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Abstract: Three new triterpenoids; namely 28,28,30-trihydroxylupeol (1); 3,21,21,26-tetrahydroxy-
lanostanoic acid (2) and dehydroxybetulinic acid (3) and seven known compounds; i.e., taraxerone
(4); taraxerol (5); ethyl palmitate (6); herniarin (7); stigmasterol (8); ursolic acid (9) and acetyl
ursolic acid (10) were isolated from the stem of Ficus aurantiaca Griff. The structures of the
compounds were established by spectroscopic techniques. The compounds were evaluated for
their inhibitory effects on polymorphonuclear leukocyte (PMN) chemotaxis by using the Boyden
chamber technique and on human whole blood and neutrophil reactive oxygen species (ROS)
production by using a luminol-based chemiluminescence assay. Among the compounds tested,
compounds 1–4, 6 and 9 exhibited strong inhibition of PMN migration towards the chemoattractant
N-formyl-methionyl-leucyl-phenylalanine (fMLP) with IC50 values of 6.8; 2.8; 2.5; 4.1; 3.7 and 3.6 µM,
respectively, comparable to that of the positive control ibuprofen (6.7 µM). Compounds 2–4, 6, 7 and
9 exhibited strong inhibition of ROS production of PMNs with IC50 values of 0.9; 0.9; 1.3; 1.1; 0.5 and
0.8 µM, respectively, which were lower than that of aspirin (9.4 µM). The bioactive compounds might
be potential lead molecules for the development of new immunomodulatory agents to modulate the
innate immune response of phagocytes.

Keywords: Ficus aurantiaca Griff; terpenoids; immunomodulatory; neutrophils; chemotaxis;
reactive oxygen species

1. Introduction

Medicinal plant products have long been used in traditional medicines for the treatment of
many immunological disorders. Their therapeutic effects may be due to their effects on the immune
system [1]. Many herbs such as Andrographis paniculata, Allium sativum, Trigonella foenum graecum,
Pouteria cambodiana, Centella asiatica, Asparagus racemosus, Baliospermum montanum, Curcuma longa,
Panax ginseng, Phyllanthus debilis, Tinospora cordifolia, and Picrorhiza scrophulariiflora have been
reported to be able to modulate the immune system, including both adaptive and innate arms
of the immune responses, exhibiting either immunostimulant or immunosuppressive effects [2–4].
Immunomodulation by these plant extracts and their active components provide new sources of lead
molecules for development of natural immunomodulators for a variety of immunologic diseases.
Assessment of the immunological effects of compounds is based on their selective activities on the
different components of the immune system. In recent years, there was an increased interest in the
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search for natural immunomodulators from medicinal plants to substitute conventional therapy as
they are considered to possess fewer side effects [5].

Ficus (family: Moraceae) is one of the largest genera of angiosperms, with more than 800 species
of trees, shrubs, hemi-epiphytes and climbers in the tropics and sub-tropics worldwide [6]. Due to
its high economic and nutritional values the genus is a vital hereditary source and also an important
component of biodiversity of the rainforest ecosystem. It is also a good source of food for fruit eating
animals in tropical area [7]. Chemical investigations of various Ficus species have shown the presence
of flavonoids, coumarins, alkaloids, steroids, triterpenoids, simple phenols and salicylic acids from
F. benghalensis, F. carica, F. hirta, F. hispida, F. microcarpa, F. nymphaeifolia, F. ruficaulis and F. septica [8,9].
Some of these plants exhibited a wide range of biological activities such as anti-inflammatory [10–12],
antioxidant, hypolipidemic and hypoglycemic activities [13]. Some Ficus species are well known
in Asia as medicinal plants and are widely used in folk medicines for the treatment of flu, malaria,
tonsillitis, bronchitis and rheumatism [14]. One of the most biologically active species of Ficus is F. carica
which has been reported to have some 21 traditional and current uses in various ethnopharmacological
practices [15].

