Supplementary Materials: Synthesis and In Vitro Cytotoxic Properties of Polycarbo-Substituted 4-(Arylamino)quinazolines

Hugues Kamdem Paumo, Tshepiso Jan Makhafola and Malose Jack Mphahlele

1. Detailed Experimental Section

1.1. Generalised Procedure for the Aminination of 1a-d

A stirred mixture of **1** (1 equiv.), 3-fluoroaniline (1.1 equiv.) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (5 mL/mmol of **1**) was heated at 70 °C for 5 h and then allowed to cool to RT. The reaction mixture was quenched with an ice-cold water and the product was extracted into ethyl acetate. The organic layers were washed with an aqueous solution of NaHCO₃, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure to afford **2** as a solid. The following products (**2a–d**) were prepared in this fashion:

Bromo-N-(3-*fluorophenyl*)-8-*iodo-2-phenylquinazolin-4-amine* (**2a**): Yellow solid (1.07 g, 92%), mp. 199–200 °C; ν_{max} (ATR) 445, 551, 701, 770, 957, 1128, 1306, 1397, 1448, 1541, 1590, 1616, 3424 cm⁻¹; δ _H (500 MHz, DMSO-*d*₆) 7.02 (td, *J* = 2.5 and 8.0 Hz, 1H), 7.50 (q, *J* = 8.0 Hz, 1H), 7.55–7.58 (m, 3H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.95 (dt, *J* = 2.0 and 11.5 Hz, 1H), 8.48–8.49 (m, 2H), 8.57 (d, *J* = 1.5 Hz, 1H), 8.89 (d, *J* = 1.5 Hz, 1H), 10.13 (s, 1H); δ _C (125 MHz, DMSO-*d*₆) 105.2, 109.3 (d, ²*J*_{CF} = 26.5 Hz), 110.8 (d, ²*J*_{CF} = 20.9 Hz), 115.7, 118.2 (d, ⁴*J*_{CF} = 2.8 Hz), 119.4, 126.3, 128.5, 129.1, 130.6 (d, ³*J*_{CF} = 8.5 Hz), 131.5, 137.9, 141.2 (d, ³*J*_{CF} = 11.3 Hz), 145.2, 149.2, 157.9, 160.5, 162.4 (d, ¹*J*_{CF} = 239.8 Hz); *m*/*z* 520 (100, MH⁺); HRMS (ES): MH⁺, found 519.9230. C₂₀H₁₃BrFIN₃⁺ requires 519.9243.

6-Bromo-N-(3-fluorophenyl)-2-(4-fluorophenyl)-8-iodoquinazolin-4-amine (**2b**): Yellow solid (1.03 g, 89%), mp. 248–249 °C; ν_{max} (ATR) 446, 522, 559, 682, 709, 794, 961, 1145, 1303, 1395, 1444, 1546, 1586, 1611, 3452 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 7.00 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.37 (t, *J* = 2.0 and 9.0 Hz, 2H), 7.48 (q, *J* = 8.0 Hz, 1H), 7.71 (dd, *J* = 1.5 and 8.5 Hz, 1H), 7.86 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.46 (t, *J* = 9.0 Hz, 2H), 8.51 (d, *J* = 2.0 Hz, 1H), 8.82 (d, *J* = 2.0 Hz, 1H), 10.08 (s, 1H); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 105.0, 109.3 (d, ²*J*CF = 26.6 Hz), 110.9 (d, ²*J*CF = 20.9 Hz), 115.5, 116.0 (d, ²*J*CF = 21.7 Hz), 118.2 (d, ⁴*J*CF = 2.8 Hz), 119.3, 126.3, 130.5 (d, ³*J*CF = 9.3 Hz), 130.7 (d, ³*J*CF = 9.5 Hz), 134.3 (d, ⁴*J*CF = 2.8 Hz), 141.1 (d, ³*J*CF = 11.3 Hz), 145.1, 149.0, 157.9, 159.4, 162.4 (d, ¹*J*CF = 239.8 Hz), 164.5 (d, ¹*J*CF = 246.5 Hz); *m*/z 539 (100, MH⁺); HRMS (ES): MH⁺, found 538.9250. C₂₀H₁₂BrF₂IN₃⁺ requires 538.9129.

6-Bromo-2-(4-chlorophenyl)-N-(3-fluorophenyl)-8-iodoquinazolin-4-amine (**2c**): Yellow solid (1.08 g, 94%), mp. 236–237 °C; ν_{max} (ATR) 438, 480, 550, 669, 701, 775, 964, 1131, 1299, 1387, 1458, 1542, 1587, 1602, 3428 cm⁻¹; δ_H (500 MHz, DMSO- d_6) 7.02 (td, *J* = 2.5 and 8.0 Hz, 1H), 7.49 (q, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.72 (dd, *J* = 1.5 and 8.0 Hz, 1H), 7.86 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.43 (d, *J* = 8.5 Hz, 2H), 8.56 (d, *J* = 2.0 Hz, 1H), 8.82 (d, *J* = 2.0 Hz, 1H), 10.14 (s, 1H); δ_C (125 MHz, DMSO- d_6) 105.1, 109.4 (d, ²*J*_{CF} = 25.6 Hz), 110.9 (d, ²*J*_{CF} = 20.9 Hz), 115.8, 118.3 (d, ⁴*J*_{CF} = 2.8 Hz), 119.5, 126.4, 129.2, 130.1, 130.5 (d, ³*J*_{CF} = 8.6 Hz), 136.3, 136.8, 141.0 (d, ³*J*_{CF} = 10.3 Hz), 145.2, 149.1, 158.0, 159.5, 162.4 (d, ¹*J*_{CF} = 239.8 Hz); *m/z* 555 (100, MH⁺); HRMS (ES): MH⁺, found 554.9409. C₂₀H₁₂BrClFIN₃⁺ requires 554.9407.

6-Bromo-N-(3-fluorophenyl)-8-iodo-2-(4-methoxyphenyl)quinazolin-4-amine (2d): Yellow solid (1.04 g, 90%), mp. 181–183 °C; ν_{max} (ATR) 444, 551, 675, 762, 792, 959, 1128, 1164, 1242, 1408, 1458, 1542, 1588, 1609, 2830, 2933, 3413 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-*d*₆) 3.83 (s, 3H), 6.98 (td, *J* = 2.5 and 8.5 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 2H), 7.47 (q, *J* = 8.5 Hz, 1H), 7.72 (dd, *J* = 1.5 and 8.0 Hz, 1H), 7.92 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.39 (d, *J* = 9.0 Hz, 2H), 8.49 (d, *J* = 2.0 Hz, 1H), 8.81 (d, *J* = 2.0 Hz, 1H), 10.01 (s, 1H); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆) 55.8, 104.9, 109.1 (d, ²*J*_{CF} = 26.3 Hz), 110.7 (d, ²*J*_{CF} = 20.6 Hz), 114.4, 115.3, 118.1 (d, ⁴*J*_{CF} = 2.8 Hz), 118.7, 126.2, 130.2, 130.3, 130.5 (d, ³*J*_{CF} = 8.6 Hz), 141.2 (d, ³*J*_{CF} = 10.3 Hz), 144.9, 149.2, 157.7, 160.3, 162.1, 162.4 (d, ¹*J*_{CF} = 239.3 Hz); *m*/z 550 (100, MH⁺); HRMS (ES): MH⁺, found 549.9417. C₂₁H₁₅BrFIN₃O⁺ requires 549.9427.

Molecules 2016, 21, 1366

1.2 Generalised Procedure for the One-Pot Two-Step Sequential Amination and Suzuki-Miyaura Cross-Coupling of **1a–d**

A stirred mixture of **1a** (0.50 g, 1.12 mmol), 3-fluoroaniline (0.14 g, 1.23 mmol) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (v/v, 10 mL) was heated at 70 °C for 5 h until the starting material was completely consumed (thin layer chromatography monitoring) and then cooled to RT. The cooled mixture was treated sequentially with Pd(PPh₃)₄ (0.064 g, 0.056 mmol) and a solution of K₂CO₃ (0.46 g, 3.36 mmol) in water (5 mL) followed by purging with argon gas for 30 min. A solution of 4-methoxyphenylboronic acid (0.20 g, 1.34 mmol) in THF (5 mL) was then injected using a syringe. The reaction mixture was stirred at 70 °C for additional 3 h and then quenched with an ice-cold water. The product was extracted into ethyl acetate and the combined organic layers were washed with water, dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **3a** as a solid. Compounds **3b–d** were also prepared in this fashion from the corresponding substrates.

