Supplementary Materials: The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

Bo Mi Kim

1: Tr6-SEtOH $(m / z 676.1)$ 2: TR6-SEtOH $(m / z 676.1)$ 3: Tr6-OEtSH $(m / z 676.1)$ which was confirmed by direct synthesis 4: TR6-OEtSH $(m / z 676.1)$ 5: S-S dimer of TR6-HET (m / z 1349.9). The CF3CO-adducted positions from TIGGIR-HET were not confirmed but we assumed 6 as $\operatorname{Tr}\left(\mathrm{COCF}_{3}\right) 6-\mathrm{HET}(\mathrm{m} / \mathrm{z} 818.1), 7$ as $\operatorname{Tr}\left(\mathrm{COCF}_{3}\right) 6-\mathrm{HET}(\mathrm{m} / \mathrm{z} 818.1), 8$ as $\left(\mathrm{CF}_{3} \mathrm{CO}\right) \operatorname{Tr} 6-\mathrm{HET}(\mathrm{m} / \mathrm{z} 818.1)$, and 9 as ($\mathrm{CF}_{3} \mathrm{CO}$)TR6-HET ($\mathrm{m} / \mathrm{z} 818.1$).

Figure S1. The product profile of TR6-OEtSH in TFA at $0 \mathrm{~h}, 2 \mathrm{~h}$ and 14 h .

1: Tr6-SEtOH (m / z 676.1) 2: TR6-SEtOH (m / z 676.1) 3: Tr6-OEtSH ($\mathrm{m} / \mathrm{z} 676.1$) which was confirmed by direct synthesis 4: TR6-OEtSH (m / z 676.1) 7: Tr6-TC (m / z 722.1) The $\mathrm{CF}_{3} \mathrm{CO}$-adducted positions from TIGGIR-HET were not confirmed but we assumed 5 as $\operatorname{Tr} 6-\mathrm{OEtS}^{-C O C F_{3}}(\mathrm{~m} / \mathrm{z} 818.1), 6$ as TR6-OEtS-COCF $3(\mathrm{~m} / \mathrm{z} 818.1), 8$ as $\operatorname{Tr}\left(\mathrm{COCF}_{3}\right) 6-\mathrm{HET}(\mathrm{m} / \mathrm{z} 818.1)$, 9 as $\operatorname{Tr}\left(\mathrm{COCF}_{3}\right) 6$-HET ($\mathrm{m} / \mathrm{z} 818.1$), 10 as ($\mathrm{CF}_{3} \mathrm{CO}$) Tr6-HET ($\mathrm{m} / \mathrm{z} 818.1$), and $\mathbf{1 1}$ as (CF3CO)TR6-HET ($\mathrm{m} / \mathrm{z} 818.1$). The TR6-TC was not detected because of interference of a $\mathrm{CF}_{3} \mathrm{CO}$-adducted product.

Figure S2. The product profile of TR6-OEtSH in 5% TfOH-TFA at $0 \mathrm{~h}, 2 \mathrm{~h}$ and 71 h .

1, 2: Tr6-OH \& TR6-OH (m / z 616.4) 3: Tr6-SEtOH $(\mathrm{m} / \mathrm{z}$ 676.4) 4: TR6-SEtOH $(\mathrm{m} / \mathrm{z} 676.4)$ 5: Tr6-OEtSH $(\mathrm{m} / \mathrm{z}$ 676.4) which was confirmed by direct synthesis 6: TR6-OEtSH (m / z 676.4) 7: Tr6-TC ($\mathrm{m} / \mathrm{z} 722.4$) 8: TR6-TC ($\mathrm{m} / \mathrm{z} 722.4$); 9: $\operatorname{Tr}(\mathrm{EtSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 782.4)$ 10: $\operatorname{TR}(\mathrm{EtSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 782.4)$ The $\mathrm{CF}_{3} \mathrm{CO}$-adducted positions of TIGGIR-TC were not confirmed but we assumed 11 as ($\mathrm{CF}_{3} \mathrm{CO}$) Tr6-TC ($\mathrm{m} / \mathrm{z} 818.4$), $\mathbf{1 2}$ as ($\mathrm{CF}_{3} \mathrm{CO}$) TR6-TC $(\mathrm{m} / \mathrm{z} 818.4)$, 13 as (CF3CO) $\operatorname{Tr}(\mathrm{EtSH}) 6-\mathrm{TC}(m / z 878.4)$, 14 as (CF3CO)TR(EtSH)6-TC ($m / z 878.4$).

