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Abstract: A novel series of tetracyclic quinobenzothiazine derivatives was synthetized. Compounds
containing a substituent (hydroxyl, methyl, phenyl, piperidyl, or piperazinyl) in positions 9 and
11 were obtained by cyclization of suitable 4-aminoquinolinium-3-thiolates. Quinobenzothiazine
10-O-substituted derivatives were obtained by alkylating the hydroxyl group in position 10 of
the parent (quinobenzothiazine) system. Antiproliferative activity of the synthesized compounds
was studied using cultured neoplastic cells (MDA-MB-231, SNB-19, and C-32 cell lines).
Four selected compounds were investigated in more detail for cytotoxicity and antiproliferative
effect. Transcriptional activity of genes regulating cell cycle (TP53), apoptosis (BAX, BCL-2), as well
as proliferation (H3) were assessed. Finally, the ability of the selected compounds to bind DNA was
checked in the presence of ethidium bromide.
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1. Introduction

Initial attempts of using phenothiazine derivatives as antimalarial agents go back to 1891 when
Guttman and Ehrlich demonstrated chemotherapeutic effectiveness of methylene blue. Extensive
search for antimalarial agents was undertaken later, starting with modification of the methylene blue
structure via substitution of the N-methyl group with alkylaminoalkyl moieties [1]. Studies concerning
antihistamine activity led to phenothiazine derivatives that contain alkylaminoalkyl substituents
at the thiazine nitrogen atom. Compounds containing such a structural fragment are important
neuroleptic agents. Their main representative, and a reference compound, is chlorpromazine [2].
Phenothiazines are typical examples of how modification of a basic structural fragment can affect
directional activity and drug strength. Search for new therapeutics has been conducted more and more
often by modifying the main structural fragment of known drugs. Since the advent of chlorpromazine,
the quest for new phenothiazine derivatives has yielded several thousand compounds with novel
properties and applications. Exchanging benzene rings for nitrogen-containing heterocycles has led
to a series of novel azaphenothiazine derivatives featuring tri-, tetra- and pentacyclic systems [3–5].
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Structural modifications of phenothiazine and azaphenothiazine have been achieved by introducing
substituents and functional moieties mainly at the thiazine nitrogen or, less often, into the benzene ring
or nitrogen-containing heterocycles. The compounds reported so far exhibit neuroleptic, antimalarial,
immunopotentiating, antibacterial, antiviral, antifungal, antiproliferative, or antitumor activities and
can mediate the reversal of multidrug resistance [6–13]. In our earlier papers we reported a novel
method of synthesizing the 1,4-thiazine ring which proceeds via the substitution of a hydrogen atom
with a thiolate sulfur atom. The obtained compounds have demonstrated promising anticancer
properties [14–18]. Herein, we report on the synthesis of novel tetracyclic phenothiazine derivatives
containing various substituents (aliphatic, aromatic, or heterocyclic) in positions 9, 10, and 11 of the
quinobenzothiazine system. Using selected neoplastic cell lines, we demonstrate the anticancer activity
of these compounds and present results shedding light on their underlying mechanism of action.

2. Results and Discussion

2.1. Chemistry

Cyclization of diphenylamines and azinylphenylamines in the presence of sulfur and its
compounds, as well as cyclization of diphenyl or azinylphenyl sulfides are commonly used
methods for the synthesis of phenothiazine and azaphenothiazine systems [2]. Our method of
obtaining quinobenzothiazine tetracyclic derivatives is based on cyclization of betaine systems
featuring 1-alkyl-4-(arylamino)quinolinium-3-thiolates structure via nucleophilic substitution of
the hydrogen or halogen atom in the phenyl ring by a thiolate-derived sulfur atom. Reactions
occur with high yield even at room temperature. They permit modification of the quinothiazine
system by introducing substituents or functional groups into the benzene ring; this remains
difficult when using other methods of synthesis [14–16]. Substrates which are suitable for
obtaining 1-alkyl-4-arylaminoquinoline-3-thiolates are 5,12-(dialkyl)thioquinantrene salts 1 [19] as
well as 1-alkyl-4-arylamino-3-(acylthio)quinolinium salts [20]. In this report we show synthesis
of azaphenothiazine derivatives containing different types of aliphatic, aromatic and heterocyclic
substituents in positions 9, 10 and 11 of the quinobenzothiazine system. The course of reaction
between bis-chloride 1 with 2-, 3-, or 4-methoxyaniline, 4-piperidinylaniline, 4-piperazinylaniline, and
2-hydroxy-4-phenylaniline (Scheme 1) is dependent on the presence of oxygen in the reaction mixture.
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When carried out at room temperature with pyridine as a solvent and under conditions disallowing
oxygen access to the reaction milieu. These reactions led to 1-methyl-4-(arylamine)quinolinium-3-
thiolates 2a–f. Betaines 2a–e underwent cyclization in the presence of a hydrogen chloride donor and



Molecules 2016, 21, 1455 3 of 14

atmospheric oxygen to appropriate quinobenzothiazine chlorides 3a–e (procedure A). Compounds
3a–e can also be obtained directly from bis-chloride 1 using suitable amines and a carrying one-pot
type reaction in the presence of atmospheric oxygen and without separating intermediate products
2a–e (procedure B).

The reaction of 1,4-thiazine ring formation during cyclization of quinolinium-3-thiolate 2f obtained
by reacting bis salt 1 with 3-methoxyaniline can occur via hydrogen atom substitution in positions 2 or
6 of the phenyl ring. 1H-NMR analysis has demonstrated the reaction product to be the mixture of
isomers 3f and 3g (which form at a ca. 1:1 quantitative ratio) resulting from hydrogen atom substitution
in both positions of the phenyl ring (Scheme 2). Compounds 3f and 3g obtained using the above
method cannot be separated to purity.
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In order to obtain quinobenzothiazine derivatives containing alkoxy and aminoalkoxy
substituents in the position 10 of the quinobenzothiazine ring, we used 10-hydroxy-5-methyl-12(H)-
quino[3,4-b][1,4]benzothiazinium chloride 3h. Its synthesis was reported earlier [16]. Alkalization of
the aqueous solution of compound 3h with 5% NaHCO3 solution led to the elimination of hydrogen
chloride and formation of quinobenzothiazine derivative 4 with quantitative yield. Alkylation of
compound 4 in anhydrous 1,4-dioxane and in the presence of sodium hydroxide led to the
corresponding 10-O-substituted quinobenzothiazine derivatives 5a–f (Scheme 3).
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The present study was aimed at obtaining novel quinobenzothiazine derivatives that would
contain various types of substituents in the phenyl ring of the quinobenzothiazine system and at
examining their biological properties. Compounds 5a–f are totally insoluble in water; this difficulty
was omitted by transforming them into corresponding hydrochlorides 3f, 3i–m which are very soluble
in water (Scheme 4).
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In the experimental part we have provided 1H-NMR data for all newly obtained compounds.
A number of them are not very soluble in solvents commonly used in NMR. For the chosen derivatives
from each group of compounds (obtained via different reaction paths) we provide a full assignment of
13C-NMR signals (based on two-dimensional spectra analysis) which fully corroborate their structures.