6-Bromo-N-(3-fluorophenyl)-8-(4-methoxyphenyl)-2-phenylquinazolin-4-amine (**3a**): Yellow solid (0.45 g, 82%), *R*_f (toluene) 0.40, mp. 210–211 °C; ν_{max} (ATR) 450, 501, 565, 676, 717, 773, 829, 975, 1061, 1147, 1289, 1351, 1395, 1440, 1557, 1607, 2846, 3018, 3426 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-*d*₆) 3.86 (s, 3H), 7.00 (td, *J* = 2.0 and 8.5 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 2H), 7.50 (m, 4H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 2.5 Hz, 1H), 8.00 (dt, *J* = 2.0 and 8.5 Hz, 1H), 8.30–8.32 (m, 2H), 8.82 (d, *J* = 2.0 Hz, 1H), 10.04 (s, 1H); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆) 55.6, 109.1 (d, ²*J*_{CF} = 26.6 Hz), 110.3 (d, ²*J*_{CF} = 20.8 Hz), 113.7, 116.2, 118.0 (d, ⁴*J*_{CF} = 2.7 Hz), 119.0, 124.5, 128.3, 129.0, 129.3, 129.7, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 131.0, 132.5, 135.9, 138.5, 141.3 (d, ³*J*_{CF} = 10.3 Hz), 147.3, 157.7, 158.9, 159.5, 162.5 (d, ¹*J*_{CF} = 239.0 Hz); *m*/z 500 (100, MH⁺); HRMS (ES): MH⁺, found 500.0780. C₂₇H₂₀BrFN₃O⁺ requires 500.0774.

6-Bromo-N-(3-fluorophenyl)-2-(4-fluorophenyl)-8-(4-methoxyphenyl)-quinazolin-4-amine (**3b**): Yellow solid (0.41 g, 74%), *R*^f (toluene) 0.56, mp. 215–217 °C; ν_{max} (ATR) 556, 565, 576, 673, 752, 762, 825, 1162, 1249, 1419, 1489, 1507, 1533, 1559, 1610, 2836, 2922, 3459 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-*d*₆) 3.81 (s, 3H), 7.00 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.05 (d, *J* = 9.0 Hz, 2H), 7.35 (t, *J* = 9.0 Hz, 2H), 7.49 (q, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 8.0 Hz, 2H), 7.96–7.99 (m, 2H), 8.22 (d, *J* = 8.5 Hz, 2H), 8.83 (d, *J* = 2.0 Hz, 1H), 10.01 (s, 1H); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆) 55.7, 109.0 (d, ²*J*_{CF} = 25.5 Hz), 110.4 (d, ²*J*_{CF} = 20.9 Hz), 114.4, 115.0 (d, ²*J*_{CF} = 21.7 Hz), 115.9, 118.0 (d, ⁴*J*_{CF} = 2.8 Hz), 118.3, 125.1, 130.0, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 133.8 (d, ⁴*J*_{CF} = 2.7 Hz), 136.2, 140.1, 141.5 (d, ³*J*_{CF} = 11.3 Hz), 147.4, 157.5, 159.0, 161.8, 162.4 (d, ¹*J*_{CF} = 243.6 Hz), 162.5 (d, ¹*J*_{CF} = 240.0 Hz); *m*/z 518 (100, MH⁺); HRMS (ES): MH⁺, found 518.0681. C₂₇H₁₉BrF₂N₃O⁺ requires 518.0680.

6-Bromo-2-(4-chlorophenyl)-N-(3-fluorophenyl)-8-(4-methoxyphenyl)quinazolin-4-amine (**3c**): Yellow solid (0.44 g, 79%), *R*_f (toluene) 0.57, mp. 245–246 °C; ν_{max} (ATR) 488, 565, 745, 770, 801, 832, 1012, 1086, 1145, 1246, 1348, 1404, 1463, 1489, 1510, 1529, 1555, 1606, 2841, 3423 cm⁻¹; δ_H (500 MHz, DMSO-*d*₆) 3.85 (s, 3H), 7.00 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.49 (q, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.76 (dd, *J* = 1.5 and 8.0 Hz, 1H), 7.91 (dt, *J* = 2.5 and 11.5 Hz, 1H), 7.97 (d, *J* = 2.5 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 2H), 8.80 (d, *J* = 2.5 Hz, 1H), 10.06 (s, 1H); δ_C (125 MHz, DMSO-*d*₆) 55.6, 109.2 (d, ²*J*_{CF} = 26.3 Hz), 110.6 (d, ²*J*_{CF} = 20.6 Hz), 113.7, 116.2, 118.3 (d, ⁴*J*_{CF} = 2.8 Hz), 119.2, 124.5, 129.1, 129.6, 129.9, 130.5 (d, ³*J*_{CF} = 9.1 Hz), 132.4, 135.8, 136.0, 137.4, 141.2, 141.3 (d, ³*J*_{CF} = 13.7 Hz), 147.2, 157.8, 158.0, 159.5, 162.4 (d, ¹*J*_{CF} = 239.3 Hz); *m*/z 534 (100, MH⁺); HRMS (ES): MH⁺, found 534.0399. C₂₇H₁₉BrClFN₃O⁺ requires 534.0384.

6-Bromo-N-(3-fluorophenyl)-2,8-bis(4-methoxyphenyl)quinazolin-4-amine (**3d**): Yellow solid (0.45 g, 80%), *R*^f (toluene) 0.26, mp. 212–213 °C; ν_{max} (ATR) 521, 576, 752, 804, 831, 1164, 1239, 1346, 1418, 1509, 1526, 1559, 1592, 1608, 2837, 2936, 3006, 3406 cm⁻¹; $\delta_{\rm H}$ (500 MHz, DMSO-*d*₆) 3.79 (s, 3H), 3.84 (s, 3H), 6.98 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.02 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 9.0 Hz, 2H), 7.47 (q, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 9.0 Hz, 2H), 7.76 (dd, *J* = 1.5 and 8.0 Hz, 1H), 7.91 (d, *J* = 1.5 Hz, 1H), 7.97 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.23 (d, *J* = 9.0 Hz, 2H), 8.76 (d, *J* = 1.5 Hz, 1H), 9.96 (s, 1H); $\delta_{\rm C}$ (125 MHz, DMSO-*d*₆) 55.6, 55.7, 109.0 (d, ²*J*_{CF} = 25.6 Hz), 110.3 (d, ²*J*_{CF} = 20.8 Hz), 113.7, 114.3, 115.9, 117.9 (d, ⁴*J*_{CF} = 2.7 Hz), 118.4, 124.4, 129.7, 129.9, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 130.9, 132.4, 135.7, 141.0, 141.5 (d, ³*J*_{CF} = 10.3 Hz), 147.4, 157.5,

Molecules 2016, 21, 1366

158.8, 159.5, 161.8, 162.4 (d, ${}^{1}J_{CF}$ = 239.8 Hz); *m*/*z* 530 (100, MH⁺); HRMS (ES): MH⁺, found 530.0891. C₂₈H₂₂BrFN₃O₂⁺ requires 530.0879.

1.3. A General Procedure for the One-Pot Two-Step Sequential Amination and Sonogashira Cross-Coupling of **1a–d**

A stirred mixture of **1a** (0.40 g, 0.89 mmol), 3-fluoroaniline (0.11 g, 0.98 mmol) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (v/v, 10 mL) in a two necked flask equipped with rubber septum and a condenser fitted with calcium chloride tube was heated at 70 °C for 5 h. After cooling, Pd(PPh₃)₄ (0.051 g, 0.044 mmol), CuI (0.008 g, 0.044 mmol) K₂CO₃ (0.37 g, 2.67 mmol) and 3-butyn-2-ol (0.081 g, 1.15 mmol) in THF (5 mL) were introduced to the mixture under argon atmosphere. A balloon filled with argon was fitted to the top of the condenser and the mixture was stirred for additional 18 h at RT under argon atmosphere. The mixture was quenched with an ice-cold water and the product was extracted into ethyl acetate. The combined organic layers were washed with water, dried over anhyd. MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **4a**. Compounds **4b–d** were also prepared from the corresponding substrates in this fashion.

4-[6-Bromo-4-(3-fluorophenylamino)-2-phenylquinazolin-8-yl]but-3-yn-2-ol (4a): Orange solid (0.26 g, 63%), R_f (9:1 toluene-ethyl acetate) 0.26, mp. 172–174 °C; v_{max} (ATR) 539, 697, 712, 782, 861, 1071, 1142, 1368, 1470, 1524, 1556, 1612, 2924, 3070, 3308, 3478 cm⁻¹; δ_H (500 MHz, DMSO-*d*₆) 1.51 (d, *J* = 6.5 Hz, 3H), 4.76 (d, *J* = 6.0 Hz, 1H), 5.60 (d, *J* = 6.0 Hz, 1H), 7.00 (td, *J* = 2.5 and 8.0 Hz, 1H), 7.51 (q, *J* = 8.0 Hz, 1H), 7.52–7.59 (m, 3H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.95 (dt, *J* = 2.0 and 11.5 Hz, 1H), 8.05 (d, *J* = 2.0 Hz, 1H), 8.46–8.49 (m, 2H), 8.83 (d, *J* = 2.0 Hz, 1H), 10.06 (s, 1H); δ_C (125 MHz, DMSO-*d*₆) 24.9, 57.1, 78.6, 101.2, 109.0 (d, ²*J*_{CF} = 25.6 Hz), 110.5 (d, ²*J*_{CF} = 20.8 Hz), 115.5, 117.8, 117.9 (d, ⁴*J*_{CF} = 2.8 Hz), 119.1, 128.2, 128.3, 128.7, 130.3 (d, ³*J*_{CF} = 9.5 Hz), 131.1, 137.8, 138.9, 140.9 (d, ³*J*_{CF} = 11.3 Hz), 150.9, 157.3, 159.5, 162.2 (d, ¹*J*_{CF} = 239.0 Hz); *m*/z 462 (100, MH⁺); HRMS (ES): MH⁺, found 462.0620. C₂₄H₁₈BrFN₃O⁺ requires 462.0617.

