Supplementary Materials: Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines

Luis Sánchez-Sánchez, María Guadalupe Hernández-Linares, María L. Escobar, Hugo López-Muñoz, Edgar Zenteno, María A. Fernández-Herrera, Gabriel Guerrero-Luna, Alan Carrasco-Carballo and Jesús Sandoval-Ramírez

Figure S1. IR spectrum of the oxime of (22S,23R)-acetyldiosgenin acetate (4).

Figure S2. ¹H-NMR and ¹³C-NMR spectra of the oxime of (22S,23R)-acetyldiosgenin acetate (4).

[Elemental Composition]Data : Dr-Cuevas-Gabriel021Date : 28-Jun-2016 18:Sample: 2556 MG54D JeolSX102ANote : Operadores Carmen Garcia javier PerezInlet : DirectIon Mode : EI+RT : 1.13 minScan#: (7,10)						16 18	:36	Page:	1
Elements : C 40/0, H 69/0, O 7/3, N 2/1 Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5 Unsaturation (U.S.) : -0.5 - 15.0									
Observed m/z I 513.3445 Estimated m/z E 513.3454		U.S. 9.0			0 5	N 1			

Figure S4. Data from the high resolution mass spectrum of the oxime 4.

Figure S5. IR spectrum of the dioxime of (22*S*,25*R*)-spirost-4-en-3,6-dione (5).

Figure S7. ¹³C-NMR spectrum of the dioxime of (22*S*,25*R*)-spirost-4-en-3,6-dione (5).

```
S4 of S10
```


Figure S8. HSQC experiment of the dioxime of (22*S*,25*R*)-spirost-4-en-3,6-dione (5).

```
[Elemental Composition ]
                                                                                                 Page: 1
pata : Dr-Cuevas-Gabriel020
                                                   Date : 28-Jun-2016 18:30
sample: 2555 DG54D JeolSX102A
Note : Operadores Carmen Garcia javier Perez
Inlet : Direct
                                                    Ion Mode : EI+
RT : 0.98 min
glements : C 40/0, H 69/0, O 5/2, N 3/1

Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5

Unsaturation (U.S.) : -0.5 - 15.0
                                                   Scan#: (6,9)
Observed m/z
456.2982
                     Int%
                      75.0
Estimated m/z
                     Error [ppm]
                                                С
27
                                                                          N
2
                                     U.S.
                                                                  0
4
                                                          н
  456.2988
                                       9.0
                        -1.2
                                                         40
```

Figure S9. Data from the high resolution mass spectrum of the dioxime 5.

Figure S10. ¹H-NMR spectrum (500 MHz) of (22*S*,25*R*)-spirost-4-en-3,6-dione 9.

Figure S11. ¹³C-NMR spectrum (125 MHz) of (22*S*,25*R*)-spirost-4-en-3,6-dione 9.

Figure S12. MS of (22*S*,25*R*)-spirost-4-en-3,6-dione 9.

Figure S13. ¹H-NMR spectrum (500 MHz) of (23*R*)-acetyldiosgenin acetate 8.

Figure S14. ¹³C-NMR spectrum (125 MHz) of (23*R*)-acetyldiosgenin acetate 8.

Figure S15. MS of (23R)-acetyldiosgenin acetate 8.

Minimum energy structures of the *anti* isomer (Figure S16), and *syn* isomer (Figure S17). Figure S17 shows the *syn* isomer, where CH_3-23^2 has a distance of 4.22 Å on average, with respect to CH_3-21 , by free rotation; so we would expect to observe a NOE-effect when irradiated CH_3-23^2 expecting to affect the CH_3-21 , which is not observed (see Figure S18). However, when the case of the *anti* isomer is analyzed, the distance from CH_3-21 to CH_3-23^2 has a distance of 6.45 Å, which would not allow a direct NOE-effect and not would be observed when irradiated with CH_3-23^2 , as it was established in this experiment.

S7 of S10

Figure S16. Structure optimized (MM2) of *anti* isomer of oxime **4**, and distance through space between CH₃-21 and CH₃-23².

Figure S17. Structure optimized (MM2) of hypothetic *syn* isomer of oxime **4**, and distance through space between CH₃-21 and CH₃-23².

Figure S18. NMR-NOE experiment (300 MHz) of the protons CH₃-23² that show only affects H-26eq.

Molecules 2016, 21, 1533

A NOE-effect was observed around 3.3 ppm when CH_3-23^2 is irradiated, due to the distance at the H-26eq (4.5 Å, see Figure S19); however, in the geometric isomer *syn* (Figure S20), the distance to this proton from CH_3-23^2 corresponding to 5.77 Å, so one should not observe this phenomenon, thus demonstrating that the geometry of the oxime **4** is *anti*.

Figure S19. Structure optimized (MM2) of *anti* isomer of oxime **4**, and distance through space between CH₃-21 and H-26*eq*.

Figure S20. Structure optimized (MM2) of hypothetic *syn* isomer of oxime **4**, and distance through space between CH₃-23² and H-26*eq*.

The NOESY experiment was performed (500 MHz), in Figure S21 shows that there is no correlation between CH₃-23² and CH₃-21, as previously described above. Additionally, in Figure S22, the correlation is confirmed through space between CH₃-23² and H-26eq.

Figure S21. NMR-NOESY spectrum (500 MHz) of oxime 4, which shows that there is no correlation through space between CH_3 -23² to CH_3 -21.

Figure S22. NMR-NOESY spectrum (500 MHz) of oxime **4**, which shows that there is no correlation through space between CH₃-23² to H-26*eq*.