Supplementary Materials: Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines

Luis Sánchez-Sánchez, María Guadalupe Hernández-Linares, María L. Escobar,

Hugo López-Muñoz, Edgar Zenteno, María A. Fernández-Herrera, Gabriel Guerrero-Luna, Alan Carrasco-Carballo and Jesús Sandoval-Ramírez

Figure S1. IR spectrum of the oxime of (22S,23R)-acetyldiosgenin acetate (4).

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the oxime of $(22 \mathrm{~S}, 23 R)$-acetyldiosgenin acetate (4).

Figure S3. HSQC experiment of the oxime of ($22 \mathrm{~S}, 23 \mathrm{R}$)-acetyldiosgenin acetate (4).

```
[ Elemental Composition ]
Data : Dr-Cuevas-Gabriel021
Sample: 2556 MG54D JeolSX102A
Note : Operadores Carmen Garcia javier Perez
Inlet : Direct Ion Mode : EI+
RT : 1.13 min Scan#: (7,10)
Elements : C 40/0, H 69/0, O 7/3, N 2/1
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.5-15.0
Observed m/z Int%
    513.3445 10.6
Estimated m/z 
```

Figure S4. Data from the high resolution mass spectrum of the oxime 4.

Figure S5. IR spectrum of the dioxime of (22S,25R)-spirost-4-en-3,6-dione (5).
1H_dioxima
1H_dioxima
STANDARD 1H OBSERVE
STANDARD 1H OBSERVE

Figure S6. ${ }^{1} \mathrm{H}$-NMR spectrum of the dioxime of $(22 S, 25 R)$-spirost-4-en-3,6-dione (5).

Figure S7. ${ }^{13}$ C-NMR spectrum of the dioxime of (22S,25R)-spirost-4-en-3,6-dione (5).

Figure S8. HSQC experiment of the dioxime of $(22 S, 25 R)$-spirost-4-en-3,6-dione (5).

```
[ Elemental Composition ]
Page: 1
Data : Dr-Cuevas-Gabriel020
Sample: 2555 DG54D JeolSXI02A
Note : Operadores Carmen Garcia javier Perez
Inlet: Direct Larmen Garcia javier Perez Ion Mode : EI+
RT : 0.98 min ( 40/0, H 69/0, O 5/2, Scan##: (6,9)
Blements : C 40/0, H 69/0, O 5/2, N 3/1
Mass Tolerance : loooppm, 3mmu if m/z< < 5mmu if m/z>5
Unsaturation (U.S.) : -0.5-25.0
observed m/z Int%
    456.2982 75.0
Estimated m/z Error[ppm] 
```

Figure S9. Data from the high resolution mass spectrum of the dioxime 5.

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $(500 \mathrm{MHz})$ of $(22 \mathrm{~S}, 25 R)$-spirost-4-en-3,6-dione 9.

Figure S11. ${ }^{13} \mathrm{C}$-NMR spectrum $(125 \mathrm{MHz})$ of (22S,25R)-spirost-4-en-3,6-dione 9.

Figure S12. MS of ($22 S, 25 R$)-spirost-4-en-3,6-dione 9 .

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (500 MHz) of (23R)-acetyldiosgenin acetate 8.

Figure S14. ${ }^{13} \mathrm{C}$-NMR spectrum (125 MHz) of (23R)-acetyldiosgenin acetate 8.

Figure S15. MS of (23R)-acetyldiosgenin acetate 8.
Minimum energy structures of the anti isomer (Figure S16), and syn isomer (Figure S17). Figure S17 shows the syn isomer, where $\mathrm{CH}_{3}-23^{2}$ has a distance of $4.22 \AA$ on average, with respect to $\mathrm{CH}_{3}-21$, by free rotation; so we would expect to observe a NOE-effect when irradiated $\mathrm{CH}_{3}-23^{2}$ expecting to affect the $\mathrm{CH}_{3}-21$, which is not observed (see Figure S18). However, when the case of the anti isomer is analyzed, the distance from $\mathrm{CH}_{3}-21$ to $\mathrm{CH}_{3}-23^{2}$ has a distance of $6.45 \AA$, which would not allow a direct NOE-effect and not would be observed when irradiated with $\mathrm{CH}_{3}-23^{2}$, as it was established in this experiment.

Figure S16. Structure optimized (MM2) of anti isomer of oxime 4, and distance through space between $\mathrm{CH}_{3}-21$ and $\mathrm{CH}_{3}-23^{2}$.

Figure S17. Structure optimized (MM2) of hypothetic syn isomer of oxime 4, and distance through space between $\mathrm{CH}_{3}-21$ and $\mathrm{CH}_{3}-23^{2}$.

Figure S18. NMR-NOE experiment (300 MHz) of the protons $\mathrm{CH}_{3}-23^{2}$ that show only affects H -26eq.

A NOE-effect was observed around 3.3 ppm when $\mathrm{CH}_{3}-23^{2}$ is irradiated, due to the distance at the H-26eq ($4.5 \AA$, see Figure S19); however, in the geometric isomer syn (Figure S20), the distance to this proton from $\mathrm{CH}_{3}-23^{2}$ corresponding to $5.77 \AA$, so one should not observe this phenomenon, thus demonstrating that the geometry of the oxime 4 is anti.

Figure S19. Structure optimized (MM2) of anti isomer of oxime 4, and distance through space between $\mathrm{CH}_{3}-21$ and $\mathrm{H}-26 e q$.

Figure S20. Structure optimized (MM2) of hypothetic syn isomer of oxime 4, and distance through space between $\mathrm{CH}_{3}-23^{2}$ and $\mathrm{H}-26 e q$.

The NOESY experiment was performed (500 MHz), in Figure S21 shows that there is no correlation between $\mathrm{CH}_{3}-23^{2}$ and $\mathrm{CH}_{3}-21$, as previously described above. Additionally, in Figure S22, the correlation is confirmed through space between $\mathrm{CH}_{3}-23^{2}$ and $\mathrm{H}-26 e q$.

Figure S21. NMR-NOESY spectrum (500 MHz) of oxime 4, which shows that there is no correlation through space between $\mathrm{CH}_{3}-23^{2}$ to $\mathrm{CH}_{3}-21$.

Figure S22. NMR-NOESY spectrum (500 MHz) of oxime 4, which shows that there is no correlation through space between $\mathrm{CH}_{3}-23^{2}$ to H -26eq.