4-[6-Bromo-2-(4-fluorophenyl)-4-(3-fluorophenylamino)quinazolin-8-yl]but-3-yn-2-ol (**4b**): Orange solid (0.29 g, 72%), R_f (9:1 toluene-ethyl acetate) 0.30, mp. 194–196 °C; v_{max} (ATR) 414, 581, 675, 769, 803, 844, 1098, 1147, 1221, 1350, 1471, 1527, 1558, 1611, 3073, 3360, 3471 cm⁻¹; δ_H (500 MHz, DMSO- d_6) 1.52 (d, J = 7.0 Hz, 3H), 4.76 (p, J = 6.0 Hz, 1H), 5.61 (d, J = 6.0 Hz, 1H), 7.01 (td, J = 2.0 and 8.0 Hz, 1H), 7.37 (t, J = 8.5 Hz, 2H), 7.49 (q, J = 8.5 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.89 (dt, J = 2.5 and 11.5 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 8.50 (t, J = 8.0 Hz, 2H), 8.82 (d, J = 2.0 Hz, 1H), 10.07 (s, 1H); δ_C (125 MHz, DMSO- d_6) 25.1, 57.4, 78.9, 101.4, 109.3 (d, ²J_{CF} = 25.6 Hz), 110.8 (d, ²J_{CF} = 19.9 Hz), 115.7, 116.0 (d, ²J_{CF} = 21.7 Hz), 118.1 (d, ⁴J_{CF} = 2.8 Hz), 118.3, 124.3, 126.1, 130.6 (d, ³J_{CF} = 9.5 Hz), 130.8 (d, ³J_{CF} = 8.5 Hz), 134.6 (d, ⁴J_{CF} = 2.7 Hz), 139.2, 141.0 (d, ³J_{CF} = 10.3 Hz), 150.1, 157.6, 158.8, 162.4 (d, ¹J_{CF} = 239.8 Hz), 164.4 (d, ¹J_{CF} = 247.5 Hz); m/z 480 (100, MH⁺); HRMS (ES): MH⁺, found 480.0526. C₂₄H₁₇BrF₂N₃O⁺ requires 480.0523.

4-[6-Bromo-2-(4-chlorophenyl)-4-(3-fluorophenylamino)quinazolin-8-yl]but-3-yn-2-ol (4c): Orange solid (0.28 g, 68%), R_f (9:1 toluene-ethyl acetate) 0.55, mp. 211–213 °C; v_{max} (ATR) 486, 676, 741, 768, 802, 842, 1086, 1099, 1142, 1348, 1365, 1466, 1488, 1528, 1557, 1611, 3073, 3350, 3467 cm⁻¹; δ_H (500 MHz, DMSO- d_6) 1.52 (d, J = 7.0 Hz, 3H), 4.76 (p, J = 6.0 Hz, 1H), 5.61 (d, J = 6.0 Hz, 1H), 7.02 (td, J = 2.5 and 8.5 Hz, 1H), 7.50 (q, J = 8.0 Hz, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.74 (dd, J = 1.5 and 8.5 Hz, 1H), 7.88 (dt, J = 2.5 and 12.0 Hz, 1H), 8.07 (d, J = 2.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 2H), 8.84 (d, J = 2.0 Hz, 1H), 10.12 (s, 1H); δc (125 MHz, DMSO- d_6) 25.1, 57.4, 78.8, 101.5, 109.3 (d, ² $_J$ CF = 25.6 Hz), 110.9 (d, ² $_J$ CF = 20.7 Hz), 115.8, 118.3, 118.4 (d, ⁴ $_J$ CF = 2.8 Hz), 124.3, 126.1, 129.1, 130.1, 130.6 (d, ³ $_J$ CF = 9.5 Hz), 141.0 (d, ³ $_J$ CF = 10.3 Hz), 136.2, 137.0, 139.3, 150.1, 157.6, 158.8, 162.4 (d, ¹ $_J$ CF = 239.8 Hz); m/z 496 (100, MH⁺); HRMS (ES): MH⁺, found 496.0220. C₂₄H₁₇BrClFN₃O⁺ requires 497.0228.

4-[6-Bromo-4-(3-fluorophenylamino)-2-(4-methoxyphenyl)quinazolin-8-yl]but-3-yn-2-ol (**4d**): Yellow solid (0.24 g, 59%), *R*_ℓ (9:1 toluene-ethyl acetate) 0.20, mp. 163–164 °C; v_{max} (ATR) 412, 536, 582, 674, 768, 799, 839, 869, 1028, 1144, 1162, 1242, 1348, 1362, 1418, 1488, 1528, 1588, 1608, 2926, 3069, 3359 cm⁻¹; δ _H (500 MHz, DMSO-*d*₆) 1.52 (d, *J* = 7.0 Hz, 3H), 3.84 (s, 3H), 4.76 (p, *J* = 5.5 Hz, 1H), 5.62 (d, *J* = 5.0 Hz, 1H), 7.00 (td, *J* = 1.5 and 8.5 Hz, 1H), 7.09 (d, *J* = 9.0 Hz, 2H), 7.49 (q, *J* = 8.0 Hz, 1H), 7.74 (dd, *J* = 2.0

and 8.5 Hz, 1H), 7.92 (dt, J = 2.5 and 11.5 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 8.43 (d, J = 9.0 Hz, 2H), 8.81 (d, J = 2.5 Hz, 1H), 10.02 (s, 1H); δ_{C} (125 MHz, DMSO- d_{6}) 25.1, 55.8, 57.4, 79.0, 101.2, 109.1 (d, ${}^{2}J_{CF} = 25.6$ Hz), 110.6 (d, ${}^{2}J_{CF} = 20.8$ Hz), 114.4, 115.5, 117.4, 118.1 (d, ${}^{4}J_{CF} = 1.9$ Hz), 124.1, 126.1, 128.6, 130.2, 130.5 (d, ${}^{3}J_{CF} = 7.6$ Hz), 139.1, 141.2 (d, ${}^{3}J_{CF} = 10.3$ Hz), 150.3, 157.4, 159.6, 162.1, 162.4 (d, ${}^{1}J_{CF} = 239.8$ Hz); m/z 492 (100, MH⁺); HRMS (ES): MH⁺, found 492.0724. C₂₅H₂0BrFN₃O₂⁺ requires 492.0723.

1.4. Generalised Procedure for the One-Pot Three-Step Sequential Amination and Bis-Suzuki–Miyaura Cross-Coupling of **1a**–**d**

A stirred mixture of **1a** (0.50 g, 1.12 mmol), 3-fluoroaniline (0.14 g, 1.23 mmol) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (v/v, 10 mL) in a two necked flask equipped with rubber septum and a condenser fitted with calcium chloride tube was heated at 70 °C for 5 h. After cooling, 4-methoxyphenylboronic acid (0.20 g, 1.34 mmol), Pd(PPh₃)₄ (0.064 g, 0.056 mmol) and K₂CO₃ (0.46 g, 3.36 mmol) were introduced to the mixture under argon atmosphere. A balloon filled with argon was fitted to the top of the condenser and the stirred mixture was heated at 70 °C for 3 h. A solution of 4-fluorophenylboronic acid (0.20 g, 1.45 mmol) in THF (5 mL) was then introduced via a syringe and heating was continued at this temperature under argon atmosphere for additional 3 h. The mixture was, in turn, quenched with an ice-cold water and the product was extracted into ethyl acetate. The combined organic layers were washed with water, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **5a**. Compounds **5b–d** were also prepared in this fashion from their corresponding substrates.

6-(4-Fluorophenyl)-N-(3-fluorophenyl)-8-(4-methoxyphenyl)-2-phenylquinazolin-4-amine (**5a**): Yellow solid (0.43 g, 75%), *R*_f (toluene) 0.41, mp. 206–207 °C; ν_{max} (ATR) 500, 521, 617, 699, 811, 830, 1147, 1249, 1475, 1488, 1511, 1527, 1567, 1605, 2838, 2958, 3060, 3417 cm⁻¹; δ_H (500 MHz, DMSO-*d*₆) 3.86 (s, 3H), 7.01 (td, *J* = 2.5 and 8.5 Hz, 1H), 7.12 (d, *J* = 9.0 Hz, 2H), 7.41 (t, *J* = 8.5 Hz, 2H), 7.48–7.54 (m, 4H), 7.80 (dd, *J* = 2.0 and 8.5 Hz, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 8.00–8.04 (m, 3H), 8.15 (d, *J* = 2.0 Hz, 1H), 8.35 (d, *J* = 8.0 Hz, 2H), 8.78 (d, *J* = 2.0 Hz, 1H), 10.11 (s, 1H); δ_c (125 MHz, DMSO-*d*₆) 55.6, 109.2 (d, ²*J*_{CF} = 25.6 Hz), 110.4 (d, ²*J*_{CF} = 20.8 Hz), 113.6, 115.1, 116.2 (d, ²*J*_{CF} = 21.7 Hz), 118.1 (d, ⁴*J*_{CF} = 2.8 Hz), 119.6, 128.2, 128.9, 129.7, 129.8, 130.4 (d, ³*J*_{CF} = 9.5 Hz), 130.8, 131.1, 132.2, 132.5, 136.2 (d, ⁴*J*_{CF} = 2.7 Hz), 136.8, 138.8, 139.5, 141.6 (d, ³*J*_{CF} = 11.3 Hz), 147.6, 158.5, 158.7, 159.3, 162.5 (d, ¹*J*_{CF} = 239.8 Hz), 162.6 (d, ¹*J*_{CF} = 243.7 Hz); *m*/z 516 (100, MH⁺); HRMS (ES): MH⁺, found 516.1895. C₃₃H₂₄F₂N₃O⁺ requires 516.1887.

