically enhanced fluorescence detection and differentiation of different metal
ions by L-CysBQA through pattern recognition. Adapted with permission from Reference [61].
Copyright (2011) Wiley.

Interestingly, a pyridyl analog L-MethBPNaph (Figure 20) shows fluorescence enhancement
as well as significant spectral red-shift in emission upon exposure to HgCl2 [93]. However, its CD
spectrum does not changed upon addition of HgCl2, ZnCl2, CuCl2, Zn(ClO4)2, Cu(ClO4)2, Ni(ClO4)2

or Pb(ClO4)2.
Aside from metal ions, pyridyl containing systems have been used as chiroptical sensors for

anions [64,94] and other species, some of which have been recently reviewed [93,95,96]. Recently,
a pyridyl-containing homochiral, square-shaped, D2 symmetrical metal-linked macrocycle has been
shown to be a selective chiroptical and electrochemical sensor for ferrocene in the presence of other
species [97].

5. Conclusions

Pyridyl- or quinolyl-containing compound are excellent platforms to build selective ionophores
and sensors for metal ions. Steric and stereochemical effects can be used to modulate such ionophores
and sensors in terms of coordination chemistry and/or signal transduction. On the coordination
chemistry front, a ligand’s affinity and selectivity toward metal ions can be systemically fine-tuned
or switched through modification of ligand structures by introducing/removing steric crowding or
adding chiral handles, which creates a high degree of preorganization for the specific metal ion and/or
a high degree of ‘disorganization’ or mismatch for competing metal ions. On the photophysical
signal transduction front, steric effect can be used to engineer “turn-on” fluorescent sensors for heavy
metal ions and control the extent of chelation induced enhancement of fluorescence. Stereochemical
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modification can bring additional spectroscopic information such as chiroptical signals into the signal
transduction part of sensing, which is capable of making sensing events more specific. Sensing
strategies employing both isotropic and anisotropic absorption signals from a single chiral sensory
molecule provide not only detection but also differentiation of multiple analytes.
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