Ficus aurantiaca Griff is an evergreen tree that can grow up to 9 m. It is widespread in the lowland
forests at Kelantan, Terengganu, Perak, Pahang, Selangor, Melaka and Johor in Malaysia, where it is
locally known as “tengkuk biawak” or “akar tengkuk biawak hitam”. Traditionally, the plant parts
have been used for the treatment of various ailments including headache, wound and toothache [16].
There is little investigation on the chemical composition and biological properties of F. aurantiaca.
Our preliminary study on the stem extract of this plant had demonstrated that it inhibited in vitro
chemotactic migration as well as suppressed the release of reactive oxygen species by granulocytes
(unpublished data). The aims of the present study were to isolate and identify the constituents of
the stem of F. aurantiaca and evaluate their effects on reactive oxygen species (ROS) production and
chemotactic activity of neutrophils.

2. Results and Discussion

2.1. Characterization of the Isolated Compounds

Successive separations of n-hexane, ethyl acetate and methanol extracts using silica gel
chromatography afforded three new triterpenoids, 28,28,30-trihydroxylupeol (1), 3,21,21,26-
tetrahydroxylanostanoic acid (2) and dehydroxybetulinic acid (3) along with five known triterpenoids,
taraxerone (4), taraxerol (5), stigmasterol (8), ursolic acid (9), acetyl ursolic acid (10), one
sesquiterpenoid, herniarin (7) and one diterpenoid, ethyl palmitate (6). The structures of the new
compounds are shown in Figure 1. The structures of the known compounds were elucidated by the
combination of ESIMS, 1H- and 13C-NMR spectral data and comparison of their spectral data with
literature values [17–23].
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Figure 1. New terpenoids from F. aurantica.
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Compound 1 (20 mg) was isolated as a white powder with a melting point range of 222–224 ˝C.
The IR spectrum showed a band at 3311 cm´1 due to the presence of hydroxyl groups (-OH).
C-H stretching vibrations were observed at 2920 cm´1 while the methyl bending vibration was
at 1411 cm´1. The HRESIMS displayed a molecular ion at m/z 474.1465 [M]+, corresponding to a
molecular formula of C30H50O4 (M = 474.1465). The 1H-NMR spectrum exhibited singlets indicating
the presence of five methyl groups, deshielded methine protons at δH 2.04 (H-18) and 2.38 (H-19)
and two olefinic protons at δH 4.69 and 4.57. The corresponding 13C-NMR spectrum displayed
30 carbon signals, including five methyls, twelve methylenes, seven methines and six quaternary
carbons. Two methine carbons at δC 80.1 (C-3) and 95.1 (C-28) were typical for C-OH and two sp2

carbons at δC 150.9 (C-20) and 109.3 (C-29), indicated the presence of one double bond. Another
methylene carbon at δC 69.2 (C-30) was characteristic for hydroxyl (C-OH). The 1H- and 13C-NMR
data of 1 were very similar to those reported for lupeol [24], the main difference being the presence of
four hydroxyl groups instead of only one. Two methyl group protons at C-28, were substituted by
two hydroxyl groups, and in the C-30 methyl group, a proton was also ubstituted by a hydroxyl group.
The positions of the hydroxyl groups were established by the HMQC correlation of the hydroxyl
(-OH) protons, δH 2.37, 2.04, 2.29 and 2.39 with the δC 80.1 (C-3) 69.2 (C-30) and 95.1 (C-28) carbon
signals, respectively.