N-(3-*Fluorophenyl*)-2,6-*bis*(4-*fluorophenyl*)-8-(4-*methoxyphenyl*)*quinazolin*-4-*amine* (**5b**): Brown solid (0.44 g, 76%), *R*^f (toluene) 0.42, mp. 227–228 °C; v_{max} (ATR) 437, 527, 587, 750, 804, 824, 1141, 1181, 1213, 1247, 1507, 1574, 1596, 1617, 2926, 2956, 3460 cm⁻¹; δ_{H} (500 MHz, DMSO-*d*₆) 3.84 (s, 3H), 7.00 (td, *J* = 2.5 and 8.0 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 7.32 (t, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 8.5 Hz, 2H), 7.49 (q, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.93 (dt, *J* = 2.5 and 11.5 Hz, 1H), 7.99 (t, *J* = 8.0 Hz, 2H), 8.11 (d, *J* = 1.5 Hz, 1H), 8.34 (t, *J* = 8.0 Hz, 2H), 8.75 (d, *J* = 1.5 Hz, 1H), 10.10 (s, 1H); δ_{c} (125 MHz, DMSO-*d*₆) 55.6, 109.0 (d, ²*J*_{CF} = 25.6 Hz), 110.5 (d, ²*J*_{CF} = 20.8 Hz), 113.6, 115.0, 115.9 (d, ²*J*_{CF} = 20.8 Hz), 116.2 (d, ²*J*_{CF} = 20.8 Hz), 118.3 (d, ⁴*J*_{CF} = 2.7 Hz), 119.7, 129.7 (d, ³*J*_{CF} = 7.6 Hz), 130.4 (d, ³*J*_{CF} = 8.5 Hz), 130.5 (d, ³*J*_{CF} = 9.5 Hz), 131.0, 132.3, 132.5, 135.2 (d, ⁴*J*_{CF} = 240.0 Hz), 162.6 (d, ¹*J*_{CF} = 243.6 Hz), 164.1 (d, ¹*J*_{CF} = 245.6 Hz); *m*/z 534 (100, MH⁺); HRMS (ES): MH⁺, found 534.1793. C_{33H23}F₃N₃O⁺ requires 534.1798.

2-(4-Chlorophenyl)-N-(3-fluorophenyl)-6-(4-fluorophenyl)-8-(4-methoxyphenyl) quinazolin-4-amine (5c): Brown solid (0.38 g, 68%), R_f (toluene) 0.54, mp. 213–214 °C; v_{max} (ATR) 433, 521, 528, 553, 745, 803, 825, 1142, 1214, 1246, 1396, 1489, 1508, 1563, 1602, 2925, 2956, 3441 cm⁻¹; δ_{H} (500 MHz, DMSO- d_6) 3.86 (s, 3H), 7.00 (td, J = 2.5 and 8.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 9.0 Hz, 2H), 7.50 (q, J = 8.5 Hz, 1H), 7.56 (d, J = 9.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 9.0 Hz, 2H), 7.92 (dt, J = 2.5 and 11.5 Hz, 1H), 8.00 (d, J = 9.0 Hz, 2H), 8.13 (d, J = 2.5 Hz, 1H), 8.30 (d, J = 8.0 Hz, 2H), 8.75 (d, J = 2.5 Hz, 1H), 10.11 (s, 1H); δ_c (125 MHz, DMSO- d_6) 55.6, 109.3 (d, $^2J_{CF} = 25.6$ Hz), 110.6 (d, $^2J_{CF} = 20.8$ Hz), 113.7, 115.1, 116.2 (d, $^2J_{CF} = 20.7$ Hz), 118.3 (d, $^4J_{CF} = 2.8$ Hz), 119.6, 129.0, 129.7, 129.8, 129.8, 130.5 (d, $^3J_{CF} = 9.1$ Hz), 131.0, 132.3, 132.5, 135.6, 136.2 (d, ⁴*J*_{CF} = 2.7 Hz), 137.7, 139.5, 141.5 (d, ³*J*_{CF} = 11.3 Hz), 147.4, 157.6, 158.7, 159.3, 162.5 (d, ¹*J*_{CF} = 239.8 Hz), 162.6 (d, ¹*J*_{CF} = 243.7 Hz); *m*/*z* 550 (100, MH⁺); HRMS (ES): MH⁺, found 550.1516. C₃₃H₂₃ClF₂N₃O⁺ requires 550.1498.

N-(3-*Fluorophenyl*)-6-(4-*fluorophenyl*)-2,8-*bis*(4-*methoxyphenyl*)*quinazolin*-4-*amine* (**5d**): Brown solid (0.37 g, 66%), *R*^f (9:1 toluene-ethyl acetate) 0.71, mp. 196–197 °C; v_{max} (ATR) 520, 591, 770, 802, 822, 1033, 1157, 1244, 1401, 1415, 1506, 1604, 2834, 2905, 2932, 3454 cm⁻¹; δ_{H} (500 MHz, DMSO-*d*₆) 3.80 (s, 3H), 3.85 (s, 3H), 6.99 (td, *J* = 1.5 and 8.5 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 8.5 Hz, 2H), 7.49 (q, *J* = 8.0 Hz, 1H), 7.77 (dd, *J* = 1.5 and 8.0 Hz, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.97–8.00 (m, 3H), 8.09 (d, *J* = 1.5 Hz, 1H), 8.27 (d, *J* = 9.0 Hz, 2H), 8.73 (d, *J* = 1.5 Hz, 1H), 10.03 (s, 1H); δ_{c} (125 MHz, DMSO-*d*₆) 55.6, 55.7, 109.1 (d, ²*J*_{CF} = 25.6 Hz), 110.3 (d, ²*J*_{CF} = 20.8 Hz), 113.6, 114.3, 114.8, 116.2 (d, ²*J*_{CF} = 21.8 Hz), 118.1 (d, ⁴*J*_{CF} = 2.7 Hz), 119.6, 129.7, 129.8, 129.9, 130.4 (d, ³*J*_{CF} = 9.5 Hz), 131.2 (d, ³*J*_{CF} = 11.3 Hz), 132.2, 132.5, 136.3 (d, ⁴*J*_{CF} = 2.8 Hz), 136.4, 139.2, 141.7 (d, ³*J*_{CF} = 10.3 Hz), 147.5, 158.4, 158.5, 159.2, 161.6, 162.5 (d, ¹*J*_{CF} = 239.8 Hz), 162.6 (d, ¹*J*_{CF} = 243.6 Hz); *m*/z 546 (100, MH⁺); HRMS (ES): MH⁺, found 546.1992. C₃₃H₂₄F₂N₃O⁺ requires 546.1993.

1.5. Generalised Procedure for the One-Pot Three-Step Sequential Amination and Subsequent Sonogashira and Stille Cross-Coupling of **1a–d**

A stirred mixture of **1a** (0.30 g, 0.67 mmol), 3-fluoroaniline (0.082 g, 0.74 mmol) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (v/v, 10 mL) in a two necked flask equipped with rubber septum and a condenser fitted with calcium chloride tube was heated at 70 °C for 5 h. After cooling to RT, Pd(PPh₃)₄ (0.040 g, 0.03 mmol), CuI (0.006 g, 0.033 mmol), K₂CO₃ (0.28 g, 2.01 mmol) and phenylacetylene (0.08 g, 0.80 mmol) in THF (5 mL) were introduced to the mixture under argon atmosphere. A balloon filled with argon was connected to the top of the condenser and stirring was continued for additional 18 h at r.t. under argon atmosphere. A solution of tributylstannaylfuran (0.29 g, 0.80 mmol) in THF (5 mL) was introduced to the mixture via a syringe and the stirred mixture was, in turn, heated at 70 °C for 1 h. The mixture was quenched with an ice-cold water and the product was extracted into ethyl acetate. The combined organic layers were washed with water, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **6a**. Compounds **6a–d** were also prepared in this fashion.

