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Abstract: The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be
a powerful strategy for the construction of chiral compounds. In this feature review, we summarized
recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and
squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide
range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones,
asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed
and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual
activation would be efficient for more unmet challenges in dynamic kinetic resolution.
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1. Introduction

The synthesis of optically pure compounds is increasingly in demand in the pharmaceutical,
fine chemicals, and agriculture industries [1–8]. Resolution of racemates is one of the most important
industrial approaches to obtain enantiomerically pure compounds [9,10]. Kinetic resolution (KR) is
a process in which one of the enantiomers of a racemic mixture is transformed to the corresponding
product faster than the other one (Scheme 1) [11–13]. If the KR process is efficient, one of the
enantiomers of the racemic mixture is completely transformed to the desired product while the
other remains unchanged. Therefore, the critical drawback of KR process is the maximum theoretical
yield of 50%. The dynamic kinetic resolution (DKR) process is an attractive strategy without this
limitation, which efficiently combines the process of KR and the racemization of the slowly reacting
enantiomer in a one-pot system with 100% theoretical yield (Scheme 1) [14–20]. This powerful strategy
has been widely applied to a great many asymmetric catalytic reactions for the access of chiral
compounds [21–29].
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1. Introduction 

The synthesis of optically pure compounds is increasingly in demand in the pharmaceutical, fine 
chemicals, and agriculture industries [1–8]. Resolution of racemates is one of the most important 
industrial approaches to obtain enantiomerically pure compounds [9,10]. Kinetic resolution (KR) is a 
process in which one of the enantiomers of a racemic mixture is transformed to the corresponding 
product faster than the other one (Scheme 1) [11–13]. If the KR process is efficient, one of the 
enantiomers of the racemic mixture is completely transformed to the desired product while the other 
remains unchanged. Therefore, the critical drawback of KR process is the maximum theoretical yield 
of 50%. The dynamic kinetic resolution (DKR) process is an attractive strategy without this limitation, 
which efficiently combines the process of KR and the racemization of the slowly reacting enantiomer 
in a one-pot system with 100% theoretical yield (Scheme 1) [14–20]. This powerful strategy has been 
widely applied to a great many asymmetric catalytic reactions for the access of chiral compounds 
[21–29]. 
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Asymmetric organocatalysis has been made significant advances in the last decades [30–32],
and numerous asymmetric transformations were broadly applied to construct natural products [33]
and industrial products [34]. Until now, various activation strategies have been developed, such as
noncovalent catalysis via hydrogen-bonding [35], Brønsted base [36,37], Brønsted acid [38,39],
phase transfer [40], and covalent catalysis via Lewis base [41]. Metal catalytic DKR has dominated in
this research field during the end of the last century [42], and organocatalytic asymmetric reactions have
reached maturity in recent years with impressive progress [43–52]. Among these chiral organocatalysts,
chiral bifunctional (thio)ureas and squaramides catalysts have been intensively investigated to promote
asymmetric reactions via dual hydrogen-bonding interactions which worked along with a Lewis acid
functional group to achieve the activation of both the nucleophile and the electrophile [53]. Since the
early research of primary amine–thiourea catalyzed the process of DKR in 2006 [54–56], DKR catalyzed
by (thio)urea and squaramide has achieved tremendous advances [57–66]. The goal of the present
review is to cover the recent developments concerning chiral (thio)ureas and squaramides (Figure 1)
catalytic reactions through DKR. This review is subdivided into two sections according to the types of
organocatalysts employed in these asymmetric reactions involving the process of DKR.
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Figure 1. Selected reported representative (thio)urea and squaramide catalysts. 