2.2. Biological Activity and Antineoplastic Properties

The anticancer effect of neuroleptic phenothiazines containing alkylaminoalkyl substituents at the
thiazine nitrogen atom was observed early. Novel phenothiazine derivatives and their antiproliferative
effects and mechanisms have been the subject of numerous reports. Their results suggest that
antiproliferative action results from an interaction between such derivatives and proteins involved in
inducing apoptosis, as well as from DNA intercalating properties inducing its fragmentation in cancer
cells. The examined quinobenzothiazine salts have planar structural fragments which may facilitate
intercalation into the DNA helix, similar to that exhibited by anthracycline antibiotics. The presence of
an intercalating factor (substituent or functional group capable of forming hydrogen bonds with purine
and pyrimidine bases) increases stability of the DNA-drug complex and may result in inhibited cell
proliferation. Synthesis of novel phenothiazine derivatives with anticancer properties was, until now,
accomplished via modification of the basic structural fragment, mainly by introducing substituents at
the thiazine nitrogen atom. In the case of quinobenzothiazine derivatives described earlier, the greatest
antiproliferative activity was demonstrated by compounds with an amine group in the benzene
ring [16]. In this report, we describe novel quinobenzothiazine derivatives containing various types
of substituents in positions 9, 10, and 11 including heterocyclic amine systems at different distances
from the quinobenzothiazine system. It could be expected that the presence of additional amine basic
centers might augment antiproliferative activity of the investigated compounds due to the stabilization
of compound-DNA complexes following formation of additional hydrogen bonds with the DNA
helix. The synthesized compounds were tested using three cancer cell lines: MDA-MB-231 (breast
adenocarcinoma), SNB-19 (glioblastoma), and C-32 (amelanotic melanoma).

2.2.1. Cell Viability Studies

To assess the effect of the synthesized compounds on viability of cultured cells (dependent
on cell number and metabolic activity), a WST-1 (a Water Soluble Tetrazolium salt) test was used.
IC50 values for cell cultures exposed to the examined compounds for 72 h are shown in Table 1. All of
the analyzed compounds inhibit growth of cultured cells (IC50 range 0.5–24.5 µM) when compared to
control. The weakest antiproliferative activity was shown by compounds devoid of substituents with
additional nitrogen atoms. Compounds 3d and 3e were the most active; they contain, respectively,
piperidinyl and piperazinyl substituents linked directly to the ring in position 9. These are followed by
derivatives 3k, 3l, and 3m, featuring alkoxy substituents with nitrogen-containing heterocyclic rings
(pyrrolidine, piperidine, and morpholine) in position 10. No significant effect towards the tested cell
lines was observed in terms of the distance between amine basic centers and the quinobenzothiazine
system Four of the compounds (3c, 3e, 3f, and 3k) featuring different types of substituents were
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examined in more detail with respect to their effect on cultured cell lines; this was based on the
assessment of crystal violet binding to DNA (CVDE, Crystal Violet Dye Elution test) as well as on the
quantitation of dead cells based on mitochondrial dehydrogenase released into the culture medium
(lactate dehydrogenase test—LDH). The four examined compounds showed activity on all three cancer
cell lines studied. The derivatives substantially lower the number of cells in the culture (as compared
to control); the effect is seen at 0.5 µg/mL and higher (Figure 1). This was not accompanied, however,
by elevated lactate dehydrogenase levels which would otherwise point to high cytotoxicity of the
examined compounds towards the type of cultured cells examined. The results of WST-1, CVDE, and
LDH tests suggest, on the other hand, a blockade to cell division.

Table 1. Effect of 5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts (3) and cisplatin (reference) on
the viability of cells from three cancer cell lines studied.

Compound
IC50 (µM) a

C-32 SNB-19 MDA-MB-231

3a 3.6 ± 0.9 3.9 ± 0.9 12.7 ± 1.5
3b 22.1 ± 2.4 22.7 ± 4.2 24.5 ± 3.0
3c 4.2 ± 1.0 11.5 ± 3.1 8.4 ± 2.3
3d 09 ± 0.5 1.0 ± 05 2.1 ± 0.5
3e 0.5 ± 0.3 0.8 ± 0.5 1.6 ± 0.5
3f 3.6 ± 1.2 2.7 ± 0.9 3.6 ± 1.2
3i 7.5 ± 1.6 6.7 ± 1.9 2.6 ± 0.5
3j 2.7 ± 1.5 2.2 ± 1.0 2.0 ± 0.7
3k 1.2 ± 0.7 0.7 ± 0.5 0.5 ± 0.2
3l 1.2 ± 0.7 1.2 ± 0.7 3.0 ± 0.9

3m 0.7 ± 0.2 1.8 ± 0.7 1.8 ± 0.5
cisplatin 11.0 ± 0.7 12.3 ± 1.0 25.0 ± 0.7

a The results are from five independent experiments.
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2.2.2. Effect of Compounds on the Transcriptional Activity of H3, BCL-2, BAX, and TP53

We examined the effect of the tested compounds upon transcriptional activity of genes encoding
a proliferation marker (H3 histone), two mitochondrial apoptosis pathway-involved proteins (BCL-2
and BAX), and a cell cycle regulator (p53) following a 24 h exposure of cultured cells to the tested
compounds (0.5 µg/mL). H3 histone gene expression analysis corroborated the observed effect of
a numerical decrease of cultured cells following the inhibition of proliferation. The results point to
limited proliferative activity of cells under the experimental conditions tested (see H3 histone mRNA
in Figure 2).
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Figure 2. Effect of 3c, 3e, 3f, and 3k on transcriptional activity of: H3 (A); TP53 (B); BAX and BCL-2
(C) in MDA-MB-231, SNB-19, and C-32 cells.

