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Abstract: Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones
are important compounds in bioactive natural products and industry, including pharmaceuticals.
Development of a mechanochemical method using potassium allyltrifluoroborate salt and water,
to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for
the first time. By controlling the grinding parameters, the methodology can be selective, namely,
very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts,
the reactions with ketones can become practically quantitative. The catalyzed reactions can also
be performed under mild aqueous stirring conditions. Considering the allylation agent and its
by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of
the green chemistry principles.
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1. Introduction

Allylations of carbonyl compounds are important synthetic tools because they form homoallylic
alcohols that are fundamental building blocks for many natural products, including bioactive
molecules as well as pharmaceuticals [1–3]. Therefore, many methods using different allylation agents,
reaction media and activation process have been and are still being developed or improved for these
transformations [1–9]. For instance, allyl-stannanes, -silanes, and -boranes are some of the allylation
agents being explored [1–7,10–13] as well as Barbier-type allylation using different metals, e.g., Zn,
In, Sn, Mn, Sb, Mg, Bi, and Al [9]. In addition, distinct activation or mediated processes have been
employed, such as ultrasound [14,15], microwave [16–19], mechanochemistry [20,21], heterogeneous
catalysts [22–26], and phase transfer [27,28], as well as green media (water) and even solvent-free
processes [29–31]. Most of the recent developments attempt to target less reactive carbonyl compounds
such as ketones, and are steered toward greener processes, especially by reducing or eliminating
hazardous by-products, (halide) solvents, expensive and demanding separation processes, and by
employing greener and cheaper catalysts [4–6]. Mechanochemical methods are solid state processes
that employ mechanical energy to induce chemical reactions and transition phase changes [32–34].
Thus, they have great potential to provide greener processes [35] and have already been employed
in the allylations of aldehydes by allyltributylstannane catalyzed by phosphotungstic acid under
solvent-free conditions upon grinding with a pestle in a mortar [20] and in the Barbier-type allylations
of aromatic carbonyl compounds by allyl halide mediated by bismuth under solvent-free conditions
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upon milling with stainless steel balls in a stainless steel vial [20]. We report now the mechanochemical
allylation of aromatic and aliphatic carbonyl compounds by potassium allyltrifluoroborate, which is a
greener agent because it generates inert, nontoxic, water soluble salts that are easily removed from
the reaction medium. It is noteworthy that this method employs water as liquid assisted grinding
(LAG) or as solvent and its selectivity for aldehydes in the presence of ketones can be controlled by the
grinding parameters. This methodology can be improved by using lanthanide catalysts that is able
to perform allylation of ketones almost quantitatively. This makes this methodology quite efficient,
versatile, selective and green.

2. Results

The allylation of p-nitrobenzaldehyde by potassium allyltrifluoroborate using mechanochemistry
was initially explored to provide insights into the effects of the milling parameters, especially, milling
equipment, LAG, and solvent. The scope of the mechanochemical synthesis was explored by using
several substituted benzaldehydes with reaction yields ranging from good to excellent depending
upon the physical state of the substrate and the nature of the substituents. Controlling of the
milling parameters allows the mechanochemical method to be specific for aldehydes and it was
ineffective for allylation of ketones. On the other hand, increasing the kinetic energy of the grinding
process and the reaction times led to a successful allylation of acetophenone. This reaction was made
much more efficient by using lanthanide catalysts with excellent to quantitative yields obtained via
mechanochemistry, which also worked fairly well via aqueous solution stirring.

2.1. Mechanochemical Allylation of p-Nitrobenzaldehyde: Solvent Effects

Because this is a pioneer study of aldehyde allylation by allyltrifluoroborate via mechanochemistry,
several experiments were needed to set the parameters and variables of the procedure, especially the
solvent. The p-nitrobenzaldehyde substrate was chosen because it is a suitable model for allylations
and it has been previously employed in several different procedures. After some preliminary tests
with a simple milling equipment designed for mechanical cell or tissue disruption, the reaction was
practically quantitative after 20 min milling at room temperature. Table 1 (and Scheme 1) presents the
main results and shows the effects of the solvent, especially, of water.
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1 Milling (BioSpec) by 20 min at 70 Hz, room temperature; 2 100 μL; 3 Isolated yield; 4 Conversion yield 
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Scheme 1. Mechanochemical allylation of p-nitrobenzaldehyde (2a) by potassium allyltrifluoroborate (1).

Table 1. Mechanochemical allylation of p-nitrobenzaldehyde (2a) by potassium allyltrifluoroborate (1):
solvent effects 1.

Experiment Solvent 2 Yield (%) 3

1 none 0
2 CH2Cl2 23 4

3 CH2Cl2:H2O (99:1) 54
4 CH2Cl2:H2O (8:2) 78
5 CH2Cl2:H2O (1:1) 90
6 H2O 97

7 5 H2O 99
1 Milling (BioSpec) by 20 min at 70 Hz, room temperature; 2 100 µL; 3 Isolated yield; 4 Conversion yield by GC;
5 One pot-two steps procedure: 10 min milling of potassium allyltrifluoroborate and water followed by the
addition of p-nitrobenzaldehyde and 10 min milling.
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The results in Table 1 clearly shows the need of an aqueous medium probably to activate the
allylation agent. These observations prompted a new procedure in two steps and one pot (experiment 7
in Table 1), where potassium allyltrifluoroborate is milled with small amounts of water for 10 min,
followed by the addition of the aldehyde and 10 min milling.

2.2. Mechanochemical Allylation of Benzaldehydes: Substituent Effects

To explore the scope of this process (two steps-one pot) as well as the electronic effects
of the substituents on the reaction yields, Table 2 (and Scheme 2) presents the allylation of
arylaldehydes, including benzaldehydes substituted in different positions by electron withdrawing
and donating groups.
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4-Br-C6H4, 2-OMe-C6H4, 3-OMe-C6H4, 4-OMe-C6H4, 2-Me-C6H4, 1-naftyl, and 2-naftyl.

Table 2. Mechanochemical allylation of arylaldehydes by potassium allyltrifluoroborate (1): substituent effects 1.