The connectivity between protons and carbons established by the HMQC and HMBC spectra
indicated that the two olefinic protons were attached to carbon at δC 109.3 (C-29), the two adjacent
methyl protons resonating as a singlet at δH 0.79 (s, 3H, H-23) and 0.83 (s, 3H, H-24) attached to
a quaternary carbon at δC 39.6 (C-4) were attributed to methine carbon δC 55.6 (C-5) and hydroxyl
methine carbon δC 80.1 (C-3) by 3J correlation, respectively. Meanwhile another methyl proton at
δH 0.94 (s, 3H, H-25) displayed 3J correlations with methylene carbon at δC 38.1 (C-1) and methine
carbon at δC 50.3 (C-9). Another two groups of methyl protons were observed at δH 1.01 (s, 3H,
H-26) and 1.07 (s, 3H, H-27), showed 3J correlation with methylene carbon at δC 34.1(C-7) and δC 27.4
(C-15), respectively. One hydroxyl methine proton at δH 3.39 (dd, 1H, J = 10.8, 4.8 Hz, H-3) showed a
2J correlation with methylene carbon δC (C-2). Another three methine protons were visible at δH 1.34
(m, 1H, H-13), 2.04 (m, 1H, H-18) and 2.38 (d, 1H, J = 7.2 Hz, H-19) whereas at δH 1.34 (m, 1H, H-13)
showed 2J correlation with methylene carbon at δC 25.1 (C-12) and methine carbon at δC 47.9 (C-18) and
proton at δH 2.04 (m, 1H, H-18) and 2.38 (d, 1H, J = 7.2 Hz, H-19) showed 2J correlation with methine
carbon at δC 48.2 (C-19) and quaternary carbon at δC 150.9 (C-20), respectively. Based on these 1H and
13C-NMR spectral data of 1, summarized in Table 1, and the comparison with the literature values of
lupeol [24], 1 was identified as 28,28,30-trihydroxylupeol. Selected C-H correlations in 1 established by
HMBC are shown in Figure 2. In the genus Ficus, lupeol was previously isolated from F. carica [25],
F. micricarpa [26] and F. benjamina [9], while lupeol acetate was isolated from F. microcarpa [26]. This is
the first report of a hydroxy derivative of lupeol in Ficus species.

Table 1. 1H- and 13C-NMR spectroscopic data (600 MHz, CDCl3) for triterpenoids 1–3.

Positions
Compound 1 Compound 2 Compound 3

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 38.1 1.28 (d, 4H, J = 6.6) 29.8 0.94, (m, 2H) 36.1
1.41 (m, 1H)
1.31 (m,1H)

2 27.3 1.68 (d, 4H, J = 3.0) 25.7 1.01 (m, 2H) 28.2
1.42 (m, 1H)
1.32 (m, 1H)

3 80.1
3.39 (dd, 1H,
J = 10.8, 4.8) 80.1

3.44 (1H, t, J = 18.0),
4.68 (OH) 36.7

1.42 (m, 1H)
1.33 (m, 1H)

4 39.6 - 43.0 - 30.8 -
5 55.6 1.32 (d, 1H, J = 7.2) 151.0 - 59.6 1.34 (m, 1H)
6 17.7 1.28 (m, 4H, J = 6.6) 109.3 4.79 (t, 1H, J = 6.0) 18.6 1.65 (m, 2H)
7 34.1 1.28 (m, 4H) 31.9 1.77 (m, 2H) 37.4 1.46 (m, 1H)
8 40.9 - 50.3 1.48 (m, 1H) 40.1 -



Molecules 2016, 21, 9 4 of 14

Table 1. Cont.

Positions
Compound 1 Compound 2 Compound 3

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

9 50.3 0.88 (m, 10H) 48.2 - 51.9 1.56 (m, 1H)
10 37.3 - 39.9 - 36.7 -

11 21.0 1.61 (m, 4H) 23.7 1.34 (m, 2H) 20.6
1.54 (m, 1H)
1.29 (m, 1H)

12 25.1 1.68 (m, 4H) 22.7 1.31 (m, 2H) 25.2
1.55 (m, 1H)
1.29 (m, 1H)

13 37.9 1.34 (m, 1H) 42.8 - 37.7 1.24 (m, 1H)
14 42.8 - 40.9 - 42.9 -

15 27.4 1.26 (m, 4H) 34.5 1.57 (m, 2H) 39.7
1.49 (m, 1H)
1.00 (m, 1H)

16 35.5 1.26 (m, 4H) 29.4 1.63 (m, 2H) 40.4
1.86 (m, 1H)
1.25 (m,1H)

