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Abstract: 1-Deoxynojirimycin (DNJ, CgH;3NO4, 163.17 g/mol), an alkaloid azasugar or iminosugar,
is a biologically active natural compound that exists in mulberry leaves and Commelina communis
(dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species.
Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the
aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction,
purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to
explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also
be investigated using suitable in silico approach.
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1. Introduction

Polyhydroxylated piperidines and their derivatives are famous for their excellent bioactivities [1].
Iminosugars contain an analog of pyranose ring or D-glucose, in which the ring oxygen atom is
replaced by a nitrogen atom. 1-Deoxyiminosugars are chemically more stable than normal iminosugars
because of absence of a hydroxyl group at the C1 position. Among the iminosugars, naturally
occurring 1-deoxyiminosugars such as DNJ are strong glycosidase inhibitors [2]. Originally, reduction
of nojirimycin led to the chemical synthesis of DN]J [3]; afterward, DNJ was found from natural source,
i.e., mulberry tree root and Bacillus species [4,5].

1-Deoxynojirimycin (DNJ, C¢H13NOy, 163.17 g/mol) (Figure 1), an alkaloid azasugar or
iminosugar, is a biologically active natural compound [6-8]. The IUPAC name of DN]J is (2R,3R,4R,5S)-
2-(hydroxymethyl)piperidine-3,4,5-triol. It is also known as moranoline [9]. Various derivatives
of DNJ are N-azidopropyl-1-deoxynojirimycin, N-nonyl-1-deoxynojirimycin, 1-deoxynojirimycin-6-
phosphate, and N-methyl-1-deoxynojiri-mycin-6-phosphate [8]. It exists in mulberry leaves and
Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and
Streptomyces species [7].
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Figure 1. Chemical structure of 1-Deoxynojirimycin [7].

After extraction, DNJ contents can be determined by HPLC using various detectors
such as fluorescent, evaporative light-scattering detector, pulsed amperometric, and Mass
spectrometer [10-12]. Since DNJ molecule does not contain chromophore, the quantification of DNJ
through spectral analysis needs derivatization, i.e., an analytical approach for quantification of
nitrogen-containing compounds [13-16]. To quantify and resolve structural information of DN]J
by GC-MS, Bajpai and Rao used trimethylsilyl (TMS) derivatization [7].

The pharmacokinetic of DN]J after oral administration has been studies by some researchers [17-19].
Moreover, DNJ has many biological activities, including antihyperglycemic [20-25], anti-obesity [26-30],
and anti-viral [31] have also been reported [32-35].

Currently, the prediction of biological targets of small drug molecules has become very easy owing
to the rapid growth of bioactivity databases, in silico target fishing approaches and accessible web
services [36]. There are many approaches to in silico target fishing including the structure-based and
the ligand-based methods, data mining, and chemical similarity searching [37]. Then, the output data
of these approaches are validated by adopting useful modality. The structure-based target prediction
methods are appropriate to the drug-like small organic entities, which induce biological effects but
have ambiguous macromolecular targets [36].

Therefore, the aim of this detailed review article is to summarize the existing knowledge on
occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that the
researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular
targets of DNJ will also be investigated using suitable in silico approach.