2. (Thio)urea Organocatalyst for DKR  

2.1. Thio-Michael–Michael Cascade Reaction  

Asymmetric (thio)urea catalyzed Michael–Michael cascade reactions are one of the most 
powerful strategies for the efficient construction of chiral complex molecules with multiple bonds’ 
formation and multistereogenic centers’ creation [67,68]. In 2007, Wang and his coworker explored 
the novel thio-Michael–aldol reaction, which employed 2-mercaptobenzaldehydes and maleimides 
as template substrates and ligand 3 as catalyst. With the standard conditions, excellent yield and good 
stereoselectivity was achieved (90% yield, 84% ee, 10:1 dr). Further examination of the scope proved 
that this new methodology was a general approach to the preparation of a range of substituted 
thiochromanes (Scheme 2) [67].  
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2. (Thio)urea Organocatalyst for DKR

2.1. Thio-Michael–Michael Cascade Reaction

Asymmetric (thio)urea catalyzed Michael–Michael cascade reactions are one of the most
powerful strategies for the efficient construction of chiral complex molecules with multiple bonds’
formation and multistereogenic centers’ creation [67,68]. In 2007, Wang and his coworker explored
the novel thio-Michael–aldol reaction, which employed 2-mercaptobenzaldehydes and maleimides
as template substrates and ligand 3 as catalyst. With the standard conditions, excellent yield and
good stereoselectivity was achieved (90% yield, 84% ee, 10:1 dr). Further examination of the scope
proved that this new methodology was a general approach to the preparation of a range of substituted
thiochromanes (Scheme 2) [67].
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Scheme 2. Asymmetric thio-Michael–aldol cascade reaction of 2-mercaptobenzaldehydes with 
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In 2008, Wang and coworkers developed a highly stereoselective thio-Michael-Michael cascade 
reaction of trans-3-(2-mercaptophenyl)-2-propenoic acid ethyl ester and trans-β-nitrostyrene catalyzed 
by a cinchona alkaloid-derived thiourea (1), which afforded chiral thiochromanes with three new 
stereogenic centers through one-pot access in excellent efficiency and stereoselectivity (Scheme 3, up 
to dr > 30:1, 99% ee, 99% yield) [68]. The generality of this cascade reaction was very wide, and a 
series of nitroalkenes can proceed well. In addition, this cascade reaction involved the DKR process, 
which has made great contributions to this transformation. 
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thiourea 1, and then underwent a DKR process, which is mediated by the chiral bifunctional amine 
thiourea 1 and followed with retro-Michael–Michael–Michael process, providing chiral thiochromane 
product (Scheme 4). Moreover, this hypothesis was confirmed by the treatment of racemic first Michael 
adduct with catalyst 1 under the standard reaction conditions, affording similar reaction results. 
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In 2011, Wang and coworkers established another asymmetric thio-Michael–Michael cascade 
reaction of trans-ethyl 4-mercapto-2-butenoate and trans-β-nitrostyrene catalyzed by Takemoto′s 
bifunctional amine–thiourea catalyst (3), and the functionalized chiral trisubstituted tetrahydrothiophene 
products bearing three stereogenic centers through sequential C–S and C–C bond formation with high 
enantio- and diastereoselectivity (Scheme 5, up to >30:1 dr, 97% ee, 93% yield) [69]. Various aromatic 
nitroolefins performed smoothly in this transformation. The heteroaromatic and less reactive alkyl 
trans-β-nitroolefins were also well tolerated. In addition, an unprecedented activation mode of 
cooperative direct stereocontrol and similar DKR process was identified.  

 

Scheme 2. Asymmetric thio-Michael–aldol cascade reaction of 2-mercaptobenzaldehydes with
maleimides catalyzed by 3.

In 2008, Wang and coworkers developed a highly stereoselective thio-Michael-Michael cascade
reaction of trans-3-(2-mercaptophenyl)-2-propenoic acid ethyl ester and trans-β-nitrostyrene catalyzed
by a cinchona alkaloid-derived thiourea (1), which afforded chiral thiochromanes with three new
stereogenic centers through one-pot access in excellent efficiency and stereoselectivity (Scheme 3, up to
dr > 30:1, 99% ee, 99% yield) [68]. The generality of this cascade reaction was very wide, and a series of
nitroalkenes can proceed well. In addition, this cascade reaction involved the DKR process, which has
made great contributions to this transformation.
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Scheme 3. Asymmetric thio-Michael–Michel cascade reaction of trans-3-(2-mercapto-aryl)-2-propenoic
acid ethyl esters with nitroolefins catalyzed by 1.

