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Abstract: The substitution of a siloxy group using thiosilanes smoothly occurred in the presence of
InI3 catalyst to yield the corresponding thioethers. InI3 was a specifically effective catalyst in this
reaction system, while other typical Lewis acids such as BF3·OEt2, AlCl3, and TiCl4 were ineffective.
Various silyl ethers such as primary alkyl, secondary alkyl, tertiary alkyl, allylic, benzylic, and
propargylic types were applicable. In addition, bulky OSitBuMe2 and OSiiPr3 groups, other than the
OSiMe3 group, were successfully substituted. The substitution reaction of enantiopure secondary
benzylic silyl ether yielded the corresponding racemic thioether product, which suggested that the
reaction of tertiary alkyl, secondary alkyl, benzylic, and propargylic silyl ethers would proceed via a
SN1 mechanism.
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1. Introduction

Organosulfur compounds are important building blocks in organic synthesis because many
natural and pharmaceutical products contain sulfur [1–5]. In particular, a thioether is a popular and
useful compound [1–5]. Therefore, there are various types of synthetic methods to produce thioethers
such as hydrothiolation of alkenes [6–9], Chan-Lam-Evans coupling using thiols [10], and transition
metal-catalyzed coupling between aryl halides and thiols [11,12]. The substitution reaction of alkyl
halides with sulfur nucleophiles is one of the most typical and practical methods in the synthesis
of alkyl thioethers (Scheme 1A) [13–18]. However, the use of alkyl halides has an inherent problem;
that is, the potential toxicity of alkyl halides and metal halides as by-products. Recently, alcohol
derivatives such as alkyl ethers, alkyl acetates, alkyl carbonates, and silyl ethers have been suggested
as promising substrates that could solve the problem. In particular, silyl ethers are one of the most
useful alcohol derivatives because they are often used as protected alcohols in the syntheses of complex
organic compounds such as natural products, drugs, and agrichemicals [19,20]. However, there are
few reports about the synthesis of thioethers via the direct use of silyl ethers, due to the very poor
leaving ability of the siloxy group [21]. Although the coupling reaction between alkenyl silyl ethers
and thiosilanes has been reported, a stoichiometric amount of BF3·OEt2 was required [22]. Electrolysis
with a thiosilane using only an α-acylamino silyl ether was also reported [23]. Therefore, in general,
a multi-step sequence involving deprotection and transformation of the siloxy group is required in
order to transform silyl ethers to thioethers (Scheme 1B). Therefore, the establishment of a direct
transformation of silyl ethers to thioethers would be ideal in terms of step-economy. Herein, we
report the direct substitution of a siloxy group with thiosilanes catalyzed by InI3 to synthesize a

Molecules 2016, 21, 1330; doi:10.3390/molecules21101330 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2016, 21, 1330 2 of 7

variety of thioethers (Scheme 1C). A disiloxane generated as a by-product has low toxicity, is inert,
and is easily removed, so the present substitution reaction is a very practical synthetic method for
producing thioethers.
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benzyl silyl ethers (1c and 1d) gave very high yields even at room temperature (Entries 2 and 3). 
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2. Results

First, the effect of the catalyst was investigated in the reaction of the primary alkyl silyl ether
1a with trimethyl(phenylthio)silane (2a) (Table 1). Recently, we studied the moderate Lewis acidity
of indium salts in order to develop the catalytic coupling reactions of alcohols and their derivatives
with various nucleophiles [24–34]. Therefore, a substitution reaction in the presence of InI3 at room
temperature was carried out and produced the desired thioether 3aa with a 27% yield (Entry 1).
The InI3-catalyzed reaction at 80 ◦C moderately proceeded to produce 3aa with a 53% yield (Entry 2).
By contrast, InCl3 did not mediate this substitution reaction (Entry 3), and InBr3 gave only a 27%
yield (Entry 4). Typical Lewis acids such as BF3·OEt2, AlCl3, and TiCl4 showed no catalytic activity
(Entries 5–7). The use of nonpolar solvents such as toluene and hexane resulted in low yields (Entries 8
and 9). Polar tetrahydrofuran (THF) solvent was not suitable (Entry 10). Finally, the InI3-catalyzed
reaction carried out in ClCH2CH2Cl at 80 ◦C for 8 h produced the highest yield (Entry 11).
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The scope of the silyl ethers is listed in Table 2. The reaction of secondary alkyl silyl ether 1b
resulted in only a 32% yield of thioether 3ba (Entry 1). On the other hand, tertiary alkyl and secondary
benzyl silyl ethers (1c and 1d) gave very high yields even at room temperature (Entries 2 and 3).
Primary benzylic substrates were also suitable for this system, and both electron-rich and electron-poor
benzyl silyl ethers produced the corresponding thioethers 3ea, 3fa, and 3ga in high yields (Entries 4–6).
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The substitution reaction of propargylic silyl ether 1h smoothly occurred at room temperature without
an allenylic thioether product being generated in a rearrangement reaction (Entry 7). Additionally, the
primary alkyl silyl ether 1i, which bears an olefin moiety, was applicable to this reaction (Entry 8).