2. 1-Deoxynojirimycin
2.1. Occurrence

1-Deoxynojirimycin (DNJ), a product of fermentation, exists in mulberry leaves and
Commelina communis (dayflower) as well as is isolated from several bacterial strains such as Bacillus
and Streptomyces species [7,8]. Mulberry, a common deciduous plant, belongs to the genus Morus
(Moraceae family). The botanical and pharmaceutical names of mulberry tree are Morus alba L. and
Folium mori, respectively [38]. Mulberry tree is found in countries with a subtropical or mild temperate
environment, including China, Japan, Korea, India, Pakistan, and other Asian countries [39]. By reason
of folklore tonic, mulberry leaves have been used as an anti-diabetic tea. The general use of mulberry
includes silkworm (Bombyx mori L.) feeding (Figures 2 and 3) [40], fruit production [41], and medicine
preparation [42,43]. Mulberry leaves are used as a source of protein in food products [44]. Many
scientific studies have reported the medicinal importance of mulberry [45]. Mulberry leaves are
traditionally used as medicine for controlling blood sugar level [20,46—48]. Studies have also reported
the effectiveness of mulberry leaves in skin aging [49,50] and neurodegenerative disorders including
Alzheimer’s disease and Parkinson’s disease [51]. Moreover, sedative effect of mulberry fruits and
anti-inflammatory, diuretic, antitussive, and antipyretic properties of mulberry root bark have been
studies [52]. In addition to DNJ, many other bioactive compounds including flavonoids, alkaloids,
steroids, and coumarins also exist in mulberry leaves [53]. DNJ constitutes only 0.11% (w/w) of
mulberry leaf [20,48], while the synthesis of DNJ is a complex process [54]. For this reason, DNJ is an
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expensive compound. Thus, the possible intense demand for DNJ in future has urged exploring other
sources of DNJ, including various bacterial strains such as Bacillus [7], Streptomyces [8], Actinoplanes [55],
and Flavobacterium saccharophilium species [56].

Figure 3. Silkworm larvae consuming mulberry leaves.

Numerous researchers have reported the DJN contents in different parts and various varieties
of mulberry [25,57-60]. Various mulberry varieties contain DNJ contents ranging between 0.68 and
2.78 mg/gm [7], while this fraction varies between 1.57 and 3.48 mg/gm in different Chinese mulberry
leaves [25]. Moreover, mulberry shoots contain the highest contents of DNJ, followed by young
mulberry leaves. Mature leaves of mulberry contain the least contents DNJ [6]. Another group of
investigators has reported the quantity of DJN contents in mulberry leaves fermented by different
microorganisms, such as Lactobacillus plantarum (lactic acid bacteria), Zygosaccharomyces rouxii (yeast),
Wickerhamomyces anomalus (yeast), and Bacillus subtilis. They also examined the extent to which the
fermented mulberry leaf powder extract (FMLE) inhibited the x-glucosidase activity. All the mulberry
leave groups showed 1-2-fold increase in DNJ contents in comparison to unfermented mulberry leaf
powder extract (UFMLE). Additionally, FMLE exhibited higher x-glucosidase activity compared to
UFMLE [61]. Resultantly, DNJ-rich food products can be prepared by fermenting mulberry leaves
using the above-mentioned fermenting agents.

2.2. Extraction

There are four routes to produce DNJ: (i) extraction from plants such as the mulberry trees;
(ii) extraction from silkworm; (iii) chemical synthesis following different synthetic strategies; and
(iv) fermentation by various Bacillus or Streptomyces. Currently, the use of mulberry dry tea is flourishing
as functional food. The content of DNJ is as low as approximately 100 mg/100 g of dry tea. This fraction
of DNJ is biological ineffective (Biologically effective dose of DNJ is 6 mg per 60 kg human weight).
Thus, the possible intense demand for DNJ in future has urged exploring new strategies for its efficient
extraction and purification. In this context, a modality was proposed by Ezure et al. who developed
a rapid screening approach (oblate agar plate method) for isolation of DNJ-producing Streptomyces
lavendulae GC-148. Its DNJ spectra were identical to that obtained from mulberry [9]. Afterwards,
they noted 27-33 folds increase in the production of DNJ through media improvement and mutagenic
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treatments (ultraviolet irradiation and N-methyl-N’-nitro-N-nitrosoguanidine treatment). Furthermore,
to develop tea with higher DN]J content, Vichasilp et al. studied 35 Thai mulberry varieties to explore
the content distribution and «-glucosidase inhibitory activity of DNJ [6]. DNJ content among various
mulberry varieties ranged between 30 and 170 mg/100 g of dry leaves. They found that the mulberry
shoots contained the highest contents of DNJ (300 mg of DNJ/100 g of dry shoot), followed by
young mulberry leaves. Mature leaves of mulberry contained the least contents DNJ [6]. Thus, the
shoot is the most suitable part of mulberry tree for the preparation of biological effective tea for
the suppression of postprandial blood glucose. A current study has stated the use of a statistical
procedure, response surface methodology (RSM), for the optimization of extraction efficiency of DNJ.
The optimum extraction conditions at which DN]J yield was maximum (256 mg of DN]J per 100 g of
dry mulberry leaves) is given here: ethanol concentration of 55%, extraction temperature of 80 °C,
extraction time of 1.2 h and ratio of solvent to sample of 12:1. For efficient separation of DNJ from
other components in mulberry leaves extracts, a column packed with a selected 732 resin was used.
The recovery and purity of DNJ in the end product were >90% and >15%, respectively [62]. Jiang et al.
stated that fermentation of mulberry leaf by Ganoderma lucidum produced the highest DN]J content [52].
The optimal condition for mulberry fermentation, obtained from RSM, was the following: pH 6.97,
potassium nitrate content 0.81%, and inoculums volume 2 mL. The recovery of DNJ in the end product
was 2.74 fold of those in mulberry leaf [52]. Another study described the use of Ultrasound-assisted
extraction technique for mulberry DNJ extraction. The extraction efficiency and productivity of DNJ in
the end product were 98% and 20%, respectively [63].