Increased copy numbers of mRNA encoding P53 protein suggest a commitment of exposed cells
to stepped-up regulatory processes. The ratio of mRNA copies (proapoptotic BAX)to antiapoptotic
BCL-2 which was maintained at constant levels, suggests that, despite elevated expression of TP53,
the loss in cell number observed in cultures exposed to the tested compounds does not result from
apoptosis but is caused by some other process (e.g., inability of cells to proliferate).

2.2.3. DNA Binding of the Examined Compounds

Ethidium bromide (EtBr) is a DNA intercalator. Upon UV exposure of DNA-bound EtBr,
its fluorescence increases. Incubation (1 h) of the selected novel derivatives with genomic DNA (at 5/1,
1/1, and 1/5 w/w) followed by the subsequent addition of EtBr, showed that the two derivatives
3e (two highest concentrations: 3e/DNA 5/1, 1/1 w/w) and 3k (highest concentration: 3k/DNA
5/1, w/w) can bind to DNA in amounts making DNA intercalation with EtBr impossible (Figure 3).
The effect observed for 3e and DNA at 1/1 compound/DNA weight ratio does not occur in the case of
cisplatin and DNA.
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3. Materials and Methods

3.1. Chemistry

Melting points are uncorrected. NMR spectra were recorded using a Bruker Ascend 600
spectrometer (Bruker, Billerica, MS, USA). To assign the structures, the following 2D experiments were
employed: 1H-13C gradient selected HSQC (Heteronuclear Single Quantum Coherence) and HMBC
(Heteronuclear Multiple Bond Coherence) sequences. Standard experimental conditions and standard
Bruker program were used. The 1H- and 13C-NMR spectral data are given relative to the TMS signal
at 0.0 ppm. EI MS spectra were recorded using an LKB GC MS 20091 spectrometer at 75 eV (LKB,
Bromma, Sweden).

3.1.1. Synthesis of 1-Methyl-4-(arylamino)quinolinium-3-thiolates 2

Argon was passed through the suspension of bis-chloride (1) (0.419 g, 1 mmol) in dry pyridine
(15 mL) at room temperature over 15 min. Amine (2.5 mmol) was added and the reaction mixture was
bubbled with argon for a further 15 min. The mixture was then stirred at room temperature for 7 days.
The solid product was filtered off and washed with dry ether. The raw product was purified through
recrystallization from ethanol.

1-Methyl-4-((4-methoxy)phenylamino)quinolinium-3-thiolate (2a). Yield: 54%; m.p. 173 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 3.77 (s, 3H, OCH3), 4.16 (s, 3H, NCH3), 6.89–6.98 (m, 2H, Harom),
7.06–7.13 (m, 2H, Harom), 7.20–7.28 (m, 1H, H6quinolinyl), 7.42–7.48 (m, 1H, H8quinolinyl), 7.55–7.62 (m,
1H, H7quinolinyl), 7.88–7.94 (m, 1H, H5quinolinyl), 8.70 (s, 1H, H2quinolinyl), 9.99 (s, 1H, NH); 13C-NMR
(DMSOd-6, 150.9 MHz) δ (ppm): 42.26 (NCH3), 55.79 (OCH3), 115.20 (C2′, C6′), 118.90 (C5), 124.54
(C4a), 124.65 (C8), 124.90 (C6), 124.99 (C3′, C5′), 129.57 (C7), 134.71 (C3), 135.74 (C8a), 145.00 (C2),
151.16 (C4′), 153.43 (C4), 157.47 (C1′); EI-MS (70eV) (m/z): 296 (M+, 100%); Anal. calcd. for C17H16N2OS:
C, 68.89; H, 5.44; N, 9.45; S, 10.82. Found: C, 68.81; H, 5.35; N, 9.40; S, 8.78.

1-Methyl-4-((2-methoxy)phenylamino)quinolinium-3-thiolate (2b). Yield: 58%; m.p. 172–174 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 3.77 (s, 3H, OCH3), 4.19 (s, 3H, NCH3), 6.84–6.93 (m, 2H, Harom),
7.12–7.22 (m, 2H, Harom), 7.25–7.31 (m, 1H, H6quinolinyl), 7.45–7.49 (m, 1H, H8quinolinyl), 7.57–7.63
(m, 1H, H7quinolinyl), 7.89–7.94 (m, 1H, H5quinolinyl), 8.73 (s, 1H, H2quinolinyl), 9.86 (s, 1H, NH); EI-MS
(70 eV) (m/z): 296 (M+, 100%); Anal. calcd. for C17H16N2OS: C, 68.89; H, 5.44; N, 9.45; S, 10.82. Found:
C, 8.78; H, 5.39; N, 9.38; S, 8.75.

1-Methyl-4-((2-hydroxy-4-phenyl)phenylamino)quinolinium-3-thiolate (2c). Yield: 37%; m.p. 198 ◦C;
1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 4.19 (s, 3H, NCH3), 7.03–7.08 (m, 1H, Harom), 7.15–7.18 (m, 1H,
Harom), 7.22–7.26 (m, 1H, Harom), 7.28–7.37 (m, 3H, Harom), 7.37–7.40 (m, 1H, Harom), 7.40–7.48 (m, 2H,
Harom), 7.60–7.67 (m, 1H, H7quinolinyl), 7.67–7.73 (m, 1H, H8quinolinyl), 7.93–7.98 (m, 1H, H5quinolinyl),
8.74 (s, 1H, H2quinolinyl), 9.97 (s, 1H, NH), 10.17 (s, 1H, OH), EI-MS (70 eV) (m/z): 358 (M+, 100%); Anal.
calcd. for C22H18N2OS: C, 73.72; H, 5.06; N, 7.81; S, 8.94. Found: C, 73.67; H, 4.97; N, 7.76; S 8.91.