Figure S3. The product profile of TR6-OEtSH in $0.1 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}, 0.25 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}$ and $0.5 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}$ at $0 \mathrm{~h}, 5 \mathrm{~min}$ and 2 h .

TR6-OPrSH

0.1\% TfOH

5\% thiocresol-TFA

0.25% TfOH
5\% thiocresol-TFA

0.5\% TfOH

5\% thiocresol-TFA

1: TR6-OPrSH (m / z 690.3) 2: $\operatorname{Tr6-TC}(m / z 722.4)$ 3: TR6-TC $(m / z 722.4)$ 4: $\operatorname{Tr}(\operatorname{PrSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 796.3)$ 5: $\operatorname{TR}(\operatorname{PrSH}) 6-\mathrm{TC}$ ($\mathrm{m} / \mathrm{z} 796.3$) The $\mathrm{CF}_{3} \mathrm{CO}$-adduct position of TIGGIR-TC was not confirmed but we assumed 6 as (CF3CO) TR6-TC (m / z 818.3). 7: unknown (m / z 1016.4)

Figure S4. The product profile of TR6-OPrSH in $0.1 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}, 0.25 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}$ and $0.5 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}$ at 0 h and 4 h

1, 2: $\operatorname{Tr} 6-\mathrm{OH} \& \operatorname{TR6} 6 \mathrm{OH}(\mathrm{m} / \mathrm{z} 616.4)$ 3: $\operatorname{Tr} 6-\mathrm{SEtOH}(\mathrm{m} / z 676.4)$ 4: TR6-SEtOH $(\mathrm{m} / \mathrm{z} 676.5)$ 5: Tr6-OEtSH $(\mathrm{m} / z 676.4) 6$ 6: TR6-OEtSH (m / z 676.5) 7: (CF3CO)Tr6-OH ($\mathrm{m} / \mathrm{z} 712.4$) 8: $\operatorname{Tr6-TC~(~} \mathrm{m} / \mathrm{z} 722.4$) 9: TR6-TC ($\mathrm{m} / \mathrm{z} 722.5$) 10: $\operatorname{Tr}(\mathrm{EtSH}) 6-\mathrm{TC}$ ($\mathrm{m} / \mathrm{z} 782.5$) 11: $\mathrm{TR}(\mathrm{EtSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 782.4)$ The $\mathrm{CF}_{3} \mathrm{CO}$-adducted positions of TIGGIR-TC were not confirmed but we assumed 12 as ($\mathrm{CF}_{3} \mathrm{CO}$) Tr6-TC $(\mathrm{m} / \mathrm{z} 818.4)$, $\mathbf{1 3}$ as ($\mathrm{CF}_{3} \mathrm{CO}$)TR6-TC $(\mathrm{m} / \mathrm{z} 818.4)$, $\mathbf{1 4}$ as $\left(\mathrm{CF}_{3} \mathrm{CO}\right) \operatorname{Tr}(\mathrm{EtSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 878.6), \mathbf{1 5}$ as $\left(\mathrm{CF}_{3} \mathrm{CO}\right) \mathrm{TR}(\mathrm{EtSH}) 6-\mathrm{TC}(\mathrm{m} / \mathrm{z} 878.4)$.

Figure S5. The product profile of Tr6-OEtSH in $0.5 \% \mathrm{TfOH}-5 \% \mathrm{TC}-\mathrm{TFA}$ at $0 \mathrm{~h}, 5 \mathrm{~min}$, and 2 h .

Table S1. The product profile of TIGGIR-HET and TIGGIR-HPT in $\mathbf{X} \%$ TfOH-5\%TC-TFA.