2.3. Quantitation of DNJ

It is difficult to quantify DN]J using ultraviolet or fluorescence detector because 1-deoxynojirimycin
is a polar compound lacking a chromophore. Moreover, it is not retained or quantified by generally
used reverse-phase chromatography columns. Instead, DNJ is partially retained or quantified
using ligand-exchange and aminopropyl columns [10]. However, many other methods have been
developed for quantifying DNJ. For example, hydrophilic interaction liquid chromatographic (HILIC)
method using an evaporative light-scattering detector (ELSD) has been developed for determining
water-soluble compounds such as DNJ [11]. The HILIC column has shown considerable retention
potential of hydrophilic compounds; rather the compounds containing amino groups, the iminosugars
such as DNJ, have exhibited good retention in HILIC-ELSD system [64]. Another study has
reported the use of 9-fluorenylmethoxycarbonyl chloride for determining DNJ using reverse-phase
high-performance liquid chromatography (HPLC) coupled with a fluorescence detector. This method
works on the basis of secondary amino groups in DNJ [65]. Besides, many other methods, including
HPLC-MS/MS [66], HILIC-MS/MS [67], and high-performance anion-exchange chromatography
using pulsed amperometric detector (HPAEC-PAD) [12], have been developed for determining DNJ
concentration. Using HPLC-MS/MS, Nuengchamnong et al. reported the isolation of DNJ from the
mulberry leaf extract on a TSK gel Amide-80 column using a mobile phase mixture of 0.1% formic acid
and acetonitrile. The limits of detection and quantitation were 100 pg and 75 pg, respectively [66].

Since DNJ molecule does not contain chromophore, the quantification of DNJ through spectral
analysis needs derivatization, i.e., an analytical approach for quantification of nitrogen-containing
compounds [13-16]. To quantify and resolve structural information of DNJ by GC-MS, Bajpai and Rao
used trimethylsilyl (TMS) derivatization [7]. The disadvantage of this derivatization is the requirement
of water removal from samples for silylation [7,65,67]. Another study has reported the derivatization of
mulberry sample by using 9-fluorenylmethyl chloroformate, which reacts with primary and secondary
amines under mild conditions producing DNJ derivatives. However, the reaction of 9-fluorenylmethyl
chloroformate with tertiary amines requires dealkylation [68,69].