17 43.0 - 55.6 1.48 (m,1H) 59.6 -
18 47.9 2.04 (m, 1H) 27.4 1.03 (s, 2H) 46.5 1.68 (m, 1H)
19 48.2 2.38 (d, 1H, J = 7.2) 17.7 1.04 s, 1H 37.2 2.09 (m, 1H)
20 150.9 - 35.3 1.68 (m, 1H) 150.9 -
21 29.7 1.88–1.94 (m, 2H) 95.1 4.80 (m, 1H) 29.2 1.60 (m, 6H)
22 39.9 1.34 (m, 4H) 35.5 1.18 (m, 2H) 23.0 1.75 (t, 2H, J = 5.4)
23 14.5 0.79 (s, 3H) 25.0 1.35 (m, 2H) 22.1 0.83 (s, 6H)
24 18.0 0.83 (s, 3H) 150.9 4.57 (m, 1H) 16.6 0.90 (s, 3H)
25 15.9 0.94 (s, 3H) 109.3 - 15.4 0.76 (s, 3H)
26 16.1 1.01(s, 3H) 69.2 4.03 (d, 1H, J = 12) 17.6 0.89 (s, 3H)
27 14.1 1.07 (s, 3H) 173.8 - 13.9 0.73 (s, 3H)
28 95.1 4.79 (t, 1H, J = 6 Hz) 14.1 0.80 (s, 3H) 183.5 -

29 109.3
4.69 (br s, 1H)

15.9 0.85 (s, 1H) 116.3 5.32 (brs, 1H)4.57 (br s, 1H)

30 69.2
5.14 (m, 1H, H-30) 16.5 0.92 (q, 3H) 20.1 1.10 (s, 3H)5.19 (m, 1H, H-30)
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Figure 2. Selected HMBC correlations (CÑH) of compounds 1–3.

Compound 2 was isolated as a white powder with a melting point range of 150–155 ˝C. The IR
spectrum displayed absorption bands for a carboxylic acid group (3215 cm´1, 1678 cm´1) and a keto
function at 1735 cm´1 and unsaturation at 1643 cm´1. The HRESIMS showed a molecular ion at
m/z 502.3290 [M]+, 479.1023 [M ´ 23]+, 453.0885 [M ´ CH3OH ´ 17]+ and 311.1563 [M ´ side chain
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(C8H14O5) ´ 1]+. Based on HRESIMS data its molecular formula was determined to be C30H46O6 and
the molecular weight was established as 502.3290 [M]+. The 1H-NMR spectrum displayed characteristic
signals for methyl protons at δH 0.80 (s, 3H, H-28), 0.85 (s, 1H, H-29), 0.92 (q, 3H, H-30) and 1.04 (s, 1H,
H-19). One proton downfield signal appeared at δH 4.79 (t, 1H, J = 6.0 Hz, H-6) and was attributed to
the vinylic H-6 proton. Another proton resonating as a triplet at δH 3.44 (1H, t, J = 18.0 Hz) was ascribed
to a β-oriented H-3 carbinol proton. The 13C-NMR spectrum showed thirty carbon signals, including
four methyls, ten methylenes, six methines and eight quaternary carbon signals. One methylene
carbon at δC 69.2 and two methine carbons at δC 80.1 and δC 95.1 were typical for C-OH moieties.
Important signals were observed for a carboxylic acid carbon at δC 173.8 (C-27), vinylic carbons at
δC 151.0 (C-5) and δC 109.3 (C-6) carbinol carbons at δC 80.1 (C-3) and methyl carbons between δC

17.7–14.1. The 1H- and 13C-NMR data of 2 were compared to the reported data of other lanostanoic
acids [22,27].

Proton and carbon connectivity established by HMQC and HMBC spectral analysis indicated
that four methyl protons at δH 0.80, 0.80, 0.92 and 1.04 were connected to the C-28, C-29, C-30 and
C-19 tertiary methyl protons, respectively, all attached to the saturated carbons. Two methyl groups
resonating as a singlet were observed at δH 0.80 (s, 3H, H-28), 0.85 (s, 1H, H-29) and were attached
to quaternary carbon at δC 43.0 (C-4). Methyl protons at δH 0.80 (s, 3H, H-28) and 0.85 (s, 1H, H-29)
displayed 3J correlations with quaternary carbon at δC 151.0 (C-5) and the carbinol carbon at δC 80.1
(C-3). Meanwhile two methylene protons observed at δH 0.94, (m, 2H, H-1) and 1.01 (m, 2H, H-2)
showed 3J and 2J correlations, respectively, with the same hydroxyl carbinol carbon at δC 80.1 (C-3).
Another two methyl groups positioned at δH 1.04 (s, 1H, H-19) and 0.92 (q, 3H, H-30) were attached to
quaternary carbons at δC 42.8 (C-13) and δC 40.9 (C-14), respectively. Three methylene proton signals
at δH 1.34 (m, 2H, H-11), 1.31 (m, 2H, H-12) and 1.03 (s, 2H, H-18) were observed to show 2J, 3J and 2J
correlations, respectively, with the quaternary carbon at δC 48.2 (C-9). One carbinol proton appearing
as multiplet at δH 4.80 was attributed to C-21 and showed a 2J correlation with the methine carbon at
δC 35.3 (C-20). The COSY spectrum revealed the presence of two sets of methyl groups at δH 0.80 (s, 3H,
H-28) and δH 0.85 (s, 1H, H-29) coupled with each other and attached to a quaternary carbon at C-4
(δC 43.0) and another set of methyl protons at δH 0.92 (q, 3H, H-30) coupled with a methylene proton
at δH 1.57 (m, 2H, H-15). The 1H- and 13C-NMR spectral data are summarized in Table 1. The C-H
correlations established by HMBC are shown in Figure 2. Based on these evidences and comparisons
with the spectral data of lanostene type triterpenoic acids [22,27], the structure of 2 was identified as
3,21,21, 26-tetrahydroxylanostanoic acid.