1-Methyl-4-(4-(N-piperidinyl)phenylamino)quinolinium-3-thiolate (2d). Yield: 84%; m.p. 208 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 1.45–1.80 (m, 6H, Hpiperidinyl), 3.10–3.30 (m, 4H, Hpiperidinyl), 4.15 (s, 3H
NCH3), 7.03–7.08 (m, 4H, Harom), 7.25–7.38 (m, 1H, Harom), 7.55–7.74 (m, 1H, Harom), 7.92–7.98 (m, 1H,
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Harom), 8.69 (s, 1H, H2quinolinyl), 10.08 (s, 1H, NH); EI-MS (70 eV) (m/z): 349 (M+, 100%); Anal. calcd.
for C21H23N3S: C, 72.17; H, 6.63; N, 12.02; S, 9.17. Found: C, 72.15; H, 6.54; N, 11.95; S, 9.13.

1-Methyl-4-(4-(N-piperazinyl)phenylamino)quinolinium-3-thiolate (2e). Yield: 86%; m.p. 137 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 3.05–3.35 (m, 8H, Hpiperazinyl), 4.17 (s, 3H, NCH3), 4.69 (s, 1H,
NHpiperazinyl), 6.96–7.02 (m, 2H, Harom), 7.06–7.10 (m, 2H, Harom), 7.25–7.30 (m, 1H, Harom), 7.51–7.55
(m, 1H, Harom), 7.58–7.64 (m, 1H, Harom), 7.90–7.96 (m, 1H, Harom), 8.70 (s, 1H, H2quinolinyl), 10.01 (s, 1H,
NH); EI-MS (70 eV) (m/z): 350 (M+, 100%); Anal. calcd. for C20H22N4S: C, 68.54; H, 6.33; N, 15.99;
S, 9.15. Found: C, 68.49; H, 6.25; N, 15.90; S, 9.10.

1-Methyl-4-(3-methoxyphenylamino)quinolinium-3-thiolate (2f). Yield: 66%; m.p. 181 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 3.69 (s, 3H, OCH3), 4.20 (s, 3H, NCH3), 6.58–6.63 (m, 1H, Harom),
6.69–6.77 (m, 1H, Harom), 7.20–7.26 (m, 1H, H4arom), 7.29–7.35 (m, 1H, H6quinolinyl), 7.49–7.54 (m, 1H,
H8quinolinyl), 7.58–7.64 (m, 1H, H7quinolinyl), 7.94–7.99 (m, 1H, H5quinolinyl), 8.80 (s, 1H, H2quinolinyl), 9.91
(s, 1H, NH); EI-MS (70 eV) (m/z): 296 (M+, 100%); Anal. calcd for C17H16N2OS: C 68.89; H 5.44; N 9.45;
S 10.82. Found: C, 68.79; H, 5.36; N, 9.40; S, 10.75.

3.1.2. Synthesis of 5-Methyl-12(H)-quino[3,4-b][1,4]benzothiazinium Chloride 3

Procedure (A): Aniline hydrochloride (0.155 g, 1.2 mmol) was added to the mixture of 3-thiolate
(2) (1 mmol) in 10 mL of dry pyridine and the whole was mixed at 70 ◦C for 12 h. After cooling it down
to room temperature, the formed precipitate was filtered off and washed with ether. The raw product
was recrystallized from ethanol.

Procedure (B): Amine (2.5 mmol) was added to the mixture of bis-chloride (1) (0.419 g, 1 mmol) in
10 mL of dry pyridine and the whole was mixed at 70 ◦C for 12 h. The mixture was cooled down to
room temperature and the formed precipitate was filtered off and washed with ether. The raw product
was purified through recrystallization from ethanol.

9-Methoxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3a). Yield: Procedure (A) 68%,
Procedure (B) 72%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 3.73 (s, 3H, OCH3), 4.19 (s, 3H, NCH3),
6.70–6.78 (m, 2H, H10, H11), 7.36–7.44 (m, 1H, H8), 7.76–7.84 (m, 1H, H2), 7.97–8.08 (m, 2H, H3, H4),
8.50–8.63 (m, 1H, H1), 8.84 (s, 1H, H6), 10.93 (s, 1H, NH); Anal. calcd. for C17H15ClN2OS: C, 61.72;
H, 4.57; N, 8.47; S, 9.69. Found C, 61.63; H, 4.51; N, 8.41; S, 9.66.

11-Methoxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3b). Yield: Procedure (A) 65%,
Procedure (B) 74%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 3.93 (s, 3H, OCH3), 4.18 (s, 3H, NCH3),
6.68–6.77 (d, 3J = 9 Hz, 1H, H8), 6.96–7.04 (d, 3J = 7.8 Hz, H10), 7.08–7.16 (d.d, 3J = 9 Hz, 3J = 7.8 Hz,
H9), 7.82–7.90 (s, 1H, H2). 8.03–8.16 (m, 2H, H3, H4), 8.50–8.58 (m, 1H, H1), 8.80 (s, 1H, H6), 9.90
(s, 1H, NH); 13C-NMR (DMSOd-6, 150.9 MHz) δ (ppm): 43.28 (NCH3), 56.94 (OCH3), 107.54 (C6a),
112.28 (C12b), 116.28 (C8), 118.83 (C12a), 119.28 (C11), 119.32 (C10), 123.88 (C2), 125.40 (C11a), 128.10
(C9), 128.47 (C1), 134.99 (C3), 139.11 (C6), 144,20 (C4a), 148.90 (C7a), 152.03 (C4); Anal. calcd. for
C17H15ClN2OS: C, 61.72; H, 4.57; N, 8.47, S, 9.69. Found: C, 6.66; H, 4.49; N, 8.45; S, 9.64.

11-Hydroxy-9-phenyl-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3c). Yield: Procedure (A)
59%, Procedure (B) 65%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 4.06 (s, 3H, NCH3), 6.93–7.02 (m, 2H,
Harom), 7.30–7.35 (m, 2H, Harom), 7.38–7.44 (m, 1H, Harom), 7.44–7.51 (m, 2H, Harom), 7.74–7.85 (m, 1H,
Harom), 7.98–8.07 (m, 2H, Harom), 8.60–8.65 (m, 2H, Harom), 10.10 (s, 1H, NH), 11.18 (s, 1H, OH); Anal.
calcd. for C22H17ClN2OS: C, 67.25; H, 4.36; N, 7.13; S, 8.16. Found: C, 67.18; H, 4.30; N, 7.04; S 8.10.