Entry Substrate Aryl Yield (%) 2

1 2a 4-NO2-C6H4 99
2 2b 2-NO2-C6H4 94
3 2c 3-NO2-C6H4 89
4 2d 4-Cl-C6H4 94
5 2e 4-Br-C6H4 97
6 2f 2-MeO-C6H4

3 53
7 2g 3-MeO-C6H4

3 82
8 2h 4-MeO-C6H4

3 78
9 2i 2-Me-C6H4

3 62
10 2j 1-naftyl 3 62 4

11 2k 2-naftyl 85
1 Potassium allyltrifluoroborate (1) and 100 µL of water are milled (BioSpec, 70 Hz, room temperature)
for 10 min followed by the addition of the arylaldehyde and 10 min milling; 2 isolated yield; 3 the substrate is a
liquid; 4 conversion yield by GC.

The results in Table 2 seem to suggest that electron-donating substituents decrease the reactivity
of the substrate. However, in mechanochemical processes, the physical state of the reagents is also
relevant and it can be observed that the lower yields were obtained for liquid substrates.

2.3. Mechanochemical Allylation of Benzaldehydes: Effects of the Grinding Parameters

These results show that even with a simple grinding equipment (BioSpec bead impact-shaken
vessel Mini Bead Beater-1 model), usually employed in mechanical cell disruption and tissue
homogenization, the allylation of nitrobenzaldehyde can be quantitative. However, in order to scale
up the process, as well as to test different grinding parameters (e.g., frequency, grinding medium—ball
bearings and jars), this available equipment is not adequate and a vibratory ball mill equipment was
employed. Table 3 (and Scheme 3) presents the results of allylations of substituted benzaldehydes
using a one-step procedure with a Retsch MM200 model mill equipped with a stainless steel 5 mL vial
and two 10 mm stainless steel balls operating at 25 Hz.
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Table 3. Mechanochemical allylation of selected substituted benzaldehyde by potassium
allyltrifluoroborate (1) 1.

Entry Substrate Substituent Yield (%) 2

1 2a 4-NO2 87
2 2c 3-NO2 92
3 2d 4-Cl 72
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1 Potassium allyltrifluoroborate, substituted benzaldehyde, and 250 µL of water are milled for 20 min in a
Retsch MM200 at 25 Hz, with stainless steel 5 mL vial, two 10 mm stainless steel balls, and room temperature;
2 isolated yield; 3 Substrate is a liquid; 4 Conversion yield by GC; 5 Grinding auxiliary SiO2(s); 6 Grinding
auxiliary NaCl (s); 7 Without water upon 1 h of milling; 8 Using 50 µL of water upon 30 min of milling.

The results obtained in Table 2 using the BioSpec equipment (two-steps one pot procedure) are
fairly well reproduced by the Retsch MM200 mill (one-step procedure) in Table 3, where it is also
observed that liquid substrates lead to smaller reaction yields. Noticed that a significant decrease
of the milling frequency (from 70 Hz to 25 Hz) has not affect the reaction yields, suggesting that the
grinding medium is more relevant. As a result, a milling auxiliary, SiO2(s) or NaCl(s), was employed
for the liquid substrates in an attempt to improve the reaction yields, using the p-nitrobenzaldehyde as
control. It is observed (entries 8–11 in Table 3) that the reaction yields decreased considerably in the
presence of the grinding auxiliary.

2.4. Mechanochemical Allylation of Acetophenone: Effects of the Grinding Parameters, Solvent, and Catalyst

Aiming at expanding the scope of the one-step mechanochemical method to other carbonyl
substrates the allylation of acetophenone was performed under different grinding conditions and in
the presence of the europium catalyst MandEu.

Table 4 (and Scheme 4) presents the reaction yields using the Retsch MM200 mill (one-step
procedure) with an Eppendorf jar and glass beads.
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Table 4. Mechanochemical allylation of acetophenone (3a) by potassium allyltrifluoroborate (1) 1.

Entry LAG Catalyst Yield (%) 2

1 - - 0
2 CH2Cl2:H2O (7 µL:1 µL) - 2
3 H2O (7 µL) - 9
4 H2O (100 µL) - 17
5 - MandEu 27
6 H2O (7 µL) MandEu 70
7 H2O (100 µL) MandEu 72
8 CH2Cl2:H2O (7 µL:1 µL) MandEu 79

1 Vibratory mill Retsch MM200 at 25 Hz, potassium allyltrifluoroborate (0.11 mmol), acetophenone
(0.10 mmol), 10 mol % MandEu (when present), 2.0 mL Eppendorf jar, 100 mg of 1 mm glass beads, milling for 3 h;
2 Conversion yield by GC.

Table 5 presents the reaction yields using the Retsch MM200 mill (one-step procedure) with a
stainless steel jar and stainless steel balls.

Table 5. Mechanochemical allylation of acetophenone (3a) by potassium allyltrifluoroborate (1) 1.

Entry Addition of 1 Catalyst Reaction Time (h) Yield (%) 2

1 1 × (0.55 mmol) at starting - 0.5 14
2 1 × (0.55 mmol) at starting - 3 40
3 1 × (0.2 mmol) at starting - 0.5 4
4 3 × (0.2 mmol) in 30 min intervals - 3 87 3

5 1 × (0.55 mmol) at starting MandEu 3 54
6 1 × (0.2 mmol) at starting MandEu 0.5 34
7 3 × (0.2 mmol) in 30 min intervals MandEu 3 100
1 Vibratory mill Retsch MM200 at 25 Hz, potassium allyltrifluoroborate (0.55 mmol), acetophenone (0.50 mmol),
50 µL H2O (LAG), 10 mol % MandEu (when present), 5 mL stainless steel jar, two 10 mm stainless steel balls;
2 Conversion yield by GC; 3 13% of starting material.

The results in Table 4 indicate that under lower mechanical energy conditions (polymer jar and
glass beads), the allylation is selective for aldehydes (Table 2) and ineffective for acetophenone on a
time scale of 20 min. The reaction yields for the tertiary alcohol increase to ca. 70% in the presence of
the lanthanide catalyst (MandEu) and water. Increasing the mechanical energy (stainless steel jar and
stainless steel balls) favors the allylation of acetophenone even in the absence of catalyst; however,
it degrades the allyltrifluoroborate or its activated derivatives. Thus, adding the same amount of the
allylation agent separated into three portions in 30 min intervals leads to a significant increase of the
reaction yield and becomes quantitative under catalytic conditions (Table 5).