Compound 3 was isolated as a white powder with a melting point range of 285–290 ˝C. The UV
spectrum showed an absorption at νmax 254 nm. The IR spectrum displayed absorption bands for
carboxylic acid hydroxyl groups at νmax 2924 cm´1 (C-OH, acid), carboxylic acid carbonyl carbon at
1732 cm´1 (C=O, acid) and olefins at 1648 (C=C). There is no absorption band for an alcoholic hydroxyl
(-OH, alcohol). The ESIMS (positive mode) showed a molecular ion at m/z 441.3663 [M + H]+ and
463.3474 [M + Na]+ while ESIMS (negative mode) showed a molecular ion at m/z 439.3759 [M ´ H]´

and 879.7791 [2M ´ H]´. HRESIMS (positive mode) displayed a molecular ion at m/z 457.2734
[M + OH]+. Its molecular formula was thus deduced to be C30H48O2 (calculated 440.3650 [M+] for
C30H48O2). The 1H-NMR spectrum of 3 revealed signals for five tertiary methyls at δH 0.83 (s, 6H,
H-23), 0.90 (s, 3H, H-24), 0.76 (s, 3H, H-25), 0.89 (s, 3H, H-26), 0.73 (s, 6H, H-27), a vinyl methyl at δH

1.10 ppm (s, 3H, H-30) and an exo-methylene proton at δH 5.32 ppm (brs, 1H, H-29).
The 13C-NMR spectrum showed six methyl groups at δC 22.1 (C-23), 16.6 (C-24), 15.4 (C-25), 17.6

(C-26), 13.9 (C-27), and 20.1 ppm (C-30), an exo-methylene group at δC 150.9 (C-20) and 116.3 (C-29)
and a carboxylic acid group at δC 183.5 (C-28). In addition the 13C-NMR spectrum showed twelve
methylene carbons, five methine carbons and six quaternary carbon signals. The 1H- and 13C-NMR
data of 3 were very similar to those reported for betulinic acid [23]. The difference lies only the presence
of a hydrogen instead a hydroxyl at C-3. These NMR spectral data indicated that compound 3 is a
pentacyclic lupeol-type triterpenoic acid without a secondary hydroxyl-bearing carbinol carbon at
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the C-3 position. Proton and carbon connectivity was determined by HMQC and HMBC spectral
analyses. Two methyl protons resonating as a singlet observed at δH 0.90 (H-24) and 0.83 (H-23) were
attached to C-4 (δC 30.8) and correlated with carbons at δC 36.7 (C-3) and 59.6 (C-5), respectively, by a
3J correlation. One of these methyl protons also showed a 2J correlation with the quaternary carbon at
C-4 (δC 30.8). Another methyl group at δH 0.76 (H-25) displayed 3J correlations to a methylene carbon
at δC 36.1 (C-1) and two methyne carbons at δC 59.6 (C-5) and 51.9 (C-9). An exo-methylene proton at
δH 5.32 (H-29) resonating as a broad singlet attached to a quaternary carbon at δC 150.9 (C-20) was
correlated with a methine carbon at δC 37.2 (C-19). Two methyl groups at δH 0.73 (s, 3H, H-27) and
1.10 (s, 3H, H-30) resonating as a singlet were attached to a quaternary carbon at δC 42.9 (C-14) and
150.9 (C-20), respectively, whereas a methyl proton at δH 0.73 (s, 3H, H-27) showed 3J correlations with
the methylene carbon at δC 39.7 (C-15), methine carbon δC 37.7 (C-13) and the proton at δH 1.10 (s, 3H,
H-30) showed a 2J correlation with quaternary carbon at δC 150.9 (C-20). Two methylene protons at
δH 1.86 (m, 1H, 16a) and 1.25 (m, 1H, 16b) displayed 2J correlations with δC 39.7 (C-15) and δC 59.6
(C-17). These methylene protons also showed 3J correlations with the methine carbon at δC 46.5 (C-18)
and the quaternary carboxylic carbon at δC 183.5 (C-28). Similarly the carboxylic acid carbon at δC