9-(N-piperidinyl)-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3d). Yield: Procedure (A) 68%,
Procedure (B) 77%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 1.43–1.70 (m, 6H, Hpiperidinyl), 3.08–3.20
(m, 4H, Hpiperidinyl). 4.05 (s, 3H, NCH3), 6.56–6.62 (d, 4J = 2.4 Hz, 1H, H8), 6.64–6.69 (d.d, 3J = 9 Hz,
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4J = 2.4 Hz, 1H, H10), 7.44–7.50 (d, 3J = 9 Hz, 1H, H11), 6.70–6.75 (m, 1H, H2), 7.74–7.79 (m, 2H, H3,
H4), 8.50 (s, 1H, H6), 9.01–9.06 (m, 1H, H1), 11.22 (s, 1H, NH). Anal. calcd. for C21H22ClN3S: C, 65.70;
H, 5.78; N, 10.94; S, 8.35. Found C, 65.64; H, 5.73; N, 10.89; S, 8.32.

9-(N-piperazinyl)-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3e). Yield: Procedure (A) 66%,
Procedure (B) 74%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 3.28–3.32 (m, 4H, Hpiperazinyl), 3.34–3.39
(m, 4H, Hpiperazinyl), 4.11 (s, 3H, NCH3) 6.65–6.69 (d, 4J = 3 Hz, 1H, H8), 6.72–6.77 (d, 3J = 9 Hz, 1H,
H11), 6.77–6.82 (d.d, 3J = 9 Hz, 4J = 3 Hz, 1H, H10), 7.75–7.83 (m, 1H, Harom), 7.97–8.04 (m, 2H, Harom),
8.26 (s, 1H, H6), 8.48–8.53 (m, 1H, Harom); Anal. calcd. for C20H21ClN4S: C, 62.41; H, 5.50; N, 14.56;
S, 8.33. Found C, 62.32; H, 5.44; N, 14.47; S, 8.28.

3.1.3. Synthesis of 10-Hydroxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine 4

Quinobenzothiazinium chloride (3h) (0.317 g, 1 mmol) was dissolved in 20 mL water (50 ◦C),
the resulting solution was filtered and alkalized while mixing by using a 5% aqueous NaHCO3 solution
(10 mL). The obtained solid product was filtered off and air-dried. Finally, the crude product was
purified by recrystallization from ethanol.

10-Hydroxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (4). Yield: 100%; m.p. 107–110 ◦C; 1H-NMR
(CD3ODd-4, 600 MHz) δ (ppm): 3.90 (s, 3H, CH3), 6.42–6.47 (d.d, 3J = 8.4 Hz, 4J = 2.4 Hz, 1H, H9), 6.58
(s, 1H, H6), 6.61–6.67 (m, 1H, Harom), 7.53–7.61 (m, 1H, Harom), 7.66–7.74 (m, 2H, Harom), 7.78–7.86
(m, 1H, Harom), 8.34–8.39 (m, 1H, Harom); EI-MS (70 eV) (m/z): 280 (M+, 100%); Anal. calcd. for
C16H12N2OS: C, 68.55; H, 4.31; N, 9.99; S, 11.44. Found: C, 68.53; H, 4.26; N, 9.94; S, 11.42.

3.1.4. Synthesis of 10-Alkoxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine 5

Anhydrous 1,4-dioxane (15 mL) was mixed with quinobenzothiazine (4) (0.28 g, 1 mmol) and
sodium hydroxide (0.2 g, 5 mmol) and refluxed with mixing for 2 h. An alkylating agent (alkyl iodides
or aminoalkyl chlorides) (1.3 mmol) was added stepwise and the mixture was refluxed for a subsequent
2 h. After cooling down to room temperature, the reaction mixture was poured into 50 mL of water
and extracted with 15 mL chloroform. The resulting solution was dried over anhydrous calcium
chloride and evaporated under vacuum. The dry residue was purified by chromatography using a
silica gel-filled column and chloroform-ethanol (10:1 v/v) as eluent.

10-Methoxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5a). Yield: 30%; m.p. 268–270 ◦C; 1H-NMR
(DMSOd-6, 600 MHz) δ (ppm): 3.51 (s, 3H, NCH3), 3.68 (s, 3H, OCH3), 6.38–6.44 (m, 2H, Harom),
6.56–6.60 (m, 1H, Harom), 7.07 (s, 1H, H6), 7.21–7.26 (m, 1H, Harom), 7.27–7.30 (m, 1H, Harom), 7.52–7.57
(m, 1H, Harom), 8.18–8.22 (m, 1H, Harom); 13C-NMR (DMSOd-6, 150.9 MHz) δ (ppm): 40.51 (NCH3),
55.46 (OCH3), 103.64 (12b), 111.09 (7a), 111.33(C9 or C11), 112.53 (C9 or C11), 115.89 (C4), 121.29 (6a),
123.96 (C2), 125.02 (C1), 126.01 (C8), 131.98 (3), 133.14 (C6), 140.75 (4a), 146.30 (C11a), 154.13 (C12a),
159.46 (C10); EI-MS (70 eV) (m/z): 294 (M+, 100%); Anal. calcd. for C17H14N2OS: C, 69.36; H, 4.79;
N, 9.52; S, 10.89. Found: C, 69.29; H, 4.75; N, 9.48; S, 10.84.

10-Butyloxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5b). Yield: 37%; m.p. 280–282 ◦C; 1H-NMR
(CDCl3, 600 MHz) δ (ppm): 2.58 (m, 3H, CH3), 2.70–2.80 (m, 2H, CH2), 3.38–3.50 (m, 2H, CH2), 3.76
(s, 3H, NCH3), 4.03–4.11 (t, J = 4.8 Hz, 2H, OCH2), 6.31–6.45 (m, 2H, Harom), 6.52–6.54 (m, 1H, Harom),
6.54–6.63 (m, 1H, Harom), 6.95–7.03 (m, 1H, Harom), 7.18–7.25 (m, 1H, Harom), 7.40–7.50 (m, 1H, Harom),
8.30–8.45 (m, 1H, Harom); EI-MS (70 eV) (m/z): 336 (M+, 100%); Anal. calcd. for C20H20N2OS: C, 71.40;
H, 5.99; N, 8.33; S, 9.53. Found: C, 71.30; H, 5.94; N, 8.28; S, 9.49.