N-(3-*Fluorophenyl*)-6-(*furan*-2-*yl*)-2-*phenyl*-8-(*phenylethynyl*)*quinazolin*-4-*amine* (**6a**): Yellow solid (0.16 g, 51%), *R*_f (toluene) 0.35, mp. 117–119 °C; ν_{max} (ATR) 519, 590, 675, 688, 754, 861, 983, 1148, 1352, 1399, 1488, 1526, 1562, 1615, 2208, 2852, 2923, 3442 cm⁻¹; δ _H (500 MHz, DMSO-*d*₆) 6.72 (dd, *J* = 2.0 and 3.5 Hz, 1H), 7.01 (td, *J* = 2.5 and 8.5 Hz, 1H), 7.26 (d, *J* = 3.5 Hz, 1H), 7.47–7.59 (m, 7H), 7.70 (dd, *J* = 2.0 and 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 2.0 Hz, 1H), 7.96 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.44 (d, *J* = 2.0 Hz, 1H), 8.51 (dd, *J* = 2.0 and 8.5 Hz, 2H), 8.86 (d, *J* = 2.0 Hz, 1H), 10.23 (s, 1H); δ _c (125 MHz, DMSO-*d*₆) 87.5, 95.9, 108.3, 109.5 (d, ²*J*_{CF} = 25.5 Hz), 110.7 (d, ²*J*_{CF} = 21.7 Hz), 113.1, 115.0, 117.6, 118.4 (d, ⁴*J*_{CF} = 2.8 Hz), 122.6, 123.1, 128.0, 128.3, 129.1, 129.4, 129.5, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 131.1, 131.9, 132.6, 138.3 (d, ⁴*J*_{CF} = 2.8 Hz), 141.4 (d, ³*J*_{CF} = 10.5 Hz), 144.3, 150.4, 152.2, 158.4, 159.3, 162.4 (d, ¹*J*_{CF} = 239.8 Hz); m/z 482 (100, MH⁺); HRMS (ES): MH⁺, found 482.1670. C₃₂H₂₀FN₃O⁺ requires 482.1669.

N-(3-*Fluorophenyl*)-2-(4-*fluorophenyl*)-6-(*furan*-2-*yl*)-8-(*phenylethynyl*)*quinazolin*-4-*amine* (**6b**): Yellow solid (0.19 g, 60%), *R*^f (toluene) 0.41, mp. 175–178 °C; ν_{max} (ATR) 449, 521, 571, 590, 675, 690, 733, 757, 984, 1018, 1147, 1218, 1397, 1488, 1509, 1525, 1567, 1616, 3053, 3437 cm⁻¹; δ_{H} (500 MHz, DMSO-*d*₆) 6.71 (dd, *J* = 1.5 and 3.5 Hz, 1H), 7.01 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.25 (d, *J* = 3.5 Hz, 1H), 7.39 (t, *J* = 9.0 Hz, 2H), 7.44–7.54 (m, 4H), 7.70 (dd, *J* = 2.0 and 8.0 Hz, 2H), 7.76 (dd, *J* = 2.0 and 8.0 Hz, 1H), 7.90 (d, *J* = 2.0 Hz, 1H), 7.91 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.43 (d, *J* = 2.0 Hz, 1H), 8.51 (t, *J* = 8.5 Hz, 2H), 8.85 (d, *J* = 2.0 Hz, 1H), 10.23 (s, 1H); δ_{c} (125 MHz, DMSO-*d*₆) 87.4, 95.9, 108.3, 109.6 (d, ²*J*_{CF} = 26.5 Hz), 110.8 (d, ²*J*_{CF} = 20.8 Hz), 113.1, 114.9, 116.0 (d, ²*J*_{CF} = 21.8 Hz), 117.6, 118.5 (d, ⁴*J*_{CF} = 2.7 Hz), 122.6, 123.0, 128.0, 129.4, 129.5, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 130.6 (d, ³*J*_{CF} = 9.5 Hz), 131.9, 132.5 (d, ⁴*J*_{CF} = 2.8 Hz), 134.8 (d, ⁴*J*_{CF} = 2.8 Hz), 141.3 (d, ³*J*_{CF} = 10.5 Hz), 144.3, 150.3, 152.2, 158.5, 158.6, 162.4 (d, ¹*J*_{CF} = 239.8 Hz), 164.3 (d, ¹*J*_{CF} = 246.6 Hz); *m*/z 500 (100, MH⁺); HRMS (ES): MH⁺, found 500.1575. C₃₂H₂₀F₂N₃O⁺ requires 500.1574.

2-(4-*Chlorophenyl*)-*N*-(3-*fluorophenyl*)-6-(*furan*-2-*yl*)-8-(*phenylethynyl*)*quinazolin*-4-*amine* (6c): Yellow solid (017 g, 53%), *R*^{*i*} (toluene) 0.42, mp. 212–214 °C; v_{max} (ATR) 491, 588, 674, 683, 740, 753, 800, 1013, 1086, 1147, 1349, 1394, 1488, 1526, 1559, 1583, 1615, 2211, 3447 cm⁻¹; δ_{H} (500 MHz, DMSO-*d*₆) 6.72 (dd, *J* = 2.0 and 3.5 Hz, 1H), 7.02 (td, *J* = 2.0 and 8.0 Hz, 1H), 7.25 (d, *J* = 3.5 Hz, 1H), 7.46–7.55 (m, 4H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.70 (dd, *J* = 2.0 and 8.0 Hz, 2H), 7.77 (dd, *J* = 2.0 and 8.0 Hz, 1H), 7.90 (dt, *J* = 2.5 and 11.5 Hz, 1H), 7.91 (d, *J* = 2.0 Hz, 1H), 8.43 (d, *J* = 2.0 Hz, 1H), 8.47 (d, *J* = 9.0 Hz, 2H), 8.85 (d, *J* = 2.0 Hz, 1H), 10.25 (s, 1H); δ_{c} (125 MHz, DMSO-*d*₆) 87.4, 95.9, 108.4, 109.6 (d, ²*J*_{CF} = 25.6 Hz), 110.8 (d, ²*J*_{CF} = 20.8 Hz), 113.1, 115.0, 117.6, 118.5 (d, ⁴*J*_{CF} = 2.7 Hz), 122.6, 123.0, 128.1, 128.6, 129.2, 129.4, 129.9, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 131.9, 132.7 (d, ⁴*J*_{CF} = 2.8 Hz), 135.9, 137.2, 141.3 (d, ³*J*_{CF} = 10.3 Hz), 144.3, 150.3, 152.2, 158.4, 158.5, 162.4 (d, ¹*J*_{CF} = 239.8 Hz); *m*/z 516 (100, MH⁺); HRMS (ES): MH⁺, found 516.1200. C₃₂H₁₉ClFN₃O⁺ requires 516.1201.

N-(3-*Fluorophenyl*)-6-(*furan*-2-*yl*)-2-(4-*methoxyphenyl*)-8-(*phenylethynyl*)*quinazolin*-4-*amine* (6d): Yellow solid (0.20 g, 65%), *R*^{*f*} (9:1 toluene/ethyl acetate) 0.70, mp. 220–223 °C; ν_{max} (ATR) cm⁻¹; δ _H (500 MHz, DMSO-*d*₆) 3.84 (s, 3H), 6.71 (s, 1H), 7.01 (td, *J* = 2.5 and 8.5 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 2H), 7.23 (s, 1H), 7.48–7.52 (m, 4H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.90 (s, 1H), 7.96 (dt, *J* = 2.5 and 11.5 Hz, 1H), 8.41 (s, 1H), 8.45 (d, *J* = 9.0 Hz, 2H), 8.84 (s, 1H), 10.17 (s, 1H); δ _c (125 MHz, DMSO-*d*₆) 55.8, 87.6, 95.7, 108.0, 109.4 (d, ²*J*_{CF} = 25.6 Hz), 110.5 (d, ²*J*_{CF} = 19.8 Hz), 113.0, 114.5, 114.7, 117.7, 118.3 (d, ⁴*J*_{CF} = 2.7 Hz), 122.3, 123.1, 127.5, 129.4, 130.0, 130.4, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 130.8, 131.9, 136.3 (d, ⁴*J*_{CF} = 2.8 Hz), 141.4 (d, ³*J*_{CF} = 10.3 Hz), 144.2, 150.6, 152.3, 158.3, 159.2, 162.0, 162.4 (d, ¹*J*_{CF} = 239.8 Hz); *m*/z 512 (100, MH⁺); HRMS (ES): MH⁺, found 512.1776. C₃₃H₂₃FN₃O₂⁺ requires 512.1774.

1.6. Generalised Procedure for the One-Pot Three-Step Sequential Amination, Sonogashira and Suzuki– Miyaura Cross-Coupling of **1b–d**

A stirred mixture of **1b** (0.30 g, 0.67 mmol), 3-fluoroaniline (0.08 g, 0.74 mmol) and concentrated HCl (0.01 g, 0.27 mmol) in 3:1 THF-isopropanol (v/v, 10 mL) in a two necked flask equipped with rubber septum and a condenser fitted with calcium chloride tube was heated at 70 °C for 5 h. After cooling to RT, Pd(PPh₃)₄ (0.04 g, 0.03 mmol), CuI (0.006 g, 0.033 mmol), K₂CO₃ (0.28 g, 2.01 mmol) and phenylacetylene (0.08 g, 0.80 mmol) in THF (5 mL) were introduced to the mixture under argon atmosphere. An argon-filled balloon was connected to the top of the condenser and the mixture was stirred for additional 18 h at r.t. under argon atmosphere. A solution of 4-fluorophenylboronic acid (0.11 g, 0.80 mmol) in water (5 mL) was introduced via a syringe and the stirred mixture was, in turn, heated at 70 °C for 2 h followed by quenching with an ice-cold water. The product was extracted into ethyl acetate and the combined organic layers were washed with water, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to afford **7a**. Compounds **7b** and **7c** were also prepared in this fashion from their corresponding substrates.