183.5 (C-28) was correlated with methylene proton at δH 1.75 (t, 2H, J = 5.4 Hz, H-22) by 3J correlation.
Two methine protons at δH 1.68 (m, 1H, H-18) and 2.09 (m, 1H, H-19) were observed to show 3J and 2J
correlations with the quaternary carbon at δC 150.9 (C-20) and the proton at δH 2.09 (m, 1H, H-19) also
showed a 2J correlation with δC 46.5 (C-18). In the same way the methine proton at δH 1.24 (m, 1H,
H-13) was correlated with the methine carbon at δC 46.5 (C-18) and the quaternary carbon at δC 40.1
(C-8) by 2J and 3J correlations, respectively. Another methine proton at δH 1.56 (m, 1H, H-9) showed
2J and 3J correlations with the quaternary carbon at δC 36.7 (C-10) and 42.9 (C-14), respectively.

The COSY spectrum revealed the presence of one set of methylene protons at δH 5.32 (brs, 1H,
H-29) attached to C-29 (δC 116.3) were coupled to each other and with one set of methyl proton δH 1.10
(s, 3H, H-30). Based on the above 1H-NMR, 13C-NMR information as well as the HMBC, HSQC and
COSY data and comparison with the literature values of betulinic acid [23], the structure of 3 was
identified as dehydroxybetulinic acid. The 1H- and 13C-NMR spectral data of 3 are summarized in
Table 1. The positions of carbons and protons were established by 2D-NMR data (HMBC, HSQC
and COSY) and the C-H correlations established by HMBC are shown in Figure 2. In the genus
Ficus, betulinic acid and acetylbetulinic acid and betulonic acid were previously isolated from
F. microcarpa [28]. This is the first report of dehydroxybetulinic acid from a Ficus species.

2.2. Chemotactic Activity

The cell viability test was performed using trypan blue to determine the toxicity of the compounds
on immune cells at different concentrations. The elevated cell viability indicated that the compounds
were nontoxic to immune cells and were able to modulate the cellular immune response of phagocytes.
Cells were viable (>92%) at the concentrations of 6.25 and 100 µg/mL of the extracts after incubation
for 2 h. All the compounds were tested for chemotaxis activity at five different concentrations (10, 5,
2.5, 1.25 and 0.625 µg/mL). Distance migrated by cell was specified in µm. The percentage of inhibition
and IC50 values were calculated comparing the distance travelled by negative control and samples.
The average distance travelled by the negative control (DMSO and HBSS, 1:1 ratio) was 15.8 µm while
that for the positive control, ibuprofen, was 4.8 µm. Ibuprofen was used as a positive control as it
was found to be the most effective drug in a study to determine the effect of selected nonsteroidal
anti-inflammatory drug (NSAIDs) in blocking the migration of PMNs [29,30]. The results showed that
DMSO did not affect the movement of cells. Seven compounds showed high percentage of inhibition
(70% to 80%), significantly different to the control (p < 0.05). Among the ten compounds, seven showed
strong inhibitory activities with dose-dependent effects on the migration of PMNs towards the chemo
attractant (fMLP). Compounds 1–4, 6, 7 and 9 exhibited strong (more than 70%) inhibition and the IC50

values of these compounds were comparable to that of ibuprofen. The percentage of inhibitions of
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PMNs chemotaxis for the active compounds is shown in Figure 3. The IC50 values of active compounds
with positive control are shown in Table 2.Molecules 2016, 21, 0009 7 of 14 
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Figure 3. Dose dependent percentage of inhibition of compounds of F. aurantiaca on PMNs chemotaxis.
Data are mean ˘ SEM (n = 3). * p < 0.05 is significant difference compared with the respective control
determined by one-way ANOVA followed by Tukey’s test.