10-(3-(N,N-dimethylamino)propyl)oxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5c). Yield: 49%; m.p.
82–83 ◦C; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 2.10–2.20 (t, 3J = 6 Hz, 2H, NCH2), 2.76 (s, 3H,
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NCH3), 2.77 (s, 3H, NCH3), 3.11–3.25 (m, 2H, CH2), 3.95–4.05 (t, 3J = 6 Hz, 2H, OCH2), 4.15 (s, 3H,
NCH3), 6.65–6.75 (d.d, 3J = 8.4 Hz, 4J = 2.4 Hz, 1H, H9), 6.92–7.00 (d, 3J = 8.4 Hz, 1H, H8), 7.45–7.50
(d, 4J = 2.4 Hz, 1H, H11), 7.75–7.84 (m, 1H, Harom), 7.95–8.12 (m, 2H, Harom), 8.69 (s, 1H, H6), 9.15–9.27
(m, 1H, Harom); EI-MS (70 eV) (m/z): 365 (M+, 100%); Anal. calcd. for C21H23N3OS: C, 69.01; H, 6.34;
N, 11.50; S, 8.77. Found: C, 68.96; H, 6.30; N, 11.47; S, 8.75.

10-(2-(N-pyrrolidinyl)ethyl)oxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5d). Yield: 46%; m.p.
148–150 ◦C; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 1.62–1.76 (m, 4H, Hpyrrolidinyl), 2.52–2.57 (m, 4H,
Hpyrrolidinyl), 2.73 (t, J = 6 Hz, 2H, NCH2), 3.51 (s, 3H, NCH3), 3.98 (t, J = 6 Hz, 2H, OCH2), 6.37–6.44
(m, 2H, Harom), 6.55–6.59 (m, 1H, Harom), 7.07 (s, 1H, H6), 7.22–7.25 (m, 1H, Harom), 7.25–7.30 (m, 1H,
Harom), 7.52–7.57 (m, 1H, Harom), 8.17–8.24 (m, 1H, Harom); EI-MS (70 eV) (m/z): 377 (M+, 73%); Anal.
calcd. for: C22H23N3OS: C, 70.00; H, 6.14; N, 11.13; S, 8.49. Found: C, 69.96; H, 6.08; N, 11.09; S, 8.48.

10-(2-(N-piperidinyl)ethyl)oxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5e). Yield: 67%; m.p. 70–73 ◦C;
1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 1.30–1.40 (m, 2H, Hpiperidinyl), 1.40–1.53 (m, 4H, Hpiperidinyl),
2.35–2.45 (m, 4H, Hpiperidinyl), 2.54–2.61 (t, J = 6 Hz, 2H, NCH2), 3.51 (s, 3H, NCH3), 3.93–4.01
(t, 3J = 6 Hz, 2H, OCH2), 6.35–6.40 (m, 2H, Harom), 6.52–6.59 (m, 1H, Harom), 7.06 (s, 1H, H6), 7.15–7.32
(m, 2H, Harom), 7.49–7.55 (m, 1H, Harom), 8.15–8.22 (m, 1H, Harom); EI-MS (70 eV) (m/z): 392 (M+, 100%);
Anal. calcd. for C23H25N3OS: C, 70.56; H, 6.44; N, 10.73; S, 8.19. Found: C, 70.48; H, 6.49; N, 10.70;
S, 8.17.

10-(2-(N-morpholinyl)ethyl)oxy-5-methyl-5(H)-quino[3,4-b][1,4]benzothiazine (5f). Yield: 15%; m.p.
196–198 ◦C; 1H-NMR (DMSOd6, 600 MHz) δ (ppm): 2.38–2.45 (m, 4H, Hmorpholinyl), 2.57–2.65
(t, J = 5.4 Hz, 2H, NCH2), 3.51 (s, 2H, NCH3), 3.53–3.62 (m, 4H, Hmorpholinyl), 3.92–4.05 (t, J = 5.4 Hz, 2H,
OCH2), 6.38–6.44 (m, 2H, Harom), 6.55–6.59 (m, 1H, Harom), 7.07 (s, 1H, H6), 7.20–7.32 (m, 2H, Harom),
7.48–7.57 (m, 1H, Harom), 8.18–8.24 (m, 1H, Harom). EI-MS (70 eV) (m/z): 394 (M+, 100%); Anal. calcd.
for C22H23N3O2S: C, 67.15; H, 5.89; N, 10.68; S, 8.15. Found: C, 67.10; H, 5.83; N, 10.62; S 8.12.

3.1.5. Synthesis of 12(H)-quino[3,4-b][1,4]benzothiazinium Chloride 3f, 3i–m

Quinobenzothiazine (5) (1 mmol) was dissolved in 15 mL anhydrous ethanol. Pyridine
hydrochloride (1 mmol) was added and the reaction mix was refluxed for 2 h. Solvents were evaporated
under vacuum and the dried remaining residue was purified using a chromatography column filled
with aluminum oxide and chloroform:ethanol (10:1 v/v) as eluent.

10-Methoxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3f).Yield: 87%; 1H-NMR (DMSOd-6,
600 MHz) δ (ppm): 3.75 (s, 3H, NCH3), 4.15 (s, 3H, OCH3), 6.68–6.72 (m, 1H, Harom), 6.98–7.02 (m, 1H,
Harom), 7.24–7.26 (d, 4J = 3 Hz, H11), 7.83–7.88 (m, 1H, Harom), 8.01–8.12 (m, 2H, Harom), 8.68 (s, 1H,
H6), 8.92–8.98 (m, 1H, Harom), 10.97 (s, 1H, NH). Anal. calcd. for C17H15ClN2OS: C, 61.72; H, 4.57;
N, 8.47; S, 9.69. Found: C, 61.65; H, 4.51; N, 8.42; S, 9.66.

10-Butyloxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3i). Yield 82%; 1H-NMR (DMSOd-6,
600 MHZ) δ (ppm): 3.15–3.25 (m, 3H, CH3), 3.71–3.85 (m, 2H, CH2), 3.95–4.02 (m, 2H, CH2), 4.15 (s, 3H,
NCH3), 4.34–4.43 (t, J = 4.2 Hz, 2H, OCH2), 6.75–6.80 (d.d, 3J = 8.4 Hz, 4J = 2.4 Hz, 1H, H9), 7.03–7.08
(d, 3J = 8.4 Hz, 1H, H8), 7.25–7.31 (d, 4J =2.4 Hz, 1H, H11), 7.82–7.89 (m, 1H, Harom), 8.04–8.12 (m, 2H,
Harom), 8.69 (s, 1H, H6), 8.91–8.97 (m, 1H, Harom), 11.11 (s, 1H, NH). Anal. calcd. for C20H21ClN2OS:
C, 64.42; H, 5.68; N, 7.51; S, 8.60. Found: C, 64.38; H, 5.63; N, 7.75; S 8.57.