2.5. Allylation of Ketones in Solution: Control Experiments and Catalysis

In an attempt to separate the effects of the mechanochemistry from that of the catalyst, the
allylation of acetophenone was performed in solution under constant stirring. Table 6 presents
the results for both europium catalysts (EuFum and MandEu). The results in Table 6 show that
the MandEu catalyst is quite efficient for promoting the allylation of acetophenone by potassium
allyltrifluoroborate. Notice, however, the need of (halide) organic solvent because of solubility
problems of the reaction components. The EuFum catalyst is an extended structure with chemical
formula [Eu2(Fum)3(H2O)4·3H2O]n, Fum = fumarate (trans-−OOC–CH=CH–COO−), whereas
MandEu is most likely a monomeric structure with chemical formula [Eu(Mand)3(H2O)2], Mand
= mandelate (C6H5–CH(OH)–COO−).
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Table 6. Allylation of acetophenone (3a) by potassium allyltrifluoroborate (1) in solution 1.

Entry Solvent Catalyst Reaction time (h) Yield (%) 2

1 CH2Cl2:H2O - 3 15
2 CH2Cl2:H2O EuFum 2 36
3 CH2Cl2:H2O EuFum 24 46
4 CH2Cl2:H2O MandEu 2 63
5 CH2Cl2:H2O MandEu 3 73
6 H2O MandEu 3 24

1 Potassium allyltrifluoroborate (0.11 mmol), acetophenone (0.10 mmol) and 10 mol % of catalyst, in CH2Cl2:H2O
(1 mL:0.1 mL) or H2O (1 mL) under constant stirring at room temperature; 2 Conversion yield by GC.

2.6. Mechanochemical Allylation of Ketones: Scope and Reactivity

The scope of the methodology developed for the allylation of aromatic ketones under
mechanochemical and catalytic conditions was explored for substituted acetophenones (Scheme 5 and
Table 7).
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Table 7. Catalyzed mechanochemical allylation of substituted acetophenones (4a–e) by potassium
allyltrifluoroborate (1) 1.

Entry Substrate Substituent Yield (%) 2

1 4a H 100
2 4b 4-NO2 62 3

3 4c 4-OH 74 4

4 4d 2-OMe 63 5

5 4e 4-OMe 41 6

1 Vibratory mill Retsch MM200 at 25 Hz, potassium allyltrifluoroborate addition in three 0.2 mmol portions at
30 min intervals, substituted acetophenone (0.50 mmol), 10 mol % MandEu, 50 µL H2O (LAG), 5 mL stainless
steel jar, two 10 mm stainless steel balls, milling for 3 h; 2 Conversion by GC; 3 17% of starting material and 21%
of by-products; 4 26% of by-products; 5 37% of starting material; 6 59% of starting material.

The results in Table 7 indicate a significant effect of the substituents on the reaction yields probably
due to their physical state and side reactions.

2.7. Mechanochemical Allylation of Aldehydes and Ketones: Widening the Scope and Probing the Reactivity

The results are very encouraging and prompted us to broaden the scope of the methodology to
aliphatic aldehydes and ketones, which are presented in Table 8 and compared to benzaldehyde and
4-CF3-benzaldehyde.

It is noteworthy that the same methodology provided nearly quantitative yields for aliphatic
aldehydes (heptanal and cyclohexanecarbaldehyde) and in the presence of catalyst and longer milling
times the allylation of cyclohexanone was obtained in excellent yield. An acyclic aliphatic ketone
(butanone) was also successfully alkylated in good conversion yield. In order to quantify the reactivity
of the aromatic substrates, competitive experiments between excesses of substituted and unsubstituted
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aromatic carbonyl compounds were performed and the ratios between the products are presented in
Table 9.

Table 8. Mechanochemical allylation of aliphatic aldehydes, aliphatic ketones, and benzaldehyde by
potassium allyltrifluoroborate (1) 1.

Entry Substrate Catalyst Milling Yield (%) 2
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Table 9. Competitive mechanochemical allylation of substituted (2a, 2h, 2o and 4b, 4e) and
unsubstituted aromatic carbonyl compounds (2n and 4a) by potassium allyltrifluoroborate (1).

Entry Substrates Substituents Ratio 3

1 1 2n/2a H/4-NO2 14.5; 4.3
2 1 2n/2h H/4-OMe 2.2; 2.0
3 2 2n/2o H/4-CF3 0.96; 0.95
4 2 4a/4b H/4-NO2 1.7; 2.4
5 2 4a/4e H/4-OMe 2.4; 2.1

1 Vibratory mill Retsch MM200 at 25 Hz, substituted benzaldehyde (0.50 mmol), benzaldehyde (0.50 mmol),
potassium allyltrifluoroborate (0.1 mmol), 7 µL H2O (LAG), 2.0 mL Eppendorf jar, 20 glass beads (1 mm), milling
for 30 min; 2 Vibratory mill Retsch MM200 at 25 Hz, substituted acetophenone (0.50 mmol), acetophenone
(0.50 mmol), potassium allyltrifluoroborate (0.1 mmol), 10 mol % MandEu, 7 µL H2O (LAG), 2.0 mL Eppendorf
jar, 100 mg of 1 mm glass beads, milling for 3 h; 3 Ratio between the areas in the GC of unsubstituted and
substituted products obtained from two distinct experiments.

From Table 9 it can be observed that substituted and unsubstituted aromatic carbonyl compounds
have similar reactivity. Competitive mechanochemical allylation of acetophenone 4a and butanone 4g
was performed and provide 1.2 for the ratio between the areas in the GC of the products 5a and 5g.
Similarly, two competitive experiments were performed between benzaldehyde 2n and heptanal 2p
yielding ratios of 1.0 and 1.2 between the areas in the GC of the products 3n and 3p.