TIGGIR-OEtSH (TR6-HET)								
$\begin{aligned} & \text { X (\%) } \\ & \text { (TfOH) } \end{aligned}$	Work-Up Time (h)	Remaining Starting (\%) ${ }^{\text {b }}$	$\begin{aligned} & \text { TR6- \& } \\ & \text { Tr6-TC (\%) } \end{aligned}$	TR6-TC Ratio (l/d)	$\begin{aligned} & \text { TR6- \& } \\ & \text { Tr6-TC+60 (\%) } \end{aligned}$	TR6-TC+60 Ratio (l/d)	before 22 min $(\%) \text { d }$	after 34 min $(\%)^{\mathrm{d}}$
0.05	2	4.1	42.0	1.4	22.1	1.3	6.4	23.4
0.10	2	-	49.3	1.5	25.9	1.6	4.1	20.8
0.20	2	-	52.2	1.5	26.6	1.7	5.3	14.4
0.30	2	-	52.1	1.5	27.1	1.8	5.8	13.7
0.40	2	-	52.2	1.7	27.4	1.9	5.4	13.4
0.50	2	-	49.1	1.7	29.7	2.0	6.8	13.0
$1.00{ }^{\text {a }}$	2	-	39.3	1.9	28.6	2.2	9.4	13.5
$1.50{ }^{\text {a }}$	2	-	33.2	2.0	29.5	2.3	14.5	10.4
TIGGIR-OPrSH (TR6-HPT)								
$\begin{aligned} & \hline \text { X (\%) } \\ & \text { (TfOH) } \end{aligned}$	Work-Up Time (h)	Remaining Starting (\%) ${ }^{\text {b }}$	$\begin{aligned} & \hline \text { TR6- \& } \\ & \text { Tr6-TC (\%) } \end{aligned}$	TR6-TC Ratio (l/d)	$\begin{aligned} & \text { TR6- \& } \\ & \text { Tr6-TC+74 (\%) } \end{aligned}$	TR6-TC+74 Ratio (l/d)	before 22 min $(\%) \text { d }$	after 34 min $(\%) \mathrm{d}$
0.13	10.3	4.6	60.6	6.9	6.2	4.2	0.9	25.4
0.28	7.2	3.8	59.9	9.9	5.8	4.8	0.2	28.1
0.33	6	6.9	57.7	10.3	5.8	6.3	0.4	25.6
0.55	4	6.6	59.9	12.9	6.5	12.0	0.6	24.0
$1.00{ }^{\text {a }}$	4	9.9	56.3	15.2	6.6	17.3	1.2	17.2

[^0]| Peptide Sequence | Retention Time
 $(\mathbf{m i n})^{*}$ | Expected Mass
 $(\boldsymbol{m} / \boldsymbol{z})$ | Observed Mass
 $(\boldsymbol{m} / \boldsymbol{z})$ |
| :--- | :---: | :---: | :---: |
| TIGGIR-OEt-SH (TR6-HET, Scheme 2, 1) | 22.1 | 675.7 | 676.3 |
| TIGGIr-OEt-SH (Tr6-HET, SI Figure 6, 5) | 20.7 | 675.7 | 676.4 |
| TIGGIR-thiocresol (TR6-TC, Scheme2, 6) | 28.5 | 721.8 | 722.4 |
| TIGGIr-thiocresol (Tr6-TC, Figure 2A, 4) | 27.1 | 721.8 | 722.3 |
| TIGGIr(CH2CH2SH)-thiocresol (Figure 2A, 6) | 30.9 | 781.9 | 782.5 |
| TIGGIR(CH2CH2SH)-thiocresol (Scheme 2, 8) | 32.1 | 781.9 | 782.4 |
| TIGGIR-OPr-SH (TR6-HPT, Figure 2B, 8) | 23.3 | 689.7 | 690.8 |
| TIGGIr(CH2CH2CH2SH)-thiocresol (Figure 2B, 9) | 32.3 | 795.9 | 796.8 |
| TIGGIR(CH2CH2CH2SH)-thiocresol (Figure 2B, 10) | 33.4 | 795.9 | 796.8 |

[^1]

Mass Spectrum of Tr6-TC

Purified HPLC of TIGGIR-TC (TR6-TC) after the TR6-OEtSH reaction

Mass Spectrum of TR6-TC

Purified HPLC of TIGGIr(EtSH)-TC [Tr(EtSH)6-TC] after the TR6-OEtSH reaction

Mass Spectrum of $\operatorname{Tr}(E t S H) 6-T C$

Mass Spectrum of TR(EtSH)6-TC

Mass Spectrum of Tr6-TC
$\mathrm{mAU}(\times 1,000)$

Mass Spectrum of $\operatorname{Tr}(\operatorname{PrSH}) 6-\mathrm{TC}$

Mass Spectrum of TR(PrSH)6-TC

[^0]: ${ }^{\mathrm{a}}$ small portions ($5 \%-15 \%$) of the total amount were decreased in comparison of those of the lower TfOHs. ${ }^{\mathrm{b}}$ a relative percentage from the starting material, c isolated yield, ${ }^{\mathrm{d}}$ a relative percentage of total integration.

[^1]: ${ }^{*}$ HPLC condition: 2% buffer B to 100% buffer B at 40 min (buffer A : $\mathrm{H}_{2} \mathrm{O}$ with 0.05% TFA, buffer B: $60 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ with 0.045% TFA).