The initially formed Michael addition product, through reversible thia-Michael addition step 1 with
strong acidity, went through deprotonation in the presence of bifunctional cinchona alkaloid-derived
thiourea 1, and then underwent a DKR process, which is mediated by the chiral bifunctional amine
thiourea 1 and followed with retro-Michael–Michael–Michael process, providing chiral thiochromane
product (Scheme 4). Moreover, this hypothesis was confirmed by the treatment of racemic first Michael
adduct with catalyst 1 under the standard reaction conditions, affording similar reaction results.
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Scheme 4. Proposed pathway for asymmetric thio-Michael–Michael cascade reaction.

In 2011, Wang and coworkers established another asymmetric thio-Michael–Michael
cascade reaction of trans-ethyl 4-mercapto-2-butenoate and trans-β-nitrostyrene catalyzed by
Takemoto’s bifunctional amine–thiourea catalyst (3), and the functionalized chiral trisubstituted
tetrahydrothiophene products bearing three stereogenic centers through sequential C–S and C–C bond
formation with high enantio- and diastereoselectivity (Scheme 5, up to >30:1 dr, 97% ee, 93% yield) [69].
Various aromatic nitroolefins performed smoothly in this transformation. The heteroaromatic and less
reactive alkyl trans-β-nitroolefins were also well tolerated. In addition, an unprecedented activation
mode of cooperative direct stereocontrol and similar DKR process was identified.
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In 2013, Lattanzi and coworkers successfully disclosed an efficient cascade double Michael
reaction of trans-α-cyano-α,β-unsaturated ketone with trans-4-mercapto-2-butenoate to construct chiral
trisubstituted tetrahydrothiophenes catalyzed by amino thiourea 5 with excellent results (Scheme 6,
up to 12:1 dr, >99% ee, 98% yield) [70]. The tetrahydrothiophene products contained three stereocenters,
and one challenging all-carbon quaternary stereocenter was successfully created.
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In addition, the control experiment confirmed that the DKR process was involved in
this asymmetric cascade reaction (Scheme 7). The racemic mixture of diastereoisomers of the
first sulfa-Michael product was treated under the optimized reaction conditions in the presence
of catalyst 5, and the result was the same with the trans-α-cyano-α,β-unsaturated ketone reacting with
trans-4-mercapto-2-butenoate directly.
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2.2. Asymmetric Ring Opening of Azlactones

Chiral α-amino acids have been widely used for the construction of pharmaceuticals,
nature products, ligands, and organocatalysts [71–74]. The alcoholytic dynamic kinetic resolution of
azlactones has been regarded as an attractive and important way to generate the enantiomerically
enriched α-amino acid derivatives (Scheme 8). The azlactones are readily prepared by the Erlenmeyer
azlactone synthesis or from amino acids by N-acylation followed by cyclization–dehydration in the
presence of condensation reagent [75].
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In 2005, Berkessel successfully developed asymmetric ring opening of azlactones with alcohol via
the DKR process catalyzed by bifunctional amine urea catalyst 4 (Scheme 9) [76], which demonstrated
the effective hydrogen-bonding activation of the (thio)urea moiety with the azlactone substrates.
The NMR-spectroscopic studies also indicated that the catalyst activates the substrate azlactone by
hydrogen bonding of the (thio)urea moiety directing to the carbonyl oxygen atom. The alcoholysis and
ring opening of these substrate azlactones—derived from the aliphatic α-amino acids phenylalanine,
alanine, valine, leucine and tert-leucine, and the aromatic α-amino acid phenylglycine—proceeded
efficiently with good enantioselectivities catalyzed by amine urea 4 (72%–87% ee).
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Based on their previous studies, Berkessel and coworkers envisioned that the reactivity and
enantioselectivity of this transformation could be greatly improved by reasonable modified thiourea
catalyst [77]. The initial catalyst-screening results of Takemoto-type bifunctional organocatalysts
demonstrated that increasing the steric hindrance of the additional chiral center may contribute
to enhancement of enantioselectivity. Therefore, they synthesized a series of the tert-leucine
amide-derived catalysts, and catalyst 6 was identified to be the best one. Various azlactones derived
both from natural and non-natural α-amino acids were investigated to examine the generality of
substrates in the presence of catalyst 6, and the enantioselectivity was up to 95% (Scheme 10).
They successfully realized clean stereoinversion of natural and non-natural α-amino acids through this
organocatalytic DKR.