In addition, competing experiments between sub-stoichiometric quantities of aromatic aldehydes
and aromatic ketones with potassium allyltrifluoroborate were performed under the usual milling
conditions in the absence and in the presence of catalyst. For example, when a mixture of benzaldehyde
(0.1 mmol), acetophenone (0.1 mmol) and potassium allyltrifluoroborate (0.11 mmol) was milled
for 30 min, only the product from the allylation of the aldehyde was observed in nearly quantitative
yield. The same result was obtained when excess of acetophenone (0.2 mmol) was employed or when



Molecules 2016, 21, 1539 8 of 16

10 mol % MandEu was added to the mixture. Only after milling for 3 h in the presence of 10 mol %
MandEu catalyst, the product from the allylation of the ketone was observed in yields smaller than
those reported for the individual experiments.

3. Discussion

Allyltrifluoroborate salts are interesting allylation agents because they are readily available and
stable under normal conditions; however, they are inert to carbonyl compounds and thus require
activation, for instance, by an external Lewis acid [7]. Other boron-based allylation agents such as
allylboranes, allylboronates, allylboronic esters, allylpinacolborate, and allylboronic acids are more
reactive and may be used without activation. However, they are usually unstable to air and moisture
and thus cannot be easily handled and purified [7,13,36,37]. In fact, allylboronic acids are so unstable
that they could not be isolated and studied in a pure form until recently [37] and then were explored
as allylation agents of ketones [37]. Alternatively, allyltrifluoroborates could be activated in situ by,
for instance, (partial) hydrolysis leading to more reactive intermediates such as allyl(fluoro)boronic
acids. Indeed, the hydrolysis of potassium organotrifluoroborates to the corresponding boronic acids
is known to occur in mild aqueous silica-gel media [24,38,39]. Given the importance of water in the
mechanochemical allylation of benzaldehydes presented in Tables 1 and 2, including the success
of the two-step procedure, milling of potassium allyltrifluoroborate and water followed by milling
with the aldehyde, we propose that the (partial) hydrolysis of the allyltrifluoroborate, induced by the
mechanical energy, to the corresponding reactive allyl(fluoro)boronic acids is a viable mechanism to
describe this allylation method. A detailed analysis and exploration of this mechanism is beyond the
scope of this contribution because the kinetics of this activation step via mechanochemistry is not
known and would probably require in situ measurements.

Compared to the two other mechanochemical methods available for the allylation of aromatic
carbonyl compounds [20,21], the present approach may be considered greener because it does not
employ or generate any (organo)metallic species. The allylation agent and its by-products are stable,
nontoxic and water solution salts that may require minimum or none treatment before being discarded.
In addition, the present mechanochemical method can be efficiently performed in a two steps procedure,
which lends flexibility to the methodology because in the second step another component(s), such
as additive, catalyst, grinding auxiliary, etc., can be added to improve reaction yields and selectivity.
In fact, we are currently exploring the use of solid grinding auxiliaries in the second step of this
two-step procedure to improve the reaction yields of liquid substrates, because the use of NaCl or SiO2

auxiliary grinding in the single-step procedure decreased significantly the reaction yields (Table 3),
probably because of dilution effects.

The present mechanochemical method is quite versatile and robust because by changing some of
the milling parameters, specifically the frequency and grinding medium (jar and ball), the mechanical
energy can be controlled and the method can be made specific for the allylation of aldehydes (small
mechanical energy) in a 20 min time scale, whereas by increasing the mechanical energy the method
becomes successful in the allylation of ketones in a 3 h time scale. Indeed, the methodology developed
for the BioSpec mill (at 70 Hz), which was shown to be equivalent to the MM20 mill (at 25 Hz),
is quite interesting because this equipment is robust, simple and quite affordable, especially with the
Eppendorf jars and glass balls. However, this equipment has not been explored in mechanochemical
organic reactions. In addition, this is the first example of a metal-free mechanochemical allylation of
ketones. The reaction yields of the tertiary alcohol products are good and can be made quantitative
by using the lanthanide-based MandEu catalyst. Because there are lesser methods for allylation of
ketones, the mechanochemical method with the MandEu catalyst was further explored and shown to
be very effective for several substituted acetophenones. The results showed that electron-donating
substituents decrease the reaction yields. Comparisons the different results under different condition
and parameters suggest that the mechanical energy is probably responsible for activating the
allyltrifluoroborate reagent and the MandEu catalyst is more likely relevant for activating the carbonyl
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compound [25]. However, a detailed investigation of these mechanisms is beyond the scope of the
present contribution, but the results are very encouraging to pursue such studies.

It is noteworthy that the lanthanide-based catalysts (EuFum and MandEu) are also effective in
the allylation of ketones under mild aqueous solution stirring, without mechanochemical assistance.
Under these conditions, the catalyst may have a dual role, namely, catalyzing the (partial) hydrolysis
of the allyltrifluoroborate into more reactive species and to activate the carbonyl compound. Notice
that these catalysts have distinct activities (Table 6), with MandEu being much more efficient.
This may probably be due to their different structures, where EuFum has a metal-organic
framework (MOF) structure [25,40–42], whereas MandEu is most likely a molecular octacoordinated
complex [43–45]. The latter is dispersed more efficiently in solution and provide more active sites.

The methodologies developed for aromatic carbonyl compounds also work very well for the
allylation aliphatic aldehydes and ketones, providing nearly quantitative conversions. The selectivity
allylation of aldehydes in the presence of ketones can be achieved by controlling the milling time or
the presence/absence of catalyst.

The greenness of the process is also an important issue because the methodology does not
require organic solvent during the milling process and only water was used as LAG. The materials,
however, became adhered to the walls of the jar and their mechanical removal was difficult and,
at the scale employed, losses were unavoidable. Thus, upon completion, silica gel was added and
milled for an additional 2 min, which removed the materials from walls and impregnated the silica gel.
The resulting material was added directly onto a chromatography column or a minimum amount of
organic solvent was used to extract the product. The water soluble salts can also be separated into a
nontoxic aqueous solution.

