## Supplementary Materials: Investigating Glycol-Split-Heparin-Derived Inhibitors of Heparanase: Study of Synthetic Trisaccharides

Minghong Ni, Stefano Elli, Annamaria Naggi, Marco Guerrini, Giangiacomo Torri and Maurice Petitou



**Figure S1.** <sup>1</sup>H-NMR spectra used to monitor the periodate oxidation of **1**. The circled signal that disappears throughout the reaction corresponds to H-2' of GlcA (3.44 ppm).



**Figure S2.** Backbone computed dihedral angles:  $\alpha/\beta$ ,  $\gamma$ ,  $\delta/\epsilon$ ,  $\omega/w$  for compound **2** (top) and the comparable  $\alpha/\beta$ ,  $\omega/w$  for compound **1** (bottom) sampled during selected MD simulations steps at temperature 300 K (step 1, black dots), 400 K (step 6, red dots) and 300 K (step 11, blue dots). The dihedral angles pairs:  $\alpha/\beta$ ,  $\gamma$ ,  $\delta/\epsilon$ ,  $\omega/w$  are reported in Ramachandran diagrams, while  $\gamma$  is reported as a function of simulation time. Two possible conformations for compound **2**, characterized by different glycosidic state  $\omega/w$  (see Table S2) are found (A, and B). Yellow stars in Ramachandran plots indicate torsional states defined by averaging the corresponding dihedral angle pairs for a suitable amount of simulation time.



**Figure S3.** 2D HSQC spectra of compound **1** (green) and **2** (blue). (no quote, quote and double quote respectively refer to reducing-end unit, central unit and non reducing end unit).



Figure S4. Plot of the chemical shift of exchangeable protons in 2 vs. temperature (K).



**Figure S5.** Intra-residue experimental (empty symbols) and simulated (black line) 2D NOEs build up curves for the glucosamine units in **2**. The simulation was performed using the A conformer (see text).



**Figure S6.** Selected 2D NOEs. Upper part: Selected inter-glycosidic 2D NOEs build up curves for the two (see Figure S2, **A** and **B**) predicted conformations of **2** at mixing time between 0.2 to 1.5 s. Comparison of the middle and right panels shows the better fit obtained between experimental and modelled curves when the **A** conformer is used for the calculation. Lower part: A licorice representation of **2** in conformation **A** showing the previously discussed inter-residue NOEs. On the right a good fit is obtained between experimental and calculated NOEs for the obtained conformation of **1**.



| Dipole moment vector |      |      |      |                  |  |  |  |
|----------------------|------|------|------|------------------|--|--|--|
| Molecule             | Мx   | My   | Mz   | <b>M</b>   (e Å) |  |  |  |
| <b>2</b> (A)         | 2.8  | -2.1 | -1.2 | 3.7              |  |  |  |
| <b>2</b> (B)         | -0.9 | 2.6  | -2.9 | 4.0              |  |  |  |
| 1                    | 4.3  | 3.9  | -4.7 | 7.4              |  |  |  |

**Figure S7.** Distribution charge properties: dipole moment lenght and components, estimated for **1** and **2** in the previously determined conformations using the approach AM1-BCC (see text). On the the left, the non-reducing end residues of **1** and **2** have been superposed.

Table S1. Summary of the MD simulation thermal history for the model of compound 1 and 2.

| MD Simulation Step | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Temperature (K)    | 300 | 320 | 340 | 360 | 380 | 400 | 380 | 360 | 340 | 320 | 300 |
| Time Length (ns)   | 5K  |

**Table S2.** Backbone torsional angles for **1** and **2**. Values in **black** refer to the two initial conformations setted for each glycans (**1.1–1.2** and **2.1–2.2**) (black coloured lines). Values in red are the torsional angles obtained. Compound **2** significantly populates two states (A and B) at the torsional degree of freedom  $\omega/w$ .

|   |             | Torsional Angles (°) |         |     |       |                       |  |
|---|-------------|----------------------|---------|-----|-------|-----------------------|--|
|   |             | τ                    | α/β     | γ   | δ/ε   | ω/w                   |  |
|   | Initial 1.1 | -20                  | -40/-26 | -   | -     | 53/9                  |  |
| 1 | Final 1.1   | -17                  | -44/-24 |     |       | 49/26                 |  |
| 1 | Initial 1.2 | -60                  | -20/26  | _   | -     | -30/-30               |  |
|   | Final 1.2   | -15                  | -45/-30 | -   | -     | 46/21                 |  |
| 2 | Initial 2.1 | -61                  | -52/-26 | 180 | 50/51 | 56/7                  |  |
|   | Final 2.1   | -19                  | -42/-27 | -59 | 44/34 | 49/33 (A) -37/-16 (B) |  |
|   | Initial 2.2 | 180                  | -30/-50 | 61  | 0/30  | -40/10                |  |
|   | Final 2.2   | -20                  | -44/-20 | -69 | 46/37 | 39/30 (A) -46/-18 (B) |  |

**Table S3.** Temperature coefficients  $\Delta\delta$  (ppb·K<sup>-1</sup>) estimated by linear regression. The estimated errors ( $\Delta\Delta\delta$ ) is shown on the last decimal digit. The linear correlation coefficient (*R*) is reported

| H-Bond        | Δδ (ΔΔδ)  | R        |
|---------------|-----------|----------|
| OH'-3         | -9.8 (2)  | -0.9996  |
| OH'-2         | -13.0 (3) | -0.9991  |
| N <b>H</b> '' | -8.09 (3) | -0.99997 |
| NH            | -5.7 (5)  | -0.9891  |