Table 2. IC50 values of compounds isolated from F. aurantiaca.

Compounds
IC50 Value (µM)

ROS
ChemotaxisPMNs WB

28,28,30-Trihydroxylupeol (1) 9.2 ˘ 0.5 11.5 ˘ 0.05 6.8 ˘ 0.1
3,21,21,26-Tetrahydroxylanostanoic acid (2) 0.9 ˘ 0.03 0.1 ˘ 0.3 2.8 ˘ 0.1

Dehydroxybetulinic acid (3) 0.9 ˘ 0.1 1.7 ˘ 0.1 2.5 ˘ 0.1
Taraxerone (4) 1.3 ˘ 0.1 4.6 ˘ 0.08 4.1 ˘ 0.5
Taraxerol (5) - - -

Ethyl palmitate (6) 1.1 ˘ 0.05 0.7 ˘ 0.05 3.7 ˘ 0.2
Herniarin (7) 0.5 ˘ 0.5 1.6 ˘ 0.1 8.2 ˘ 0.2

Stigmasterol (8) - - -
Ursolic acid (9) 0.8 ˘ 0.5 1.3 ˘ 0.8 3.6 ˘ 0.2

Acetylursolic acid (10) - - -
Aspirin (positive control) 9.4 ˘ 0.5 11.6 ˘ 0.3 -

Ibuprofen (positive control) - - 6.7 ˘ 0.5

2.3. Reactive Oxygen Species (ROS) Inhibitory Activity of Isolated Pure Compounds on Human Whole Blood
(WB) and PMNs

Compounds 1–10 were evaluated for their effects on the oxidative burst of PMNs. Of the
ten compounds, 1–4, 6, 7 and 9 were strongly active against PMNs. The IC50 values of these
compounds were lower than that of aspirin which was used as a positive control. The result showed
that the compounds inhibited ROS generation during the metabolic phase of phagocytises in a
dose-dependent manner as the concentrations of samples increased the percentage of inhibition
was also increased. Further evaluation of compounds 1–10 for their effects on oxidative burst on
human whole blood showed that compounds 1–4, 6, 7 and 9 exhibited remarkable activity for
luminol-enhanced chemiluminescence. In addition, compounds 1–3, 6, 7 and 9 showed strong
inhibition on both PMNs and whole blood whereas inhibition of PMNs was higher than that of
whole blood. The dose dependent ROS inhibitory effects on the oxidative burst of human whole blood
(b) and PMNs (a) for active compounds are shown in Figure 4 and their IC50 values are shown in
Table 2.
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Figure 4. (a) Dose dependent percentage of inhibition of ROS inhibitory activity of compounds isolated
from F. aurantiaca on PMNs and (b) whole blood assayed by luminol amplified chemiluminescence.
Data are mean ˘ SEM (n = 3).* p < 0.05 is significant difference compared with the respective control
determined by one-way ANOVA followed by Tukey’s test.