In addition, competitive experiments under mechanochemical conditions were performed
for the first time to assess the reactivity aromatic carbonyl compounds. It can be shown that
performing competitive experiment with large excesses of substituted and unsubstituted substrates
with respect to the allylating agent (e.g., 5:5:1), the ratio between the rate constants kunsub/ksub
can be approximately given by the ratio between the areas, Aunsub/Asub, under the curves of the
corresponding products in the gas-chromatogram [46]. This analysis assumes that the determining
step is the actual reaction between the allylating species and the carbonyl substrate. However, under
mechanochemical conditions care must be exercised because the access to the allylating species may the
determining step in the reaction mechanism. The conditions employed in the competitive experiments
were 0.5:0.5:0.1:0.4 mmol for the molar ratios between the competing carbonyl substrates, potassium
allyltrifluoroborate, and water. It is relevant to realize that some amount of the water is
involved in hydrolysis of the allyltrifluoroborate to generate the active allylating agent, possibly
allyl(fluoro)boronic acid derivatives. As a result, there should be some competition between the
carbonyl substrates for the allylating agent, which could become the determining step. Given
the sub-stoichiometric relationship between the substrates and water, the differences in their bulk
solubility in water may not be a suitable parameter to rationalize the trends in these competitive
experiments. Another relevant factor is the physical states of the substrates. From Table 9 it is
clear that performing competitive experiment with a solid substrate such as 4-nitrobenzaldehyde
or 4-nitroacetophenone (σp = 0.78) [47] and a liquid one (benzaldehyde or acetophenone) provides
unreliable results for the relative rate constants, because the lattice energy can mask the reactivity
of the solid compounds. The quantitative results are also difficult to reproduce because they
are dependent upon the particle sizes, homogenization, amongst other factors. Considering only
the liquid aldehydes in Table 9, it is observed that the electron-withdrawing substituent para-CF3

(σp = 0.54) [47] is marginally more reactive the unsubstituted reference (σp = 0), kunsub/kpara−CF3 ≈ 0.95,
while the electron-donating para-OMe (σp = −0.27) [47] group slightly decreases the rate constant,
kunsub/kpara−OMe ≈ 2, with respect to the reference. This trend is consistent with a nucleophilic attack
at the carbonyl group. However, considering the large differences in the Hammett sigma of these
substituents and the experimental uncertainties of these relative rate constants, may be possible that
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the access to the allylating agent may be the determining step, which limits the kinetics and leveled the
reactivity. Certainly, more experiments with different substrates and different allylation reactants are
required for a more conclusive assertion regarding the reactivity and the reaction mechanism under
mechanochemical conditions. Such a task is beyond the scope of this contribution, but a more detailed
study is being planned.

Given the excellent results obtained with potassium allyltrifluoroborate, it would be an interesting
perspective to investigate the reactivity of potassium (2-substituted-allyl)trifluoroborate allylating
agents as well as to explore the diastereoselectivity with potassium (3-substituted allyl)trifluoro borates.
A detailed mechanistic study is also relevant, because if both carbonyl compound and allylating species
are coordinated to the same metal centre, employing chiral catalysts could lead to the enantioselective
allylation of ketones.

4. Materials and Methods

The aldehydes, ketones, carboxylic acids and potassium allyltrifluoroborate were purchased from
Sigma Aldrich Chemical Co. (São Paulo, SP, Brazil) or Alfa Aesar (São Paulo, SP, Brazil) and used as
received. The reactions were monitored by thin-layer chromatography on 0.25 mm silica gel 60 plates
(F254) (E. Merck, Darmstadt, Germany) and GC HP5890 Series II system (HP, Palo alto, CA, USA),
equipped with a HP-1 25 m × 0.32 microns column).

The products were purified, when necessary, by column chromatographic using silica gel 60
(230–400 mesh). 1H- and 13C-NMR data were obtained on a Varian Unity plus 300 or Varian UNMRS
400 spectrometer (Varian, Palo Alto, CA, USA) in CDCl3 using the solvent residual peak as the
internal reference.

The experiments were performed with the Mini-Bead Beater from BioSpec (Bartlesville, OK, USA)
at 70 Hz using 2.0 mL polypropylene screwcap microvials and glass beads of 1 mm de diameter
and density of 2.5 g·cm−3 and with the vibratory mill MM200 model from Retsch (Haan, Germany)
at 25 Hz using 5 mL stainless steel grinding jars and 10 mm stainless steel balls or 2 mL disposable
Eppendorf jars and 1 mm glass beads. When using the disposable Eppendorf jars it is necessary to use
a PTFE adapter for 5 samples, allowing tone to use 10 samples at once.

NMR spectra and X-ray powder diffraction (XRPD) patterns are available at the
Supplementary Materials.

4.1. General Procedure for Synthesis of the Europium Catalyst: EuFum and MandEu

EuFum [Eu2(Fum)3(H2O)4·3H2O]n. Fumaric acid (1.5 mmol), europium nitrate (1.0 mmol),
sodium hydroxide (3mmol) and deionized water (5 mL) were added to a 12 mL Teflon-lined vessel,
which was sealed and heated at 160 ◦C for 12 h. The reaction vessel was allowed to slowly cool at room
temperature. The solid was filtrated, washed with water, ethanol and acetone. Compound EuFum was
isolated in 65% yield determined by titration of the lanthanide ion with standard EDTA solution using
xylenol orange as an indicator.

MandEu [Eu(Mand)3(H2O)2]. Mandelic acid (1.5 mmol), europium oxide (0.5 mmol) and
deionized water (5 mL) were stirred at room temperature for 4h. The solid was filtrated, washed
with water, ethanol. Compound EuMand was isolated in 84% yield determined by titration of the
lanthanide ion with standard EDTA solution using xylenol orange as an indicator.