Molecules 2016, 21, 1327 5 of 14 

In 2005, Berkessel successfully developed asymmetric ring opening of azlactones with alcohol via 
the DKR process catalyzed by bifunctional amine urea catalyst 4 (Scheme 9) [76], which demonstrated 
the effective hydrogen-bonding activation of the (thio)urea moiety with the azlactone substrates.  
The NMR-spectroscopic studies also indicated that the catalyst activates the substrate azlactone by 
hydrogen bonding of the (thio)urea moiety directing to the carbonyl oxygen atom. The alcoholysis and 
ring opening of these substrate azlactones—derived from the aliphatic α-amino acids phenylalanine, 
alanine, valine, leucine and tert-leucine, and the aromatic α-amino acid phenylglycine—proceeded 
efficiently with good enantioselectivities catalyzed by amine urea 4 (72%–87% ee). 

 
Scheme 9. Asymmetric ring opening of azlactones with allyl alcohol by catalyst 4. 

Based on their previous studies, Berkessel and coworkers envisioned that the reactivity and 
enantioselectivity of this transformation could be greatly improved by reasonable modified thiourea 
catalyst [77]. The initial catalyst-screening results of Takemoto-type bifunctional organocatalysts 
demonstrated that increasing the steric hindrance of the additional chiral center may contribute to 
enhancement of enantioselectivity. Therefore, they synthesized a series of the tert-leucine amide-
derived catalysts, and catalyst 6 was identified to be the best one. Various azlactones derived both from 
natural and non-natural α-amino acids were investigated to examine the generality of substrates in the 
presence of catalyst 6, and the enantioselectivity was up to 95% (Scheme 10). They successfully realized 
clean stereoinversion of natural and non-natural α-amino acids through this organocatalytic DKR. 

 
Scheme 10. Asymmetric ring opening of azlactones with allyl alcohol by catalyst 6. 

(Thio)urea-based organocatalysts, to some extent, existed hydrogen-bonded aggregates, which 
led to realization that the reactivity and enantioselectivity were greatly dependent on concentration 
and temperature of reactions [78–80]. The enantioselectivity always dramatically decreased when the 
concentration was increased, and this was not conducive to their practical application. In 2012, Song 
and coworkers reported that C2-symmetric bis-cinchona-alkaloid-based thiourea 7 was applied to 

 

Scheme 10. Asymmetric ring opening of azlactones with allyl alcohol by catalyst 6.

(Thio)urea-based organocatalysts, to some extent, existed hydrogen-bonded aggregates, which
led to realization that the reactivity and enantioselectivity were greatly dependent on concentration
and temperature of reactions [78–80]. The enantioselectivity always dramatically decreased when
the concentration was increased, and this was not conducive to their practical application. In 2012,
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Song and coworkers reported that C2-symmetric bis-cinchona-alkaloid-based thiourea 7 was applied
to catalyze the DKR of racemic azlactones available from N-protected racemic amino acids in one pot,
affording various chiral non-natural α-amino esters (Scheme 11, up to 95% yield, 91% ee) [81]. The steric
bulkiness of the two alkaloid moieties of catalyst 7 can prevent their self-aggregation and exhibited
concentration-independent enantioselectivity in this transformation. Moreover, the experimental and
NMR-spectroscopic studies and single crystal X-ray analysis confirmed that these kinds of bifunctional
organocatalysts do not establish hydrogen-bonded self-aggregates in either solution or solid state.
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2.3. Atropo-Enantioselective Transesterification