N-(3-*Fluorophenyl*)-2,6-*bis*(4-*fluorophenyl*)-8-(*phenylethynyl*)*quinazolin*-4-*amine* (**7a**): Yellow solid (0.20 g, 59%), *R*_f (toluene) 0.51, mp. 225–227 °C; v_{max} (ATR) 518, 542, 589, 689, 753, 801, 837, 1152, 1207, 1411, 1444, 1508, 1529, 1568, 1596, 1619, 3452 cm⁻¹; δ_{H} (500 MHz, DMSO-*d*₆) 7.03 (td, *J* = 2.5 and 8.0 Hz, 1H), 7.41 (t, *J* = 9.0 Hz, 4H), 7.47–7.51 (m, 4H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.91 (dt, *J* = 2.5 and 11.5 Hz, 1H), 7.99 (t, *J* = 8.0 Hz, 2H), 8.41 (d, *J* = 1.5 Hz, 1H), 8.54 (t, *J* = 8.5 Hz, 2H), 8.83 (d, *J* = 1.5 Hz, 1H), 10.19 (s, 1H); δ_{c} (125 MHz, DMSO-*d*₆) 87.8, 95.8, 109.6 (d, ²*J*CF = 25.5 Hz), 110.8 (d, ²*J*CF = 20.8 Hz), 114.8, 116.0 (d, ²*J*CF = 21.8 Hz), 116.3 (d, ²*J*CF = 20.8 Hz), 118.5 (d, ⁴*J*CF = 1.9 Hz), 121.5, 122.5, 123.1, 129.4, 129.5, 129.7, 130.0, 130.5 (d, ³*J*CF = 9.4 Hz), 130.6 (d, ³*J*CF = 11.3 Hz), 131.9, 134.9 (d, ⁴*J*CF = 2.8 Hz), 135.3 (d, ⁴*J*CF = 3.7 Hz), 135.7, 136.7, 141.2 (d, ³*J*CF = 10.3 Hz), 158.6, 158.7, 162.4 (d, ¹*J*CF = 232.3 Hz), 162.7 (d, ¹*J*CF = 243.6 Hz), 164.4 (d, ¹*J*CF = 239.0 Hz); *m*/z 528 (100, MH⁺); HRMS (ES): MH⁺, found 528.1693. C₃₄H₂₁F₃N₃⁺ requires 528.1688.

2-(4-Chlorophenyl)-N-(3-fluorophenyl)-6-(4-fluorophenyl)-8-(phenylethynyl)quinazolin-4-amine (7b): Yellow solid (0.19 g, 56%), R_f (toluene) 0.57, mp. 218–219 °C; v_{max} (ATR) 515, 543, 564, 689, 753, 799, 830, 1013, 1087, 1160, 1234, 1408, 1489, 1510, 1530, 1561, 1602, 1615, 3452 cm⁻¹; δ_H (500 MHz, DMSO d_6) 7.03 (td, J = 2.5 and 8.5 Hz, 1H), 7.41 (t, J = 9.0 Hz, 2H), 7.47–7.51 (m, 4H), 7.65 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 1H), 7.89 (dt, J = 2.5 and 11.5 Hz, 1H), 8.00 (t, J = 8.5 Hz, 2H), 8.42 (d, J = 1.5 Hz, 1H), 8.49 (d, J = 8.5 Hz, 2H), 8.84 (d, J = 1.5 Hz, 1H), 10.22 (s, 1H); δ_c (125 MHz, DMSO- d_6) 87.7, 95.9, 109.6 (d, ${}^{2}J_{CF} = 25.5$ Hz), 110.9 (d, ${}^{2}J_{CF} = 20.8$ Hz), 114.9, 116.4 (d, ${}^{2}J_{CF} = 21.8$ Hz), 118.5 (d, ${}^{4}J_{CF} = 2.7$ Hz), 121.5, 122.5, 123.1, 129.2, 129.4, 129.5, 129.7 (d, ${}^{3}J_{CF} = 8.6$ Hz), 130.0, 130.6 (d, ${}^{3}J_{CF} = 9.5$ Hz), 131.9, 135.4 (d, ${}^{4}J_{CF} = 2.8$ Hz), 135.5 (d, ${}^{4}J_{CF} = 3.7$ Hz), 136.0, 136.9, 137.3, 141.1 (d, ${}^{3}J_{CF} = 11.3$ Hz), 150.3, 158.6, 158.7, 162.5 (d, ${}^{1}J_{CF} = 240.8$ Hz), 162.8 (d, ${}^{1}J_{CF} = 244.6$ Hz); m/z 544 (100, MH⁺); HRMS (ES): MH⁺, found 544.1393. C₃₄H₂₁ClF₂N₃⁺ requires 544.1392.

N-(3-*Fluorophenyl*)-6-(4-*fluorophenyl*)-2-(4-*methoxyphenyl*)-8-(*phenylethynyl*)-*quinazolin*-4-*amine* (7c): Yellow solid (0.20 g, 62%), *R*^f (9:1 toluene/ethyl acetate) 0.76, mp. 236–237 °C; ν_{max} (ATR) cm⁻¹; δ_H (500 MHz, DMSO-*d*₆) 3.84 (s, 3H), 7.01 (td, *J* = 2.5 and 8.5 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 2H), 7.40 (t, *J* = 8.5 Hz, 2H), 7.47–7.55 (m, 4H), 7.70 (dd, *J* = 1.5 and 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.93–8.01 (m, 3H), 8.39 (d, *J* = 2.0 Hz, 1H), 8.47 (d, *J* = 8.5 Hz, 2H), 8.81 (d, *J* = 2.0 Hz, 1H), 10.13 (s, 1H); δ_c (125 MHz, DMSO-*d*₆) 55.8 87.9, 95.0, 109.4 (d, ²*J*_{CF} = 25.6 Hz), 110.6 (d, ²*J*_{CF} = 20.8 Hz), 114.5, 114.6, 116.3 (d, ²*J*_{CF} = 20.8 Hz), 118.3 (d, ⁴*J*_{CF} = 2.7 Hz), 121.5, 122.3, 123.2, 129.4, 129.5, 129.6 (d, ³*J*_{CF} = 7.6 Hz), 130.1, 130.5 (d, ³*J*_{CF} = 9.5 Hz), 130.8, 131.9, 135.4 (d, ⁴*J*_{CF} = 2.8 Hz), 135.5 (d, ⁴*J*_{CF} = 3.7 Hz), 136.2, 141.4 (d, ³*J*_{CF} = 11.3 Hz), 150.6, 158.4, 159.4, 162.0, 162.5 (d, ¹*J*_{CF} = 239.8 Hz), 162.7 (d, ¹*J*_{CF} = 243.6 Hz); *m*/z 540 (100, MH⁺); HRMS (ES): MH⁺, found 540.1882. C₃₅H₂₄F₂N₃O⁺ requires 540.1887.

2. 1H- and 13C NMR Spectra of Compounds 2-7

Figure S1. 1H-NMR Spectrum of Compound 2a.

Figure S2. ¹³C NMR Spectrum of Compound 2a.

Figure S3. ¹H NMR Spectrum of Compound 2b.

Figure S4. ¹³C NMR Spectrum of Compound 2b.

Figure S5. ¹H NMR Spectrum of Compound 2c

Figure S6. ¹³C NMR Spectrum of Compound 2c.

Figure S7. ¹H NMR Spectrum of Compound 2d.

Figure S8. ¹³C NMR Spectrum of Compound 2d.

Figure S9. ¹H-NMR Spectrum of Compound 3a.

Figure S10. ¹³C NMR Spectrum of Compound 3b.

Figure S11. ¹H NMR Spectrum of Compound 3c.

Figure S12. ¹³C NMR Spectrum of Compound 3c.

Figure S13. ¹H NMR Spectrum of Compound 3d.

Figure S14. ¹³C NMR Spectrum of Compound 3d.

Figure S16. ¹³C-NMR Spectrum of Compound 4b.

Figure S17. ¹H NMR Spectrum of Compound 4c.

Figure S19. ¹H NMR Spectrum of Compound 4d.

Figure S20. ¹³C NMR Spectrum of Compound 4d.

Figure S21. ¹H NMR Spectrum of Compound 5a.

Figure S22. ¹³C NMR Spectrum of Compound 5a.

Figure S24. ¹³C NMR Spectrum of Compound 5b.

Figure S25. ¹H NMR Spectrum of Compound 5c.

Figure S26. ¹³C NMR Spectrum of Compound 5c.

Figure S28. ¹³C NMR Spectrum of Compound 5d.

Figure S29. ¹H NMR Spectrum of Compound 6a.

Figure S30. ¹³C NMR Spectrum of Compound 6a.

Figure S32. ¹³C NMR Spectrum of Compound 6c.

Figure S34. ¹³C NMR Spectrum of Compound 6d.

Figure S35. ¹H NMR Spectrum of Compound 7a.

Figure S36. ¹³C NMR Spectrum of Compound 7a.

Figure S37. ¹H NMR Spectrum of Compound 7b.

S26 of S72

Figure S38. ¹³C NMR Spectrum of Compound 7b.