10-(3-(N,N-Dimethylamino)propyl)oxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3j). Yield:
80%; 1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 2.16 (t, J = 6 Hz, 2H, NCH2), 2.77 (s, 3H, NCH3), 2.78
(s, 3H, NCH3), 3.19 (m, 2H, CH2), 4.04 (t, J = 6 Hz, 2H, OCH2), 4.15 (s, 3H, NCH3), 6.67–6.73 (d.d,
3J = 8.4 Hz, 4J = 2.4 Hz, 1H, H9), 6.98–7.02 (d, 3J = 8.4 Hz, 1H, H8), 7.48–7.53 (d, 4J = 2.4 Hz, 1H,
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H11), 7.78–7.85 (m, 1H, Harom), 8.02–8.11 (m, 2H, Harom), 8.69 (s, 1H, H6), 9.20–9.25 (m, 1H, Harom),
10.73–10.80 (m, 1H, Harom), 11.39 (s, 1H, NH); 13C-NMR (DMSOd-6, 150.9 MHz) δ (ppm): 24.16 (NCH2),
42.49 (N(CH3)2), 43.11 (NCH3), 54.30 (CH2), 65.72 (OCH2), 106.67 (C6a), 106.96 (C11), 107.40 (7a),
113.22 (C9), 116.17 (11a), 119.16 (C4), 124.88 (C1), 127.92 (C8), 128.23 (C12a), 134.85 (C2), 138.05 (C3),
139.10 (C4a), 143.69 (C6), 151.87 C12a), 158.92 (C10); Anal. calcd. for C21H24ClN3OS: C, 62.75; H, 6.02;
N, 10.45; S, 7.98. Found: C, 62.71; H, 5.96; N, 10.40; S, 7.94.

10-(2-(N-Pyrrolidinyl)ethyl)oxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3k). Yield: 83%;
1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 1.80–1.90 (m, 2H, Hpyrrolidinyl), 1.90–2.05 (m, 2H, Hpyrrolidinyl),
3.02–3.12 (m, 2H, NCH2), 3.51–3.62 (m, 4H, Hpyrrolidinyl), 4.11 (s, 3H, NCH3), 4.30–4.35 (t, J = 4.8 Hz, 2H,
OCH2), 6.80–6.85 (m, 2H, Harom), 7.50–7.56 (m, 1H, Harom), 7.78–7.84 (m, 1H, Harom), 8.02–8.07 (m, 1H,
Harom), 8.61 (s, 1H, H6), 8.95–9.00 (m, 1H, Harom), 10.95–11.04 (m, 1H, Harom), 11.13 (s, 1H, NH); Anal.
calcd. for C22H24ClN3OS: C, 63.83; H, 5.84; N, 10.15; S, 7.74. Found: C, 63.86; H, 5.78; N, 10.11; S, 7.70.

10-(2-(N-Piperidinyl)ethyl)oxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3l). Yield: 86%;
1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 1.32–1.45 (m, 2H, Hpiperydyl), 1.70–1.90 (m, 4H, Hpiperydyl),
2.95–3.10 (t, J = 4.8 Hz, 2H, NCH2), 3.45–3.50 (m, 4H, Hpiperydyl), 4.15 (s, 3H, NCH3), 4.38–4.43
(t, J = 4.8 Hz, 2H, OCH2), 6.73–6.78 (d.d, 3J = 9 Hz, 4J = 3 Hz, 1H, H9), 7.01–7.05 (d, 3J = 9 Hz, 1H, H8),
7.32–7.34 (d, 3J = 3 Hz, 1H, H11), 7.81–7.88 (m, 1H, Harom), 8.01–8.10 (m, 2H, Harom), 8.69 (s, 1H, H6),
8.98–9.04 (m, 1H, Harom), 10.46 (s, 1H, NH). Anal. calcd. for C23H26ClN3OS: C, 64.55; H, 6.12; N, 9.82;
S, 7.49. Found: C, 64.50; H, 6.06; N, 9.78; S, 7.45.

10-(2-(N-morpholinyl)ethyl)oxy-5-methyl-12(H)-quino[3,4-b][1,4]benzothiazinium chloride (3m). Yield: 100%;
1H-NMR (DMSOd-6, 600 MHz) δ (ppm): 3.12–3.33 (m, 4H, Hmorpholinyl), 3.85–4.02 (m, 6H, NCH2,
4Hmorpholinyl), 4.16 (s, 3H, NCH3), 4.38–4.45 (t, J = 4.2 Hz, OCH2), 6.75–6.78 (d.d, 3J = 9 Hz, 4J = 2.4 Hz,
H9), 7.02–7.06 (d, 3J = 9 Hz, 1H, H8), 7.48–7.53 (d, 4J = 2.4 Hz, 1H, H11), 7.78–7.68 (m, 1H, Harom),
8.03–8.12 (m, 2H, Harom), 8.71 (s, 1H, H6), 9.16–9.20 (m, 1H, Harom), 11.38 (s, 1H, NH). Anal. calcd. for
C22H24ClN3OS: C, 61.46; H, 5.63; N, 9.77; S, 7.46. Found: C, 61.42; H, 5.59; N, 7.73; S, 7.44.

3.2. Biological Assays

3.2.1. Cell Culture

Biological activity of the examined compounds was assessed in vitrousing three cultured cell
lines: (1) MDA-MB-231 invasive breast ductal carcinoma (ATCC, Rockville, MD, USA); (2) SNB-19
glioblastoma (DSMZ, Braunschweig, Germany); (3) C-32 amelanotic melanoma (ATCC, Rockville,
MD, USA). Cell cultures were maintained using DMEM (Lonza, Basel, Switzerland) supplemented
with 10% fetal bovine serum (FBS) (Biological Industries Cromwell, CT, USA) and penicillin
(10,000 U/mL)—streptomycin (10 mg/mL) mix (Lonza, Basel, Switzerland).