Asymmetric synthesis of axially chiral biaryl compounds emerged as a challenging and attractive
research area, where they were found to have broad applications for constructing various natural
products, drugs, bioactive molecules, and chiral ligands [82–86]. There are numerous excellent
synthetic methodologies to efficiently build chiral biaryl skeletons, such as chiral auxiliaries,
asymmetric transformations, asymmetric oxidation homo couplings, and asymmetric Suzuki–Miyaura
couplings [87–92]. DKR of configurationally labile biaryl lactones was a powerful and outstanding
transformation to produce such chiral compounds and continues to receive increasing attention
now [93–98]. Owing to great versatile application and highly effective activation mode of bifunctional
chiral thiourea catalyst, the combination of DKR and organocatalysis is an attractive way to build
chiral biaryl compounds.
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Recently, Wang and coworkers realized highly atropo-enantioselective transesterification of biaryl
lactones catalyzed by chiral bifunctional amine thiourea 1 provided enantioenriched axially chiral
biaryl compounds with a wide substrate scope under mild reaction conditions (Scheme 12, up to
quantitative yield, 99% ee) [99]. Additionally, this asymmetric transformation involved a highly
enantioselective DKR process, which was owing to synergistic activation of the biaryl lactones and
alcohols/phenols by the thiourea 1 and amine groups (Scheme 12).

3. Squaramide Organocatalyst for DKR

Asymmetric organocatalysis employing a hydrogen-bonding activation strategy has been
well-established for the synthesis of enantioenriched compounds. Chiral squaramides have been
identified as a type of powerful bifunctional hydrogen-bonding catalysts, and promoted numerous
catalytic asymmetric transformations [42–51]. They were also effective for the asymmetric reactions
involving the DKR process.

3.1. Enantioselective Selenofunctionalization Reactions

Asymmetric selenofunctionalization of alkenes was regarded as an attractive and challenging
methodology to produce chiral selenide compounds in organic synthesis [100–106]. Due to the
configurational instability of seleniranium ions, the rapid seleniranium racemization can contribute to
promotion of the DKR process. In 2014, Jacobsen and coworkers successfully established highly
enantioselective selenocylization reactions of o-allyl-substituted phenol via the DKR process of
seleniranium ions by chiral squaramide catalyst 8 (Scheme 13, up to 96% yield, 92% ee) [107].
They made use of N-phenylselenyl succinimide (NPSS) as the selenium donor, and hydrogen
chloride and tris-(dimethylamino)phosphorus sulfide (HMPA(S)) as cocatalysts. The substrates with
different substituent patterns performed smoothly, affording cyclization products in high yield and
enantioselectivity. However, the ortho substituent of the hydroxyl group substrate obtained poor
enantioselectivity, which suggested that the possible interaction between the hydroxyl group and
catalyst that may play an important role in the mechanism of enantioinduction, and such an interaction
may be sensitive to the steric environment around the hydroxyl group.

Molecules 2016, 21, 1327 7 of 14 

Recently, Wang and coworkers realized highly atropo-enantioselective transesterification of 
biaryl lactones catalyzed by chiral bifunctional amine thiourea 1 provided enantioenriched axially 
chiral biaryl compounds with a wide substrate scope under mild reaction conditions (Scheme 12, up 
to quantitative yield, 99% ee) [99]. Additionally, this asymmetric transformation involved a highly 
enantioselective DKR process, which was owing to synergistic activation of the biaryl lactones and 
alcohols/phenols by the thiourea 1 and amine groups (Scheme 12). 