Mulberry-based food products are difficult to be labeled with DN]J contents since the quantification
of DNJ through spectral analysis needs derivatization; in order to tackle this problem, HPAEC-PAD
method was found useful. The HPAEC-PAD method was coupled with CarboPac MA1 column
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and sodium hydroxide gradient. As compared to high-performance liquid chromatography (HPLC),
HPAEC-PAD was found to be more selective, simple, rapid, and sensitive method of DNJ analysis
in mulberry-based food products in terms of good resolution (no interference of DNJ with other
contents), simple sample preparation (water extract of mulberry tea sample), and time-consumption
(retention time as low as 7.26 min), and sensitivity (limit of detection as low as 5 ng). This method was
also found equally effective for mulberry-based products sterilized by heat treatment [7]. Moreover,
most of the reported reversed-phase high performance liquid chromatography (HPLC) methods for
DN]J determination based on pre-column derivatization involved the use of fluorescence detector,
C 18 column, acetonitrile: 0.1% acetic acid (50:50, v/v) as mobile phase with a flow rate of 1.0 mL-min~!,
and excitation and emission wavelengths 254 nm and 322 nm, respectively [7,53,70].

2.4. Chemistry

Polyhydroxylated piperidines and their derivatives are famous for their excellent bioactivities [1].
The iminosugars contain an analog of pyranose ring or D-glucose, in which the ring oxygen atom is
replaced by a nitrogen atom. 1-Deoxyiminosugars are chemically more stable than normal iminosugars
because of absence of a hydroxyl group at the C1 position. Among the iminosugars, naturally
occurring 1-deoxyiminosugars such as DNJ are strong glycosidase inhibitors [2]. Originally, reduction
of nojirimycin led to the chemical synthesis of DNJ [3]; afterward, DNJ was found from natural source,
i.e.,, mulberry tree root [4]. These iminosugars, also known as azasugars, have attracted great attention
of chemists and pharmacologists. Chemists have synthesized various DNJ derivatives, for instance
N-hydroxyethyl-DN]J 7 (Miglitol) and N-butyl-DN]J 8 (Zavesca). Both are FDA approved drugs for
non-insulin-dependent diabetes [5].

2.5. Oral Pharmacokinetic of 1-Deoxynojirimycin

The pharmacokinetic of DN]J after oral administration has been studies by some researchers [17-19].
It has been reported that there is a proportional increase in plasma DNJ level with increase in
mulberry derived DN]J dose (1.1, 11, and 110 mg/kg of body weight), a dose-dependent phenomenon.
An improved bioavailability was observed by pure DN]J versus the mulberry leaf extract administered
to rats. It has been narrated that the plasma levels of mulberry derived DNJ after single oral
administration (110 mg/kg of body weight) rapidly inclined reaching to a maximum level of 15 pg/mL,
followed by quick decline in its level due to its rapid excretion from the body with a Tmax (time
to reach maximum plasma drug concentration) value of 30 min [17,18]. On the other hand, the
Tmax values of acarbose and miglitol were 1.27 h and 2.5 h, respectively [19,71]. It indicates that
absorption and excretion of DNJ] is faster than both acarbose and miglitol, which elaborates prolonged
therapeutic effect of both acarbose and miglitol as compared to that of pure DNJ. The difference
in absorption of acarbose, miglitol, and DNJ may be owing to their slight structural differences.
The ethanol hydroxyl group of miglitol may modify the lipo-hydro partition coefficient. It leads to its
reduced affinity for glucosyltransferase and glucose transporter, resulting in the slower absorption
rate of miglitol as compared to that of DNJ. This information paved the path to development of
a hypothesis, i.e., the formulation adjuvant may slow down the absorption rate of DNJ resulting
in the improved postprandial hypoglycemic activity in vivo. In 2012, Wang et al. studied the
influence of carboxymethylcellulose sodium (CMCNa) as an adjuvant on the absorption rate of
DNJ. The results revealed that the absorption rate of DNJ decreased when DNJ and CMCNa were
concomitantly ingested to rats through oral route. This change in pharmacokinetics of DNJ leads to an
improved antihyperglycemic effect. Conclusively, CMCNa was found to be involved in modifying
pharmacokinetics and pharmacodynamics of DNJ in rats [72]. In another pharmacokinetic study of
DNJ, Xu et al. (2012) calculated the values of various pharmacokinetic parameters including area
under plasma drug concentration curve (AUC), maximum plasma drug concentration (Cmax), Tmax,
and K, and found values were as here: 19.22 + 1.37 mg-h/L, 12.98 + 1.92 mg/L, 0.50 £+ 0.10 h,
and 4.85 + 0.95 h1, respectively. Moreover, DNJ is not metabolized in the rat plasma after oral
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administration [17]. Faber et al. have studied the distribution and elimination of DNJ in the rat after
intravenous administration. Plasma protein binding of DNJ was very low. DNJ disappeared from
plasma in two phases, with an initial and terminal half life of 3 min and 51 min, respectively. Major
mode of DNJ elimination is the renal excretion. DNJ does not undergo tubular reabsorption. Bile and
feces also contains some percentage of DNJ dose [73].