4.2. General Procedure for the Allylation of Aldehydes with Potassium Allyltrifluoroborate (1) Using the
Mini-Bead Beater

Potassium allyltrifluoroborate (0.11 mmol) and 20 glass beads (1 mm) were added to 2.0 mL
polypropylene screwcap microvials and 100 µL of water. The reaction mixture was shaken at 70 Hz
for 10 min. Aldehyde (0.10 mmol) was added and the mixture shaken for 5 to 10 min. The reaction
mixture was extracted with dichloromethane (5 mL), the organic phase was dried over anhydrous
magnesium sulfate. The solvent was removed under vacuum to yield compounds 3a–k.
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4.3. General Procedure for the Allylation of Aldehydes with Potassium Allyltrifluoroborate (1) Using the Retsch
MM200 Mill

Method 1: Potassium allyltrifluoroborate (0.11 mmol), ketone (0.1 mmol) and 100 mg glass beads
(1 mm) and solvent (1–100 µL) were added to the 2.0 mL disposable Eppendorf jar. The reaction
mixture was shaken at 25 Hz for 15 min to 3 h. Then silica gel (100 mg) was added and the mixture
milled for 2 min. The solid was transfer to a fritted funnel and washed with ethyl acetate (3 × 5 mL)
and water (1× 5 mL). The reaction mixture was extracted, the organic phase was dried over anhydrous
magnesium sulfate and the solvent was removed under vacuum to yield compounds 5a–5f, 2n–p.
If chromatographic column of the product was needed, the solid was transferred directly to the top of
the column without the extraction step.

Method 2: Potassium allyltrifluoroborate (0.55 mmol), aldehyde or ketone (0.5 mmol) and
two stainless steel balls (10 mm) and solvent (50–250 µL) were added to a 5.0 mL stainless steel
jar. The reaction mixture was shaken at 25 Hz for 10 min to 3 h. Then silica gel (100 mg) was added
and the mixture milled for 2 min. The solid was transfer to a fritted funnel and washed with ethyl
acetate (3 × 5 mL) and water (1 × 5 mL). The reaction mixture was extracted with dichloromethane
or ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate. The solvent was
removed under vacuum to yield compounds 3a, 3c–e, 3h, 3l–m and 5a–f. If chromatographic column
of the product was needed, the solid was transferred directly to the top of the column without the
extraction step.

4.4. General Procedure for the Allylation of Acetophenone with Potassium Allyltrifluoroborate (1) Using
EuFum or MandEu Catalysts in Solution

To a solution of the acetophenone (0.1 mmol) and the catalyst (10 mol %) in 1.1 mL of CH2Cl2:H2O
(1:0.1) was added potassium allyltrifluoroborate (0.11 mmol). The biphasic mixture was stirred for the
time indicated in Table 6. The reaction mixture was extracted with CH2Cl2 (3 × 5 mL) and dried over
anhydrous magnesium sulfate. The solvent was removed in vacuum to yield compound 5a.

1-(4-Nitrophenyl)but-3-en-1-ol (3a): 1H-NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.0 Hz, 2H), 7.53
(d, J = 8.0 Hz, 2H), 5.95–5.62 (m, 1H), 5.27–5.10 (m, 2H), 4.87 (dd, J = 8.0, 4,7 Hz, 1H), 2.70–2.38
(m, 2H), 2.28 (br. s, 1H). 13C-NMR (75.5 MHz, CDCl3) δ 151.0, 147.2, 133.2, 126.5, 123.6, 119.6, 72.1,
43.8 [23].

1-(3-Nitrophenyl)but-3-en-1-ol (3b): 1H-NMR (300 MHz, CDCl3) δ8.25 (s, 1H), 8.18–8.09 (m, 1H), 7.71
(d, J = 7.6 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.26 (s, 1H), 5.80 (m, 1H), 5.26–5.13 (m, 2H), 4.87 (dd, J = 7.9,
4.7 Hz, 1H), 2.66–2.41 (m, 2H), 2.25 (br. s, 1H). 13C-NMR (75.5 MHz, CDCl3) δ 148.4, 145.9, 133.2, 131.9,
129.3, 122.5, 120.8, 119.7, 72.0, 43.9 [25].

1-(2-Nitrophenyl)but-3-en-1-ol (3c): 1H-NMR (300 MHz, CDCl3) δ 7.93 (dd, J = 7.9, 1.5 Hz, 1H), 7.83
(d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.48–7.36 (m, 1H), 6.00–5.78 (m, 1H), 5.37–5.27 (m, 1H),
5.27–5.11 (m, 2H), 2.71 (ddd, J = 14.4, 6.75, 2.9 Hz, 1H), 2.51–2.32 (m, 2H). 13C-NMR (75 MHz, CDCl3) δ
147.7, 139.2, 133.9, 133.4, 128.1, 128.0, 124.3, 119.0, 68.3, 42.8 [48].

1-(4-Chlorophenyl)but-3-en-1-ol (3d):1H-NMR (300 MHz, CDCl3) δ 7.35–7.25 (m, 4H), 5.87–5.65 (m, 1H),
5.20–5.15 (m, 2H), 5.13 (d, J = 0.6 Hz, 1H), 4.71 (dd, J = 7.5, 5.3 Hz, 1H), 2.54–2.37 (m, 2H), 2.19
(br. s, 1H). 13C-NMR (75 MHz, CDCl3) δ 141.8, 133.5, 133.1, 128.1, 126.7, 118.4, 72.1, 43.4 [29].

1-(4-Bromophenyl)but-3-en-1-ol (3e): 1H-NMR (300 MHz, CDCl3) δ 7.47 (d, J = 8.2 Hz, 2H), 7.24
(d, J = 8.2 Hz, 2H), 5.90–5.64 (m, 1H), 5.27–5.05 (m, 2H), 4.80–4.57 (m, 1H), 2.65–2.31 (m, 2H), 2.13
(br. s., 1H). 13C-NMR (75 MHz, CDCl3) δ 142.8, 133.9, 131.4, 127.5, 121.2, 118.9, 72.6, 43.8 [29].

1-(2-Methoxyphenyl)but-3-en-1-ol (3f): 1H-NMR (300 MHz, CDCl3) δ 7.35 (dd, J = 7.6, 1.7Hz, 1H),
7.30–7.20 (m, 1H), 7.01–6.92 (m, 1H), 6.87 (d, J = 8.2, 1H), 5.97–5.76 (m,1H), 5.21–5.06 (m, 2H), 4.97
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(dd, J = 7.9 Hz, 5.0 Hz, 1H), 3.85 (s, 3H), 2.68–2.43 (m, 3H). 13C-NMR (75 MHz, CDCl3) δ 156.2, 135.1,
131.7, 128.2, 126.7, 120.6, 117.4, 110.3, 6959, 55.1, 41.7 [49].