Figure S39. ¹H NMR Spectrum of Compound 7c.

3. % Cell Viability and LC50 Values of Doxorubicin Hydrochloride and Compounds 2–7

Figure S41. Chemical structure of Doxorubicin hydrochloride.

Table S1. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of doxorubicin hydrochloride.

Concentration (µM)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
20	1.30103	27.68	1.09	5.59	0.71	36.24	1.29
10	1	32.10	1.06	8.77	0.10	41.89	0.94
5	0.69897	34.25	1.64	16.83	0.20	45.91	0.68
2	0.30103	35.55	1.25	47.65	1.10	50.88	1.25
1	0	57.5	1.57	55.64	0.73	59.29	1.21
0.5	-0.30103	70.47	1.74	67.36	1.90	68.95	1.76

Figure S42. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of doxorubicin hydrochloride.

Figure S43. Chemical structure of 2a

Table S2. Perc	centage cell viabi	lity of MCF-7, HeLa	a and A549cells expose	ed to different con	centrations of 2a.
	<i>(</i>)	, ,			

S30 of S72

MCF-7

HeLa

A549

Figure S44. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 2a.

Figure S45. Chemical structure of 2b.

								_
Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD	
100	2	4.96	0.40	4.77	0.27	4.85	1.70	
10	1	45.47	2.38	62.38	1.87	66.36	1.39	
1	0	52.25	1.25	70.47	2.37	74.53	1.15	
0.1	-1	73.55	0.61	76.85	1.46	79.10	2.00	

MCF-7

HeLa

A549

Figure S46. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 2b.

Figure S47. Chemical structure of 2c.

Table S4. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 2c.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	8.54	3.24	11.25	0.73	10.17	1.41
10	1	42.66	1.01	54.58	0.87	63.99	0.74
1	0	50.78	2.92	79.11	0.93	71.21	1.72
0.1	-1	74.49	2.78	97.68	1.87	85.23	1.40

S33 of S72

Figure S48. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 2c.

Figure S49. Chemical structure of 2d.

Table S5. Percentage cell viability of MCF	7-7, HeLa and A549 cells exposed to	different concentrations of 2d.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	38.30	1.20	34.27	1.06	35.91	0.95
10	1	79.28	2.05	49.61	1.611	73.76	1.23
1	0	86.69	1.55	90.55	2.15	93.49	1.74
0.1	-1	91.38	0.42	95.13	2.47	96.95	0.61
$\begin{array}{c} 2 & y = -0.\\ 1.8 & 1.6 \\ 1.4 & 1.2 \\ 1.2 & 1.2 \\ 0.8 & 0.6 \\ 0.4 & 0.2 \\ -2 & -1 & 0 \\ \end{array}$	2883x + 1.4538 $2^{2} = 0.7909$	1.8 1.6 1.6 1.6 1.2 1.2 1.2 1.2 0.8 0.6 0.4 0.2 -2 -1 0	= -0.3349x + 1. R ² = 0.9358	1972 Apsorbance at 220 nm 3 -2	2.5 2 1.5 1 0.5 -1	y = -0.4198x + 1. $R^2 = 0.91$.7509
Log concent	ration	Log cond	centration		Log	concentration	

S35 of S72

MCF-7

HeLa

A549

Figure S50. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 2d.

Figure S51. Chemical structure of 3a.
Concentration (µg/mL)

100

10

1

0.1

Log Concentration

2

1

0

-1

Table S6. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 3a.

54.50

69.06

77.24

97.53

MCF-7

HeLa

Figure S52. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 3a.

Figure S53. Chemical structure of 3b.

S38 of S72

	Conentration (µg/mL)	Log Conentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A54	9 SD
	100	2	47.75	2.31	43.39	0.64	38.09	1.57
	10	1	54.28	2.86	49.94	0.69	54.12	1.45
	1	0	60.46	2.28	62.38	1.51	57.10	0.20
	0.1	-1	71.35	2.56	70.18	1.72	67.58	1.37
Absorbance at 570 nm	1.4 y = -0.1 R ² 1.2 - 1 0.8 - 0.6 - 0.4 - 0.2 -	1211x + 1.0248 ² = 0.9826 White at 570 nm	1.4 y 1.2 - 1 0.8 - 0.6 - 0.4 - 0.2 -	= -0.1866x R ² = 0.99	+ 1.0193 923 Absorbance at 570 nm	¢	1.6 Y 1.4 - 1.2 1 0.8 - 0.6 - 0.4 - 0.2 -	= -0.1703x + 1.262 R ² = 0.9387
	0		0	1 1		1	0	1
	-2 -1 0 1	2 3 -2	-1 0	1 2	3 -2	-1	. 0 1	2 3
	Log concentration	n	Log concentr	ation			Log concentrat	tion

Table S7. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 3b.

MCF-7

HeLa

Figure S54. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 3b.

Figure S55. Chemical structure of 3c.

Absorbance at 570 nm

-2

Ω

-1

0

1

Log concentration

2

3

0.2

-1

0

0

Log concentration

1

2

3

Table S8. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 3c

0.1

0

0

Log concentration

1

2

3

-2

-1

-2

MCF-7

HeLa

Figure S56. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 3c.

Figure S57. Chemical structure of 3d.

100

10

1

0.1

Absorbance at 570 nm

-2

1.6

1.4

1.2

1

0.8 0.6

0.4

0.2

-1

0

0

Log concentration

1

2

3

-2

1.45

1.4

1.35

0

Log concentration

1

2

3

-1

-2

Table S9. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 3d.

0.4

0.2

-1

0

0

1

Log concentration

2

3

MCF-7

HeLa

Figure S58. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 3d.

Figure S59. Chemical structure of 4a.

	5	-	-				
Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	9.85	1.63	14.64	0.10	11.15	156
10	1	67.39	1.53	56.42	1.19	55.49	0.71
1	0	78.34	1.78	57.93	1.14	76.19	1.70
0.1	-1	95.36	2.16	68.28	1.47	78.39	1.59
2 1.8 1.6 1.4 1.2 1.2 1.2 0.8 0.6 0.4 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	y = -0.4838x + 1.3355 R ² = 0.8809	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= -0.2641x + R ² = 0.781	Psorbance at 570 nm Absorbance at 570 nm Absorbance at 570 nm	2.5 2 1.5 1 0.5 -1	y = -0.514x + R ² = 0.89	1.4395
-2 -1 0	1 2 J		± ∠	5 -2	-T	U I /	- 3
Log con	icentration	Log concenti	ation		LO	g concentration	

Table S10. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 4a.

MCF-7

HeLa

Figure S60. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 4a.

Figure S61. Chemical structure of 4b.

S46 of S72

Concentration (µg/mL)

100

10

1

Table S11. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 4b.

3.73

59.59

78.35

Log Concentration

2

1

0

MCF-7

HeLa

Figure S62. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 4b.

Figure S63. Chemical structure of 4c.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	12.51	0.93	10.06	1.64	14.66	0.34
10	1	53.27	2.70	36.75	1.10	37.49	1.56
1	0	69.54	1.02	54.81	1.10	76.72	1.06
0.1	-1	81.64	1.26	67.05	1.20	88.69	1.19
1.6 1.4 1.2 1.2	y = -0.3886x + 1.0583 R ² = 0.9725	1.2 ¥ = -0 1.2 ¥ = -0 1 - 0.8	0.2747x + 0.7 R ² = 0.9389	7726 ۳۲ 025	2	2.5 y = -0.580 R ² = 1	6x + 1.4553 0.9905
400 Apsorbance at Apsorbance 400 Aps		4 0.6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	•	Absorbance at	C	1 -	∢
0	1 1	0	1	r		0	1 1
-2 -1 0	1 2 3	-2 -1 0	1 2	3 -2	-1	0 1	2 3
Log con	centration	Log conce	entration			Log concentration	

Table S12. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 4c.

HeLa

Figure S64. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 4c.

Figure S65. Chemical structure of 4d.