2.6. Biological Activities

1-Deoxynojirimycin has many biological activities, including antihyperglycemic [20-25],
anti-obesity [26-30], and anti-viral [31] have also been reported [31-35]. (Table 1)

Table 1. Biological activities of 1-Deoxynojirimycin.

No. Biological Activity Reference
1 Antihyperglycemic [20-25]
2 Anti-viral [26-30]
3 Anti-obesity [31-35]

2.7. Antihyperglycemic Activity

Our diet consists of various essential components including the carbohydrates, for example
sucrose, maltose, and starch. During the process of digestion, these are complex molecules, which
undergo reactions under the effect of various enzymes [74]. For example, the pancreatic x-amylase
plays key role in the conversion of starch into its oligosaccharides including maltose, isomaltose,
maltotriose, and «-dextrins in duodenum and jejunum. Further, digestion of these hydrolytic products
of starch into the monosaccharides is needed for their intestinal absorption [75]. This conversion is
principally modulated by «-glucosidase enzymes, present in the brush-border membrane of the small
intestine. Two important enzyme of this family are malto-glucoamylase and sucrose-isomaltase. These
enzymes modulate the cleavage of «-1,4 linkages in oligosaccharides and «-1,6 linkages in x-dextrins,
respectively [76]. D-glucose, the main product of the o-glucosidase-mediated hydrolysis, can be
actively delivered across the mucosal membrane by glucosyltransferase and glucose transporter [77],
leading to elevated level of blood glucose. Glucose transport across the intestinal membrane can
be hindered by using «-glucosidase inhibitors, which can competitively bind to the catalytic site of
a-glucosidase [78]. The important examples of x-glucosidase inhibitors are acarbose, miglitol, and
DNJ; the former possess potential to bind to x-amylase, while x-glucosidase is a promising target
site of the later two compounds [79-81]. The mode of action of DNJ involves the suppression of
intestinal o-1,4-glucosidase as well as «-1,6-glucosidase of hepatic glycogen-debranching enzymes
leading to the reduced rate of oligosaccharide breakdown [81]. The antihyperglycemic activity
of DNJ has widely been studied [57]. DNJ is capable of binding to and inhibiting «-glycosidase
and glucoamylase [22-25], leading to decrease in hepatic glucose metabolism and postprandial
hyperglycemia [71]. Mechanistically, DNJ induces the inhibition of intestinal glucose absorption
by diminishing the expression of proteins engaged in the transepithelial glucose transport (Figure 4).
Moreover, the down-regulation of intestinal SGLT1, Na*/K*-ATP and GLUT2 mRNA and protein
expression is also provoked by DNJ [82]. The anti-hyperglycemic effect of DNJ is evident from another
study that DNJ plays a significant role in improving the insulin sensitivity through the activation of
insulin signaling PI3K/AKT pathway in skeletal muscle of hyperglycemic model mice [53].

Adiponectin and its receptors in differentiated 3T3-L1 adipocytes have been found to be effective
in reducing blood glucose levels and improving insulin sensitivity. In this view, there is an enhancement
effect of DNJ (0.5 uM) on following parameters: (i) the levels of adiponectin and its receptors
(AdipoR1 and AdipoR2) in differentiated 3T3-L1 adipocytes; (ii) phosphorylation of 5" adenosine
monophosphate-activated protein kinase (AMPK); (iii) mRNA expression of glucose transporter 4
(GLUT4); and (iv) an excellent enhancement in glucose uptake into the adipocytes [83]. Consequently,
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strong anti-hyperglycemic effects of DNJ may be attained by large quantity of GLUT4 protein in the
plasma membrane due to the enhanced transcript levels of the GLUT4 gene and the activation of
AMPK. Thus, DNJ can be used to prevent or treat hyperglycemia.