1-(3-Methoxyphenyl)but-3-en-1-ol (3g): 1H-NMR (300 MHz, CDCl3) δ 7.32–7.21 (m, 1H), 6.96–6.89
(m, 2H), 6.81 (dd, J = 8.0, 2.3 Hz, 1H), 5.81 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.22–5.09 (m, 2H), 4.71
(dd, J = 7.4, 5.5 Hz, 1H), 3.81 (s, 3H), 2.49 (ddd, J = 12.5, 7.6, 4.5 Hz, 2H), 2.06 (s, 1H).13C-NMR
(75 MHz, CDCl3) δ 159.7, 145.6, 134.4, 129.4, 118.5, 118.1, 112.9, 111.2, 73.2, 55.2, 43.8 [25].

1-(4-Methoxyphenyl)but-3-en-1-ol (3h): 1H-NMR (300 MHz, CDCl3) δ 7.30–7.23 (m, 2H), 6.90–6.85
(m, 2H), 5.78 (m, 1H), 5.18–5.06 (m, 2H), 4.66 (t, J = 6.5 Hz, 2H), 3.79 (s, 3H), 2.48 (t, J = 6.8 Hz,
1H).13C-NMR (75 MHz, CDCl3) δ 158.9, 136.0, 134.6, 127.0, 118.1, 113.7, 72.9, 55.2, 43.7 [16].

1-(2-Methylphenyl)but-3-en-1-ol (3i): 1H-NMR (400 MHz, CDCl3) δ 7.50–7.44 (m, 1H), 7.27–7.20 (m, 1H),
7.20–7.10 (m, 2H), 5.92–5.80 (m, 1H), 5.23–5.10 (m, 2H), 4.97 (m, 1H), 2.55–2.39 (m, 2H), 2.34 (s, 3H),
1.89 (s, 1H). 13C-NMR (100 MHz, CDCl3) δ 141.9, 134.7, 134.3, 130.3, 127.2, 126.2, 125.1, 118.2, 69.7, 42.6,
19.0 [50].

1-(1-Naphthyl)but-3-en-1-ol (3j): 1H-NMR (300 MHz, CDCl3) δ 8.13 (d, J = 8.2 Hz, 1H), 7.86
(d, J = 7.6 Hz, 1H), 7.72 (dd, J = 15.8, 7.6 Hz, 2H), 7.57–7.35 (m, 3H), 5.97 (m, 1H), 5.51 (m, 1H),
5.19–4.93 (m, 2H), 2.83–2.48 (m, 2H), 2.08 (d, J = 1.7 Hz, 1H). 13C-NMR (75 MHz, CDCl3) δ 139.8, 134.6,
132.9, 129.5, 127.8, 126.5, 124.8, 124.5, 124.4, 122.4, 122.1, 115.7, 69.1, 42.3 [50].

1-(2-Naphthyl)but3-en-1-ol (3k): 1H-NMR (300 MHz, CDCl3): δ 7.88–7.81 (m, 4H), 7.55–7.42 (m, 3H),
5.84 (m, 1H), 5.26–5.11 (m, 2H), 4.92 (m, 1H), 2.68–2.54 (m, 2H), 1.83 (br. s, 1H). 13C-NMR (75 MHz,
CDCl3): δ 141.2, 134.3, 128.2; 127.9, 127.6, 126.1, 125.8, 118.5, 73.4, 43.7 [50].

1-(3-Hydroxyphenyl)but-3-en-1-ol (3l): 1H-NMR (300 MHz, CDCl3) δ 7.49–7.29 (m, 1H), 7.28–7.08
(m, 2H), 6.96–6.84 (m, 2H), 6.75 (dt, J = 8.4, 1.7 Hz, 1H), 5.80 (s, 1H), 5.23–5.09 (m, 2H), 5.01
(br. s, 1H), 4.71 (dd, J = 7.6, 5.3 Hz, 1H), 2.60–2.41 (m, 2H). 13C-NMR (75 MHz, CDCl3) δ: 155.7,
145.8, 134.3, 129.7, 118.6, 118.2, 114.5, 112.7, 73.0, 43.7 [51].

1-(4-Hydroxyphenyl)but-3-en-1-ol (3m): 1H-NMR (300 MHz, CDCl3) δ 7.25–7.19 (m, 2 H), 6.82-6.76
(m, 2 H), 5.89–5.62 (m, 1 H), 5.31 (br. s., 1H), 5.16–5.02 (m, 2 H), 4.68 (t, J = 6.5Hz, 1H), 2.62–2.39 (m, 2 H),
2.10 (br. s, 1 H). 13C-NMR (75 MHz, CDCl3) δ 155.1, 135.9, 134.5, 127.3, 118.4, 115.2, 73.0, 43.6 [52,53].

1-Phenylbut-3-en-1-ol (3n): 1H-NMR (300 MHz, CDCl3) δ 7.25–7.41 (m, 5H), 5.75–5.90 (m, 1H), 5.10–5.25
(m, 2H), 4.76 (t, 1H, J = 6.6 Hz), 2.45–2.60 (m, 2H). 13C-NMR (75 MHz, CDCl3) δ 43.7, 73.2, 118.3, 125.7,
127.5, 128.3, 134.4, 143.8 [48].

1-(4-(Trifluoromethyl)phenyl)but-3-em-1-ol (3o): 1H-NMR (400 MHz, CDCl3) δ: 7.61 (d, J = 8.2 Hz, 2H),
7,47 (d, J = 8.2Hz, 2H), 5.85–5.72 (m, 1H), 5.22–5.14 (m, 2H), 4.80 (dd, J = 8.0, 4.8 Hz, 1H), 2.50
(m, 2H), 2.06 (br. s, 1H).13C-NMR (100 MHz, CDCl3) δ: 147.7, 133.7, 129.7 (q, J = 32.7 Hz), 126.1, 125.3
(q, J = 3.8 Hz), 124.1(q, J = 270 Hz), 119.2, 72.5, 43.9 [54].