3.2.2. Effect of Compounds on Number and Viability of Cells

Cells were cultured using 96 well plates (Nunc Thermo Fisher Scientific, Waltham, MA, USA).
Cells were seeded (5 × 103 cells/well) and incubated for 24 h in a standard incubator (37 ◦C, 5% CO2,
relative humidity 95%). Next, medium was replaced with fresh aliquot containing an examined
compound (0.1; 0.5; 1; 5; 10; 50; 100 µg/mL) and cells were further incubated for 72 h. Upon conclusion
of incubation, a CVDE test (Aniara, West Chester, OH, USA) using crystal violet was performed to
assess the relative number of cells in the culture. A WST-1 test (Roche) was performed to examine the
metabolic activity of cells and test for the presence of LDH in the medium (Roche Diagnostics GmbH,
Mannheim, Germany), allowing for the assessment of the relative number of dead cells (i.e., cytotoxicity
of the examined compound). UVM340 microplate readers (BIOGENET, Józefów, Poland) were used to
read absorbance values.



Molecules 2016, 21, 1455 12 of 14

CVDE Test

AKCV96.1200 kit (Aniara) was used according to the manufacturer’s instructions. The test is
based on cell membrane penetration by crystal violet and its ultimate interaction with DNA. Excess
dye was washed off, cells were lysed, and absorbance measurements were performed for test and
control samples at λ = 540 nm.

WST-1 Test

WST-1 colorimetric assay for cell proliferation (Roche Diagnostics GmbH, Mannheim, Germany,
reagent kit cat. 11644807001) is based on the viable cells’ ability to cleave the bright red-colored
stable tetrazolium salt WST-1 to dark red soluble formazan. This bioreduction occurs under the
influence of mitochondrial dehydrogenases (depends mostly on production of NAD(P)H in viable
cells). The amount of formazan dye formed correlates directly with the number of metabolically active
cells in the culture and is measured by absorbance (λ = 450 nm) following 1 h incubation of cells with
the reagent.

LDH Test

Lactate dehydrogenase (LDH) (Roche Diagnostics GmbH, Mannheim, Germany, reagent kit
cat. 11644793001) is a cytosolic enzyme released into the culture medium following cell membrane
damage. It can be used to assess the degree of toxicity of the examined substance. Relative number
of dead cells (vs. control) in culture was determined using the LDH cytotoxicity detection kit (Roche
Diagnostics GmbH, Mannheim Germany) according to the manufacturer’s protocol. Aliquots (100 µL)
of the prepared reagent were added to media transferred (fresh plate) from wells with growing cells.
Absorbance measurements (λ = 490 nm) of the samples were performed after 1 h.

3.2.3. Transcriptional Activity of H3, BCL-2, BAX and TP53 Genes

Transcriptional activity of the following genes was assessed: H3/encoding histone H3,
a proliferation marker/BCL-2 and BAX/encoding BCL-2 and BAX, respectively, two apoptosis-related
mitochondrial proteins/ and TP53/encoding P53, a cell cycle regulator/. The activity was assessed by
RT-QPCR using Opticon™ DNA Engine system (MJ Research, Watertown, NY, USA) and QuantTect®

SYBR® Green RT-PCR Kit (Qiagen, Hilden, Germany). Cultured cells were exposed (24 h) to the
examined compounds (0.5 µg/mL). RNA was extracted using Quick-RNA™ MiniPrep kit columns
(Zymo Research, Irvine, CA, USA). The extracted RNA was assessed qualitatively and quantitatively.
Integrity of total RNA was checked by electrophoresis (1.2% agarose gel, EtBr). Amount and purity
of the total RNA in extracts was determined spectrophotometrically (HP8452A apparatus, Hewlett
Packard, Waldbronn, Germany).

3.2.4. DNA Binding by the Examined Compounds

Genomic DNA was extracted from cells using silica bed columns (DNA isolation and purification
kits). The obtained material was analyzed qualitatively and quantitatively by spectrophotometry
(GeneQuant II analyzer, Pharmacia Biotech, Madrid, Spain). Extracted DNA samples were mixed
either with an examined compound at 5:1, 1:1, 1:5 (w/w) ratios, or with cisplatin at 1:1 (w/w) ratio
using 1–5 µg aliquots of the compound and DNA. Samples were applied to 0.9% agarose gel containing
0.5 mg/mL ethidium bromide (Promega, Fitchburg, WI, USA). The latter is a DNA intercalator the
UV-induced fluorescence of which increases upon DNA binding. Cisplatin forms inter- and intrastrand
crosslinks within DNA.

4. Conclusions

Reactions of tioquinantrenediinium bis-salts (1) with aromatic amines lead to tetracyclic
quinobenzothiazine derivatives (3). Intermediate products of these reactions are 1-alkyl-4-
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aminoquinolinium-3-thiolates (2), the cyclization of which in the presence of atmospheric oxygen
and a hydrogen chloride donor leads to the formation of 1,4-thiazine ring. Using this method
of synthesis, novel derivatives were obtained containing hydroxyl, methoxyl, phenyl, piperidyl,
and piperazinyl substituents in positions 9 and 11 of the quinobenzothiazine system. Alkylation of
the hydroxyl group in position 10 allowed for the introduction of additional substituents such as
alkyl, aminoalkyl, and aminoalkyl with heterocyclic nitrogen-containing rings (pyrrolidine, piperidine,
and morpholine). Four compounds selected for further analysis were active towards the three tested
cancer cell lines (MDA-MB-231, SNB-19, and C-32) (IC50 range 0.5–24.5 µM). Based on the results
of CVDE, WST-1, and LDH tests it may be concluded that exposition to these compounds causes
concentration-dependent reduction in the number of cultured cells. The four leading compounds can
be ranked in the following order: 3e > 3k > 3f > 3c. The observed antiproliferative effect is not the result
of the cytotoxic action of these derivatives leading to cell death; rather, it is the consequence of inhibited
cell proliferation. The inhibition appears to be the result of these compounds binding to cellular DNA.
The greatest inhibiting activity was demonstrated by compounds containing additional amine moieties
in the structure. Their presence in the molecule could stabilize complex compound-DNA by enabling
formation of additional hydrogen bonds with purine and pyrimidine bases in the DNA. The strongest
DNA binding was observed for derivative (3e) containing a piperazine ring in position 9 and for
derivative (3k) with a piperazine ring-containing substituent in position 10.
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