Maltose Sucrose
o0 oo
DNJ
.

<= Alpha- =
glucosidase

Glucose Glucose  Glucose

" Fructose

Small intestine
- brush border

Figure 4. Supposed mode of DN]J action in the digestive tract.

2.8. Anti-Obesity Activity

The lipoprotein lipase-mediated conversion of serum VLDL (Very low density lipoprotein,
known as very bad cholesterol) to LDL (low density lipoprotein) at a rate lower than normal leads
to hypertriglyceridemia, the elevated VLDL level [84], which is a risk factor for arteriosclerosis.
Arteriosclerosis is a side effect of lipid oxidation, while VLDL is more prone to oxidation.
The hypertriglyceridemia can be prevented by mediating the continuous conversion of serum VLDL
to LDL at normal rate. In an attempt to explore the effect of DNJ on TG level, DNJ-rich mulberry
leaf extract (12 mg) was given to nine human subjects three times daily before meals over a period of
12 weeks. On Day 12, an elevated level of LDL but reduced contents of VLDL was observed [32]. It can
be recommended that use of DNJ-rich mulberry leaf extract may be valuable by improving plasma
lipoprotein profile.

Many tissues and organs in human body play a crucial role in maintaining normal metabolic
balance. The metabolic imbalance can result in metabolic disorders, such as diabetes and obesity [85].
Adipose tissue is a loose connective tissue made majorly of adipocytes, which are originated from
preadipocytes through a process known as adipogenesis. Adipose tissue not only acts a store-house
for lipids, but also behaves as a major endocrine organ. This glandular organ produces hormones
such as leptin, estrogen, and resistin. In short, adipose tissue is involved in metabolic regulation and
prevention of harmful lipid accumulation in body [86]. It has been documented that DNJ prevents
diet-provoked obesity via activation of 3-oxidation system and augmented adiponectin levels, which
inhibited lipid buildup in the liver and suppressed plasma triacylglycerol level [47]. Another study has
stated that mulberry leaf ethanol extract (MLEE) treatment exerts anti-obesity through anti-adipogenic
action in differentiated adipocytes [87]. From another study based on adipogenesis, it has been noted
that 4 pM DNJ significantly suppresses adipogenesis. The possible mode of adipogenesis suppression
by DNJ is extracellular regulated protein kinases 1/2/Peroxisome proliferator-activated receptor
signaling pathway in the adipocytes [33]. Another study has reported the anti-obesity feature of DNJ.
The investigators studied the influence of Bacillus subtilis-based DNJ on hepatic lipid metabolism and
mitochondrial status of model mice (C57BL/6 mice) fed a fat-rich diet for twelve weeks. By Week 12,
control (group of mice that received neither fat-rich diet nor DNJ) and DN]J (group of mice that received
DNJ in addition to fat-rich diet) group mice did not show weight gain, unlike the HF group (group
of mice that received fat-rich diet only), which showed significant weight gain. The hepatic C/EBPx
and CD36 mRNA of the HF group also was highly expressed as compared to that of the control and
DNJ group, which showed, on the other hand, the higher expression of hepatic p-AMPK/AMPK
and PGC-13 mRNA [31]. These results give explanation for the proposed use of DNJ as a dietary
supplement to avoid obesity and its consequences.
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2.9. Anti-Viral Activity