Table 2. Scope of the silyl ethers 1b–i in the InI3-catalyzed substitution reaction using thiosilane 2a a.
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Bulky silyl groups are generally more useful and robust protecting groups compared with the
trimethylsilyl group in organic synthesis. We examined OSitBuMe2, OSiiPrMe2, and OSiiPr3 groups
for the substitution reaction (Scheme 3). Despite the large steric hindrance, the bulky silyl ethers 1j, 1k,
and 1l reacted with thiosilane 2a to produce the corresponding thioether 3aa in high yields.
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The excellent results given by the reaction using tertiary alkyl and benzylic thioethers suggested
that the substitution reaction using these thioethers occurred via the SN1 mechanism involving a
carbocation intermediate. Actually, the reaction of the enantiopure benzyl silyl ether (R)-1d catalyzed
by InI3 produced a racemic mixture of 3aa (Scheme 4, upper line) [35]. The reaction using the allyl
silyl ether 1m exclusively yielded thioether 3mb-1 without producing the thioether 3mb-2 through
allylic rearrangement (SN2′ mechanism) (Scheme 4, lower line). This result showed that the reaction of
a primary allylic silyl ether involves a SN2 mechanism.
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Scheme 4. Mechanistic study.

Plausible reaction mechanisms are illustrated in Scheme 5. From the result of Equation 1, the
substitution reactions of tertiary alkyl, secondary alkyl, benzylic, and propargylic silyl ethers would
proceed via the SN1 mechanism (Scheme 5A). A siloxy group coordinates to InI3 (4), and then the
cleavage of the C–O bond generates a carbocation intermediate. The nucleophilic attack of the thiosilane
2 to the carbocation intermediate gives thioether 3 and Me3SiOSiMe3, and InI3 regenerates. On the
other hand, the reaction of a primary alkyl silyl ether would proceed via a SN2-type mechanism
(Scheme 5B), because a primary alkyl cation is not easily generated. First, the coordination of a siloxy
group to InI3 enhances polarization of the C–O bond. Then, an SN2 reaction of the InI3-activated silyl
ether 4 with thiosilane 2 occurs. The reaction of a primary allyl silyl ether also involves this type
of mechanism (Scheme 4, lower line). Generally, transmetalation between a metal salt (MtXn) and
thiosilane (R2S-SiMe3) may occur to generate a metal thiolate (MtXn-y(SR2)y). Actually, AlCl3 and
BF3·OEt2 transmetalate with thiosilane 2a to form thioaluminum and thioborane, respectively [36].
On the other hand, the transmetalation between InI3 and thiosilane 2a does not occur, which allows
InI3 to work as a Lewis acid catalyst in the present substitution reaction [36]. A disiloxane by-product
has low toxicity and is easily removed by column chromatography on silica gel, which enhances the
utility of this reaction system in organic synthesis.
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3. Experimental Section

Typical Procedure: Silyl ether 1c (0.135 g, 0.6 mmol) was added to a suspended solution of
thiosilane 2a (0.089 g, 0.5 mmol) and InI3 (0.026 g, 0.05 mmol) in dichloromethane (0.5 mL). The reaction
mixture was stirred at room temperature for 2 h and was then quenched by a saturated aqueous solution
of NaHCO3. The crude product was extracted with dichloromethane. The combined organic layer
was dried over MgSO4, and concentrated under reduced pressure. The NMR yield was determined by
1H-NMR (1H-NMR spectra were recorded on a JMTC-400/54/SS instrument at 400 MHz (JEOL Ltd.,
Tokyo, Japan), using 1,1,2,2-tetrachloroethane as an internal standard. The crude product was purified
by flash chromatography (Hexane/EtOAc = 95:5, spherical silica gel 60 µm, 30 g, diameter 2.7 cm,
Shoko Scientific Co., Ltd., Kanagawa, Japan) to afford the corresponding thioether 3ca (0.119 g, 95%).

4. Conclusions

We have developed an InI3-catalyzed coupling reaction of silyl ethers with thiosilanes. A variety
of silyl ethers and thiosilanes are applicable to the present coupling reaction. In particular, the scope
of silyl ethers is significantly broad, and primary alkyl, secondary alkyl, tertiary alkyl, benzylic, and
propargylic silyl ethers are feasible substrates. In addition, the substitution of OSiMe3 as well as
OSitBuMe2 and OSiiPr3 groups smoothly occurred. InI3 specifically achieved this catalytic substitution
reaction unlike other typical Lewis acids. This was possible because the transmetalation between InI3

and thiosilane does not occur, and InI3 sufficiently activates silyl ether due to its moderate Lewis acidity.
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