3. Squaramide Organocatalyst for DKR 

Asymmetric organocatalysis employing a hydrogen-bonding activation strategy has been well-
established for the synthesis of enantioenriched compounds. Chiral squaramides have been 
identified as a type of powerful bifunctional hydrogen-bonding catalysts, and promoted numerous 
catalytic asymmetric transformations [42–51]. They were also effective for the asymmetric reactions 
involving the DKR process. 

3.1. Enantioselective Selenofunctionalization Reactions 

Asymmetric selenofunctionalization of alkenes was regarded as an attractive and challenging 
methodology to produce chiral selenide compounds in organic synthesis [100–106]. Due to the 
configurational instability of seleniranium ions, the rapid seleniranium racemization can contribute 
to promotion of the DKR process. In 2014, Jacobsen and coworkers successfully established highly 
enantioselective selenocylization reactions of o-allyl-substituted phenol via the DKR process of 
seleniranium ions by chiral squaramide catalyst 8 (Scheme 13, up to 96% yield, 92% ee) [107]. They 
made use of N-phenylselenyl succinimide (NPSS) as the selenium donor, and hydrogen chloride and 
tris-(dimethylamino)phosphorus sulfide (HMPA(S)) as cocatalysts. The substrates with different 
substituent patterns performed smoothly, affording cyclization products in high yield and 
enantioselectivity. However, the ortho substituent of the hydroxyl group substrate obtained poor 
enantioselectivity, which suggested that the possible interaction between the hydroxyl group and 
catalyst that may play an important role in the mechanism of enantioinduction, and such an interaction 
may be sensitive to the steric environment around the hydroxyl group. 

 
Scheme 13. Asymmetric selenocyclization via DKR of seleniranium ions by squaramide catalyst 8. 

According to the proposed activation strategy of this asymmetric selenocyclization, cooperative 
Lewis base and Brønsted acid activation of the electrophilic selenium reagent formed a reactive ion 
pair (Se-I), which may be associated with the squaramide catalyst 8. This intermediate reacted with 
o-allyl-substituted phenol substrate and formed chiral seleniranium ions (R, R)-Se-II and (S, S)-Se-II. 
These two seleniranium ions equilibrated very rapidly, and subsequently went through cyclizations 
with different rates due to the association with chiral squaramide 8, resulting in formation of products 
with excellent enantioselectivities (Scheme 14). 

Scheme 13. Asymmetric selenocyclization via DKR of seleniranium ions by squaramide catalyst 8.

According to the proposed activation strategy of this asymmetric selenocyclization, cooperative
Lewis base and Brønsted acid activation of the electrophilic selenium reagent formed a reactive ion
pair (Se-I), which may be associated with the squaramide catalyst 8. This intermediate reacted with
o-allyl-substituted phenol substrate and formed chiral seleniranium ions (R, R)-Se-II and (S, S)-Se-II.
These two seleniranium ions equilibrated very rapidly, and subsequently went through cyclizations
with different rates due to the association with chiral squaramide 8, resulting in formation of products
with excellent enantioselectivities (Scheme 14).
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3.2. Asymmetric Ring Opening of Azlactones  

Numerous thiourea-organocatalytic DKRs of racemic azlactones have been widely investigated, 
but few examples concerning DKR of racemic azlactones promoted by squaramide-organocatalysts 
were reported. Song and coworkers developed a novel catalytic DKR of ring-opening reactions of 
racemic azlactones with various alcohols by the bifunctional squaramide-based dimeric cinchona 
alkaloid catalysts 9 and 10 (Scheme 15) [108]. These catalysts displayed unprecedented catalytic activity, 
as well as enantioselectivity in the DKR reaction of a broad range of racemic azlactones (up to 99% 
yield, 97% ee). The recyclability of the catalysts was examined, and the enantioselectivity and activity 
were not decreased even after fifth run. 
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products were obtained with a deuterium content greater than 95%, and their optical purity can be 
improved to >99% ee after a single recrystallization. 