The antiviral activity of DNJ has also been studied. There are several studies that describe
the mode of action of DNJ against HIV [88-92]. One of the studies has reported that DNJ inhibits
the spread of human immunodeficiency virus (HIV). They conducted this study virus-associated
oligomeric Env [30]. Later on, the activity of silkworm extract and one of its purified constituents,
DNJ, was compared against bovine viral diarrhea virus (BVDV), GB virus-B (GBV-B), woodchuck
hepatitis virus (WHYV), and hepatitis B virus (HBV). Against all these viruses, the effectiveness of
the silkworm extract was significantly greater than that of purified DNJ. It can be assumed that
five constituent iminosugars present in the silkworm extract contribute to the antiviral effect in a
synergistic manner [93]. Additionally, Kang et al. studied the influence of DNJ (in a concentration
of 10 mM DNJ) on the replication of Baculoviruses, Bombyx Mori Nucleopolyhedrovirus (BmNPV)
and Autographa Californica Multiple Nucleopolyhedrovirus (AcMNPV). The results revealed that there
was no effect of DNJ on the replication of Baculoviruses and BmNPV. However, the replication of
AcMNPV was suppressed by 67%, this suppresses replication of AcMNPV was attributed to the higher
sensitivity of a-glucosidase activity to DNJ [94]. It can be suggested that use of DNJ may be useful
against viral infections, however further studies should be conducted to obtain benefit from this
valuable phytochemical.

2.10. In Silico Target Fishing

After compiling all above data, we used PASS Prediction (Prediction of Activity Spectra for
Substances) software to predict various types of biological activity potential of a small organic molecule
on the basis of its structure, particularly before their chemical synthesis and biological analysis.
The data required for predicting through PASS is “SMILES” or a structural formula of the compound
in MOLfile format. Through this search tool, 44 possible activities of DNJ with a probability of
Pa > 0.7 (probability to be active) were found (Table 2). It clearly indicates that DNJ can be used as
anti-diabetic drug.

Subsequently, to narrow down the target search, we used STITCH for in silico target fishing in
order to identify protein targets of DNJ as well as to predict the possible interactions of DNJ with
other chemicals and proteins. STITCH, a database of protein interactions, integrates many sources of
information, i.e., text mining, experimental evidences, and other databases including STRING. Targets
with a confidence score > 0.7 were opted for construction of protein interaction network. Predicted DN]J
targets and the probabilistic confidence score are presented in Table 3. The protein network of DN]J is
shown Figure 5. In this confidence view, stronger interactions are represented by thicker lines (since all
lines are thick, all the interactions are strong). Protein—protein interacting couples are CALR-GANAB,
MGAM-GAA, MGAM-GLA, and GLA-GAA. Chemical (DNG)—-protein associations are found
between following couples: DNJ-CALR, DNJ-GANAB, DNJ-MGAM, DNJ-GLA, and DNJ-GAA.

GAA GLA

1-deoxynojirim
MGANM

GANAB

-

Figure 5. The protein network of DNJ. The proteins and their relationships are represented by the
nodes and edges.
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Table 2. List of activities with a probability at Pa > 0.7 (probability to be active).