Dec-1-en-4-ol (3p): 1H-NMR (400 MHz, CDCl3) δ 5.96–5.75 (m, 1H), 5.22–5.03 (m, 2H), 3.65 (br. s, 1H),
2.51–2.00 (m, 2H), 1.52–1.18 (m, 10H), 0.89 (br. s, 3H). 13C-NMR (100 MHz, CDCl3) δ 134.9, 118.0, 70.7,
41.9, 36.8, 31.0, 29.3, 25.6, 22.6, 14.1 [16].

1-Cyclohexylbut-3-en-1-ol (3q): 1H-NMR (400 MHz, CDCl3) δ 5.84 (td, J = 16.4, 7.8 Hz, 1H), 5.24–4.88
(m, 2H), 3.40 (br. s, 1H), 2.32 (br. s, 1H), 2.18–2.00 (m, 1H), 1.96–1.57 (m, 6H), 1.52–0.96 (m, 6H).
13C-NMR (101 MHz, CDCl3) δ 135.4, 117.9, 74.7, 43.1, 38.8, 29.1, 28.1, 26.5, 26.3, 26.1 [48].

2-Phenylpent-4-en-2-ol (5a): 1H-NMR (300 MHz, CDCl3) δ 7.48–7.21 (m, 5H), 5.68–5.62 (m, 1H), 5.19–5.12
(m, 2H), 2.74–2.62 (dd, J = 12,0, 6.0 Hz, 1H), 2.54–2,46 (m, 1.0 Hz, 1H), 1,89 (br. s, 1H), 1.55 (s, 3H).
13C-NMR (75 MHz, CDCl3) δ 147.6, 133.6, 128.1, 126.6, 124.7, 119.45, 73.6, 48.4, 29.9 [55].
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2-(4-Nitrophenyl)pent-4-en-2-ol (5b): 1H-NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.3 Hz, 2H), 7.62
(d, J = 8.3 Hz, 2H), 5.59 (dt, J = 16.9, 7.8 Hz, 1H), 5.23–5.09 (m, 2H), 2.61 (ddd, J = 22.2, 13.8,
7.9 Hz, 1H), 2.16 (s, 1H), 1.58 (s, br., 1H), 1.26 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 154.9, 132.4, 125.9,
123.4, 120.6, 73.5, 48.6, 29.9 [56].

4-(2-Hydroxypent-4-en-2-yl)-phenol (5c): 1H-NMR (400 MHz, CDCl3) δ 9.11 (s, 1H), 7.23–6.79 (m, 4H),
5.82 (td, J = 17.2, 7.5 Hz, 1H), 5.31–5.13 (m, 2H), 2.85 (dd, J = 14.0, 6.9 Hz, 1H), 2.74 (s, 1H), 2.57
(dd, J = 13.9, 7.8 Hz, 1H), 1.65 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 156.0, 132.9, 129.1, 125.9, 120.6,
119.45, 117.7, 46.5, 28.3 [49].

2-(2-Methoxyphenyl)pent-4-en-2-ol (5d): 1H-NMR (400 MHz, CDCl3) δ 7.31 (d, J = 7.7 Hz, 1H), 7.28–7.21
(m, 3H), 6.99–6.89 (m, 2H), 5.64 (td, J = 17.0, 7.1 Hz, 1H), 5.11–4.92 (m, 2H), 3.97–3.80 (m, 3H), 2.81
(dd, J = 13.7, 6.9 Hz, 1H), 2.60 (dd, J = 15.2, 6.1 Hz, 1H), 1.58 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ
156.6, 134.7, 134.52, 128.2, 126.8, 120.8, 117.7, 111.24, 74.2, 55.3, 46.6, 26.9 [56].

2-(4-Methoxyphenyl)pent-4-en-2-ol (5e): 1H-NMR (400 MHz, CDCl3) δ 7.36 (d, J = 8.3 Hz, 2H), 6.87
(d, J = 8.3 Hz, 2H), 5.63 (dt, J = 17.4, 7.4 Hz, 1H), 5.19–5.05 (m, 1H), 3.80 (s, 3H), 2.64 (dt, J = 35.9, 18.0
Hz, 1H), 2.48 (dd, J = 13.7, 8.2 Hz, 1H), 1.89 (s, 1H), 1.53 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 158.3,
139.8, 133.8, 125.9, 119.3, 113.4, 73.3, 55.2, 48.5, 29.9 [57].

1-Allylcyclohexanol (5f): 1H-NMR (400 MHz, CDCl3) δ 5.97–5.82 (m, 1H), 5.15 (m, 2H), 2.22
(d, J = 7.5 Hz, 2H), 1.72–1.37 (m, 10H), 1.35–1.21 (m, 1H). 13C-NMR (101 MHz, CDCl3) δ 133.7,
118.6, 70.9, 46.7, 37.4, 25.7, 22.2 [58].

3-Methylhex-5-en-3-ol (5g): (400 MHz, CDCl3) d 5.92–5.80 (m, 1H), 5.20–5.05 (m, 2H), 2.20 (d, J = 7.4 Hz,
2H), 1.51 (q, J = 7.4 Hz, 2H), 1.16 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H); 13C-NMR (100 MHz, CDCl3) d 134.1,
118.5, 72.3, 45.8, 34.2, 26.1, 8.1 [59].

5. Conclusions

A mechanochemical method was successfully developed for the allylation of carbonyl compounds
by potassium allyltrifluoroborate. By controlling the mechanical energy, the method can be made
specific to allylation of aldehydes in the presence of ketones at short reaction times. Whereas the
allylation of ketones was shown, for the first time, to be effective by mechanochemistry with larger
mechanical energy, which can be made practically quantitative by using lanthanide catalysts. The most
efficient procedures employed water as liquid assisted grinding (LAG) or as solvent and because of
the allylation agent (allyltrifluoroborate) and its by-products are inert, nontoxic, water soluble, readily
available salts and can be easily removed from the reaction medium, the methodologies developed
conform with most of the green chemistry principles.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/21/11/1539/s1,
Figures S1–S50: NMR spectra and X-ray powder diffraction (XRPD) patterns.
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