$100 \\ 10 \\ 1 \\ 0.1 \\ y = -0.29 \\ R^2 = 0.29 \\ R^2 = 0.2$	2 1 0 -1 936x + 1.1736 = 0.8344 E	$23.53 \\ 59.61 \\ 61.00 \\ 73.99 \\ 1.2 \\ R^2 = 0.12 \\ R^2 $	1.67 1.96 1.69 1.71 981x + 0.881 = 0.9032	28.92 50.26 60.67 62.89 3	1.78 0.51 0.97 1.51 1.6	$\begin{array}{c} 51.06 \\ 54.37 \\ 64.12 \\ 78.38 \end{array}$ $\begin{array}{c} y = -0.2102x + 3 \\ R^2 = 0.98 \end{array}$	1.04 0.34 0.48 1.62 1.3056
$10 \\ 1 \\ 0.1 \\ y = -0.29 \\ R^2 = 0.29 \\ R^$	1 0 -1 936x + 1.1736 = 0.8344 E	$59.61 \\ 61.00 \\ 73.99 \\ 1.2 \\ R^2 = 0.19 \\$	1.96 1.69 1.71 981x + 0.881 = 0.9032	50.26 60.67 62.89 3	0.51 0.97 1.51 1.6	$54.37 \\ 64.12 \\ 78.38 $ y = -0.2102x + 1 R ² = 0.98	0.34 0.48 1.62 1.3056 2
$1 \\ 0.1 \\ y = -0.29 \\ R^{2} \\ R^{2} \\ 1.2 \\ R^{2} \\ $	0 -1 936x + 1.1736 = 0.8344 E	$\begin{array}{c} 61.00 \\ 73.99 \end{array}$	1.69 1.71 981x + 0.881 = 0.9032	60.67 62.89 3	0.97 1.51 1.6	$ \begin{array}{c} 64.12 \\ 78.38 \\ y = -0.2102x + 3 \\ R^2 = 0.98 \\ \end{array} $	0.48 1.62 1.3056 2
$\begin{array}{c} 0.1 \\ 1.6 \\ 1.4 \\ 1.2 \end{array} = -0.29 \\ R^2 = 0.29 \\ R^2$	-1 936x + 1.1736 = 0.8344 E	73.99 1.2 y = -0.12 R ² :	1.71 981x + 0.881 = 0.9032	62.89	1.51 1.6	$y = -0.2102x + x$ $R^{2} = 0.982$	1.62 1.3056 2
$\begin{array}{c} 1.6 \\ 1.4 \\ 1.2 \end{array} y = -0.29 \\ R^2 = 0.29 \\ R^2 = 0$	936x + 1.1736 = 0.8344 E	1.2 $y = -0.19$ R ²	981x + 0.881 = 0.9032	3	1.6	y = -0.2102x + R ² = 0.98	1.3056 <u>2</u>
Absorbance at 57 Absorbance a	Absorbance at 570 n	0.8 - 0.6 - 0.4 - 0.2 - 0	•	Absorbance at 570 nm	1.2 1 0.8 0.6 0.4 0.2		
			2	י ר ר	1	0 1 2	-

Table S13. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 4d.

MCF-7

HeLa

Figure S66. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 4d.

Figure S67. Chemical structure of 5a.

Table S14. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 5a.

MCF-7

HeLa

Figure S68. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 5a.

Figure S69. Chemical structure of 5b.

Table S15. Percentage cell viability of MCF-7, HeLa and A549 cells expos	ed to different concentrations of 5b.
--	---------------------------------------

 Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
 100	2	53.88	2.96	38.39	0.97	47.06	1.47
10	1	56.14	1.32	54.87	0.27	55.61	1.65
1	0	58.04	1.26	56.58	1.87	60.64	1.77
0.1	-1	63.90	2.53	59.93	1.60	83.60	1.16

MCF-7

HeLa

Figure S70. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 5b.

Figure S71. Chemical structure of 5c.

Concentration (μg/mL) Log Concentration %Viability MCF-7 SD %Viability HeLa SD %Viability HeLa SD %Viability HeLa SD %Viability HeLa SD %Viability A549 100 2 47.75 1.21 42.30 1.96 52.03 10 1 54.70 1.33 64.73 1.77 60.01	SD 0.74 1.13 1.85
100247.751.2142.301.9652.0310154.701.3364.731.7760.01	0.74 1.13 1.85
10 1 54.70 1.33 64.73 1.77 60.01	1.13 1.85
	1.85
1 0 71.45 0.91 74.79 0.27 76.04	
0.1 -1 79.52 1.74 86.11 1.50 89.86	1.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
Log concentration Log concentration Log concentration	

Table S16. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 5c.

MCF-7

HeLa

Figure S72. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 5c.

Figure S73. Chemical structure of 5d.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	66.23	0.69	66.12	0.50	64.12	1.90
10	1	67.59	0.97	73.50	1.01	71.16	1.53
1	0	85.36	1.05	81.66	0.87	86.33	1.26
0.1	-1	96.09	1.97	98.97	1.37	97.75	1.74
2 - V 1.8 - 1.6 - 1.4 - 1.2 - 1.2 - 1.2 - 1.2 - 1.8 - 1.2 - 1.8 - 1.6 - 1.6 - 1.8 - 1.8 - 1.8 - 1.8 - 1.6 - 1.8 - 1.6 - 1.8 - 1.8 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.8 - 1.6 - 1.6 - 1.6 - 1.6 - 1.8 - 1.	y = -0.2462x + 1.5291 R ² = 0.9308	1.6 y 1.4 1.2 1.4 1.2 0.8 - 0.6 -	= -0.1592x + 2 R ² = 0.968	1.3296 6 rpance at 230 nm	2.5	5 y = -0.2324x R ² = 0.9	+ 1.7842 9498
Q 0.4 - 0.2 -		0.4 - 0.2 -		Abso	0.5	5 -	
-2 -1 0	1 2 3	-7 -1 0	1 2	י ג ז	_1		2
	ntration		tration	5 -2	- <u>-</u>	or concentration	5

Table S17. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 5d.

MCF-7

HeLa

Figure S74. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 5d.

Figure S75. Chemical structure of 6b.

Concentration (µg/mL)

100

10

1

Log Concentration

2

1

0

Table S21. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 6b.

SD

0.99

1.36

2.84

%Viability MCF-7

24.03

76.03

90.53

MCF-7

HeLa

Figure S76. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 6b.

Figure S77. Chemical structure of 6c.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD	_
100	2	53.26	2.31	53.16	1.33	66.96	0.41	Ī
10	1	58.52	2.67	53.64	0.74	78.88	1.80	
1	0	66.26	3.87	58.80	0.91	86.16	1.05	
0.1	-1	84.78	1.10	73.42	1.49	92.96	1.34	

MCF-7

HeLa

A549

Figure S78. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 6c.

Figure S79. Chemical structure of 6d.

Concentration (µg/mL)	Log Concentration	%V	iability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2		72.18	1.29	77.66	1.62	67.10	1.96
10	1		76.62	1.09	87.33	0.23	93.07	1.34
1	0		83.84	2.26	93.49	1.56	95.51	1.60
0.1	-1		97.29	0.52	95.71	1.41	98.78	0.34
2 1.8 1.6 1.4 1.2 1.2 1.2 1.4 0.6 0.6 0.6 0.4 0.4	y = -0.1592x + 1.5561 R ² = 0.9909	Absorbance at 570 nm	$1.8 \ y = -0.091 \\ R^2 = 1.6 \\ 1.4 \\ 1.2 \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ -$	16x + 1.444 0.8996	Absorbance at 570 nm	2.5 2 1.5 1 0.5	y = -0.3448x + R ² = 0.90	1.762 24
0.2 -	ī	·	0.2 -			0		
-2 0) 2 4	-2	0	2	4 -2	-1	0 1 2	3
Log	concentration		Log concen	tration		Log	concentration	

Table S22. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 6d.

MCF-7

HeLa

A549

Figure S80. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 6d.

Figure S81. Chemical structure of 7a.

Table S18. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 7a.

MCF-7

HeLa

Figure S82. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 7a.

Figure S83. Chemical structure of 7b.

Concentration (µg/mL) Log Concentration %Viability MCF-7 SD %Viability HeLa SD %Viability A549 SD 1.61 1.23 100 53.80 1.36 2 64.42 66.48 65.68 10 1 0.71 55.03 2.14 70.92 1.03 1 0 67.45 1.29 74.47 1.01 76.21 1.57 0.1 70.65 -1 1.87 75.69 87.67 1.62 1.46 1.2 y = -0.1594x + 0.8497 y = -0.0832x + 1.6386 1.75 1.28 y = -0.0473x + 1.1965 $R^2 = 0.9515$ $R^2 = 0.9997$ ◆ 1.26 $R^2 = 0.8962$ 1 1.7 Absorbance at 570 nm Absorbance at 570 nm Absorbance at 570 nm <u>\</u>1.24 1.22 0.8 1.65 1.2 0.6 1.18 1.6 1.16 0.4 1.55 1.14 1.12 0.2 1.5 1.1 1.08 1.45 0 -2 -2 -1 0 1 2 3 -1 0 1 2 3 -2 -1 0 1 2 3 Log concentration Log concentration Log concentration

Table S19. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 7b.

MCF-7

HeLa

A549

Figure S84. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 7b.

Figure S85. Chemical structure of 7c.

Concentration (µg/mL)	Log Concentration	%Viability MCF-7	SD	%Viability HeLa	SD	%Viability A549	SD
100	2	41.86	1.67	59.77	1.56	82.39	0.20
10	1	55.18	1.39	74.89	1.78	84.46	0.41
1	0	64.3	2.15	75.79	1.32	93.83	1.21
0.1	-1	87.88	2.01	81.01	1.78	97.82	0.3
1.6 y = -0 1.4 1.2 1.4 1.2 0.8 0.6 0.4 0.2 0 0	0.1989x + 1.2622 R ² = 0.9297	$ \begin{array}{c} 1.4 y = -0.0949 \\ R^2 = 0. \\ 1.2 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \end{array} $	x + 1.1947 9322 ♥	Absorbance at 570 nm	2.5 2 1.5 1 - 0.5	y = -0.125x + 1. R ² = 0.8802	9415

Table S20. Percentage cell viability of MCF-7, HeLa and A549 cells exposed to different concentrations of 7c

Figure S86. Linear regression plots and percentage cell viability graphs of MCF-7, HeLa and A549 cells exposed to different concentrations of 7c.