No. Pa Activity No. Pa Activity
1 0.953 Phosphatidylcholine-sterol O-acyltransferase inhibitor 23 0.829 CDP-glycerol glycerophosphotransferase inhibitor
2 0.937 Glucan 1,3-B-glucosidase inhibitor 24 0.802 B-glucosidase inhibitor
3 0.924 L-iduronidase inhibitor 25 0.801 Fucosterol-epoxide lyase inhibitor
4 0.916 Mannosyl-oligosaccharide 1,2-ax-mannosidase inhibitor 26 0.792 Ceramide glucosyltransferase inhibitor
5 0.905 Glycosylceramidase inhibitor 27 0.798 Glucan endo-1,6-p-glucosidase inhibitor
6 0.903 Oligo-1,6-glucosidase inhibitor 28 0.783 Mucinaminylserine mucinaminidase inhibitor
7 0.886 Sucrose o-glucosidase inhibitor 29 0.776 Fructan B-fructosidase inhibitor
8 0.880 Mannosidase inhibitor 30 0.773 Manganese peroxidase inhibitor
9 0.879 Glucan 1,3-x-glucosidase inhibitor 31 0.784 Alkenylglycerophosphocholine hydrolase inhibitor
10 0.880 -mannosidase inhibitor 32 0.788 Testosterone 173-dehydrogenase (NADP+) inhibitor
11 0.869 Sugar-phosphatase inhibitor 33 0.750 -glucosidase inhibitor
12 0.856 a-mannosidase inhibitor 34 0.753 Glucan 1,4-a-maltotriohydrolase inhibitor
13 0.850 Mannosyl-oligosaccharide glucosidase inhibitor 35 0.755 Ribulose-phosphate 3-epimerase inhibitor
14 0.853 Nicotinic «6B3B4a5 receptor antagonist 36 0.741 a-glucosidase inhibitor
15 0.842 Amylo-«-1,6-glucosidase inhibitor 37 0.756 Benzoate-CoA ligase inhibitor
16 0.838 UDP-N-acetylglucosamine 4-epimerase inhibitor 38 0.730 Glucan 1,4-o-glucosidase inhibitor
17 0.833 a-L-fucosidase inhibitor 39 0.727 o, «-trehalose phosphorylase inhibitor
18 0.828 Exoribonuclease II inhibitor 40 0.721 Endo-1,3(4)-B-glucanase inhibitor
19 0.827 Nicotinic 232 receptor antagonist 41 0.708 Nucleoside oxidase (H,O,-forming) inhibitor
20 0.829 Glutamate-5-semialdehyde dehydrogenase inhibitor 42 0.717 Acylcarnitine hydrolase inhibitor
21 0.812 Interleukin 4 antagonist 43 0.704 Mannotetraose 2-a-N-acetylglucosaminyl transferase inhibitor
22 0.808 3-galactosidase inhibitor 44 0.723 Membrane integrity agonist
Table 3. Predicted DNJ targets.
Node Color Abbreviations Protein Targets UniProt ID Score
GLA Galactosidase, « (429 aa) P10253 0.921
a& Glucosidase, «; neutral AB; Cleaves sequentially the 2 innermost «-1,3-linked glucose residues from
- GANAB the Gle(2)Man(9)GIcNAc(2) oligosaccharide precursor of immature glycoproteins (966 aa) Q14697 0.854
Calreticulin; Molecular calcium binding chaperone promoting folding, oligomeric assembly and
CALR quality control in the ER via the calreticulin/calnexin cycle. This lectin interacts transiently with P27797 0.843

almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Interacts with the
DNA-binding domain of NR3C1 and mediates its nuclear export (417 aa)

Maltase-glucoamylase (x-glucosidase); May serve as an alternate pathway for starch digestion when
@ MGAM luminal o-amylase activity is reduced because of immaturity or malnutrition. May play a unique role 043451 0.833
in the digestion of malted dietary oligosaccharides used in food manufacturing (1857 aa)

L GAA Glucosidase, «; acid; Essential for the degradation of glygogen to glucose in lysosomes (952 aa) P06280 0.833
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3. Conclusions

1-Deoxynojirimycin is biologically active with promising health effects. Its sources include
mulberry leaves, Commelina communis (dayflower), and several bacterial strains such as Bacillus and
Streptomyces species. Moreover, DNJ concentration is found to be different in different parts of
mulberry tree. DNJ constitutes only 0.11% (w/w) of mulberry leaf. 1-Deoxynojirimycin possesses
antihyperglycemic, anti-obesity, and antiviral features. Most importantly, pre-meal intake of DNJ
in therapeutic concentration has resulted in the inhibition of postprandial hyperglycemia and
hyperinsulinemia. Thus, DNJ seems to be a potential treatment for checking or setting back the
inception of diabetes. No study is reported on toxicity of DNJ despite its long term use. Additional
safety assessment on the pharmacokinetics, i.e., absorption, distribution, metabolism, and excretion of
DN]J is needed prior to be utilized as a useful food. In silico target fishing has depicted 44 potential
targets of DNJ in addition to x-glycosidase. However, further in silico and experimental validation is
required to verify these findings, which may open new doors for drug development. In this regard,
docking studies will first be carried in future to explore the binding mechanism of DNJ with these
enzymes to elucidate the possible orientation and strength of binding affinity between DNG and
recently identified target proteins. Following docking, MD simulation will be carried out to gain
insight into the structural dynamics and stability of DNG in complex with these proteins.
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