Next Article in Journal
Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch
Next Article in Special Issue
Anti-Inflammatory Activity of Natural Products
Previous Article in Journal
Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery
Previous Article in Special Issue
Anti-Inflammatory Activity of Citrus bergamia Derivatives: Where Do We Stand?
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(10), 1317; doi:10.3390/molecules21101317

A Potential Mechanism for the Anti-Apoptotic Property of Koumine Involving Mitochondrial Pathway in LPS-Mediated RAW 264.7 Macrophages

1
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
2
Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
3
Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China
*
Author to whom correspondence should be addressed.
Academic Editor: Thomas J. Schmidt
Received: 16 July 2016 / Revised: 19 September 2016 / Accepted: 21 September 2016 / Published: 1 October 2016
(This article belongs to the Special Issue Natural Products and Inflammation)
View Full-Text   |   Download PDF [3423 KB, uploaded 9 October 2016]   |  

Abstract

Koumine is a kind of alkaloid extracted from Gelsemium elegans (G. elegans). Benth, which has shown promise as an anti-tumor, anxiolytic, and analgesic agent. In our present study, the effect of koumine on lipopolysaccharide (LPS)-mediated RAW 264.7 cell apoptosis was evaluated. MTT assays showed that koumine obviously increased cell viability in LPS-mediated RAW 264.7 macrophages. Preincubation with koumine ameliorated LPS-medicated apoptosis by decreasing reactive oxygen species (ROS) production, which resulted in a significant decrease in the levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS). In addition, koumine-pretreated RAW 264.7 macrophages exhibited reduction of LPS-induced levels of TNF-α, IL-1β, and IL-6 mRNA. Furthermore, pretreatment with koumine suppressed LPS-mediated p53 activation, loss of mitochondrial membrane potential, caspase-3 activation, decrease of Bcl-2 expression, and elevation of Bax and caspase-3 expressions, suggesting that koumine might act directly on RAW 264.7 cells to inhibit LPS-induced apoptosis. It seems as though the mechanism that koumine possesses is the anti-apoptotic effect mediated by suppressing production of ROS, activation of p53, and mitochondrial apoptotic pathways in RAW 264 cells. Koumine could potentially serve as a protective effect against LPS-induced apoptosis. View Full-Text
Keywords: koumine; anti-apoptotic effect; mitochondria; caspase koumine; anti-apoptotic effect; mitochondria; caspase
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yuan, Z.-H.; Liang, Z.-E.; Wu, J.; Yi, J.-E.; Chen, X.-J.; Sun, Z.-L. A Potential Mechanism for the Anti-Apoptotic Property of Koumine Involving Mitochondrial Pathway in LPS-Mediated RAW 264.7 Macrophages. Molecules 2016, 21, 1317.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top