Scheme 14. Proposed possible catalytic cycle.

3.2. Asymmetric Ring Opening of Azlactones

Numerous thiourea-organocatalytic DKRs of racemic azlactones have been widely investigated,
but few examples concerning DKR of racemic azlactones promoted by squaramide-organocatalysts
were reported. Song and coworkers developed a novel catalytic DKR of ring-opening reactions of
racemic azlactones with various alcohols by the bifunctional squaramide-based dimeric cinchona
alkaloid catalysts 9 and 10 (Scheme 15) [108]. These catalysts displayed unprecedented catalytic activity,
as well as enantioselectivity in the DKR reaction of a broad range of racemic azlactones (up to 99% yield,
97% ee). The recyclability of the catalysts was examined, and the enantioselectivity and activity were
not decreased even after fifth run.
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Inspired by the aforementioned results, Song and coworkers further employed this protocol for
the preparation of α-carbon deuterium-labeled α-amino acids with EtOD as a nucleophile as well as
a deuterium source catalyzed by bifunctional squaramide-based dimeric cinchona alkaloid catalyst 9
(Scheme 16) [109]. Various α-deuterated amino esters were afforded with good enantioselectivities
and yields (up to 88% yield, 88% ee). In addition, most of the N-protected α-deuterated amino ester
products were obtained with a deuterium content greater than 95%, and their optical purity can be
improved to >99% ee after a single recrystallization.
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4. Conclusions  

Asymmetric organocatalysis is one of the most important research areas in organic synthesis and 
applicable in a broad variety of reaction types, which includes those reactions involving the DKR 
process. In this review, we have summarized recent significant developments on the catalytic 
asymmetric reactions via the DKR process promoted by the (thio)urea and squaramide organocatalysts. 
These reaction examples have confirmed that (thio)urea and squaramide organocatalysts bearing 
hydrogen-bonding donors as catalysts have played an important role in achieving excellent results 
from the transformations involving the DKR process. In addition, further exciting and significant 
discoveries of (thio)urea and squaramide organocatalytic DKR process and developments with this 
versatile type of bifunctional organocatalysis are to be expected in the near future with the advent of 
more systematic studies.  
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3.3. Cascade Sulfur-Michael–Michael Reaction

Chroman is a kind of fundamental heterocyclic skeleton and widely found in natural products and
medical molecules with great importance [110–112]. Organocatalytic cascade reactions were regarded
as a straightforward and efficient method to construct chiral chroman framework [113]. In 2013, Du and
coworkers developed an efficient asymmetric cascade sulfa-Michael/Michael addition of thiosalicylates
with nitroalkene enoates to build chiral chromans catalyzed by a chiral bifunctional squaramide-tertiary
amine catalyst 11 (Scheme 17, 98% yield, 95:5 dr, 95% ee) [114]. The highly functionalized chiral
chroman products contained three contiguous stereocenters, including one quaternary center.
Based on the results of control experiments, they proposed a reasonable reaction pathway of
sulfa-Michael/retro-sulfa-Michael/sulfa-Michael/Michael reactions involving the DKR process.
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Scheme 17. Squaramide-catalyzed asymmetric cascade sulfa-Michael/Michael addition of thiosalicylates
to nitroalkene enoates.

4. Conclusions

Asymmetric organocatalysis is one of the most important research areas in organic synthesis
and applicable in a broad variety of reaction types, which includes those reactions involving the
DKR process. In this review, we have summarized recent significant developments on the catalytic
asymmetric reactions via the DKR process promoted by the (thio)urea and squaramide organocatalysts.
These reaction examples have confirmed that (thio)urea and squaramide organocatalysts bearing
hydrogen-bonding donors as catalysts have played an important role in achieving excellent results
from the transformations involving the DKR process. In addition, further exciting and significant
discoveries of (thio)urea and squaramide organocatalytic DKR process and developments with this
versatile type of bifunctional organocatalysis are to be expected in the near future with the advent of
more systematic studies.
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