The potency of triterpenoids from F. aurantiaca as inhibitors of chemotaxis and ROS production
of neutrophils is in agreement with many previous studies. Triterpenoids, especially pentacyclic
triterpenes like compounds 1 and 3 were implicated in studies on the mechanisms of action and
pharmacological effects of many medicinal plants used in folk medicine against diseases related
to the immune system such as anti-inflammatory, antiviral, antimicrobial, antitumoral agents,
as well as immunomodulating effects. Several of them are implicated in the resolution of immune
diseases, although their effects have not always been clearly correlated [31]. Oleanolic acid and
its related compounds such as ursolic acid and betulinic acid are known to be anti-inflammatory
and immuno-suppressive through their reduction of relevant cytokines such as interleukin-1 (IL-1)
interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), as well as their effect on the classic pathway
of complement activation though the inhibition of C3 convertase. Triterpenoic acid such as oleanolic
acid and 3-epi-katonic acid also inhibited adenosine deaminase, an enzyme which is found at increased
levels in various immune diseases [31,32]. The immunosuppressive effects of Tripterygium wilfordii
might also involve triterpenoids, as well as compounds such as oleanolic acid, 3-epi-katonic acid,
terpenoic acid. Eight cycloartanes isolated from Astragalus melanophrurius (Fabaceae) were found to
show interesting immunomodulatory activity in an isolated human lymphocyte stimulation test [32].
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The effects of a mixture of triterpenes from Quillaja saponaria (Rosaceae) on the production of IL-1 and
IL-6, as well as their role in the activation of antigen-presenting cells (APC), a prerequisite for the
development of immune responses have been reported [33].

Triterpenes of diverse structural types are widely distributed in prokaryotes and eukaryotes.
The physiological function of these compounds is generally supposed to be a chemical defense against
pathogens. Triterpenes act against certain pathogens causing human and animal diseases, such as
imflammation. This may be primarily due to the hydrophobic nature of most of the compounds [34].
In this study, among the eight triterpenes, there are two lupine-type skeletons (compounds 1 and 3),
two taraxerane-type (4 and 5), two ursane-type (9 and 10), one lanostane-type skeleton (2) and one
stigmastane skeleton (8). A variety of terpenoids with oleanane-, ursane-, taraxerane-, lupine- and
friedelane-type skeletons previously identified in many higher plants can act as precursors for many
biomarkers found in biological screening. Oleanane, ursane and lupane triterpenes with carboxylic
acid groups and alcoholic derivatives of oleanane, ursane and lupane are active against inflammation.
However, it is difficult to identify exact molecular motifs, largely spread among these terpenes and
implicated in their anti-inflammatory action. Some of the terpenoids act as plant hormones regulating
different physiological roles, but some secondary metabolites is concerned in host defence and in
the protection of the plant or animal from possible pathogens. Recent research in the field of the
regulation of innate immunity from insects to mammals has established the existence of a previously
unexpected protection in the pathways (receptors, kinases and effector molecules) that are involved in
this process [35]. We suggest that the general analysis of the relationship between chemical structure
and immunomodulatory activity of the isolated triterpenes may be related to the presence of an
oxygenated group at C-3 and carboxyl group at C-28.

3. Experimental Section

3.1. General Information

Melting points were determined with an electrothermal apparatus (digital series) and were
uncorrected. Ultraviolet (UV) spectra were recorded with a Shimadzu UV-1601 Spectrophotometer
(Shimadzu Corp., Tokyo, Japan), for ethanol and methanol solutions in 1 cm Quartz cells. IR spectra
were recorded on a GX FTIR instrument (Perkin-Elmer Corp., Waltham, MA, USA) using potassium
bromide pellets and sodium chloride cells. NMR spectral analyses were carried out with a FT-NMR
600 MHz Cryoprobe spectrometer (Bruker, Basel, Switzerland). 1H-1H COSY, 1H-13C HSQC and
1H-13C HMBC were obtained with the usual pulse sequence and data processing was performed
with the ACD lab software (Version 12, Advanced Chemistry Development, Toronto, ON, Canada).
Mass spectra ESIMS and HRESIMS were measured on Micro TOF-Q mass spectrometer (Bruker, Basel,
Switzerland). All experiments were carried out at Universiti Kebangsaan Malaysia (UKM). Analytical
Thin Layer Chromatography (TLC) was carried out on pre-coated silica gel 60 GF 254 (20 ˆ 20)
TLC plate (Merck, art 5554, Darmstadt, Germany). The plates were visualized under ultraviolet light
(λ254 nm, model UVGL-58) and by charring the compounds after spraying the plates with 10% sulphuric
acid or Dragendorff reagent. Vacuum liquid chromatography was carried out over silica gel type H
(10–0 µm, Sigma Chemical Co., St. Louis, MO, USA). The conventional column chromatography was
done by using silica gel 60 (230–400 mesh ASTM, Merck, art 9385) or Sephadex LH20 (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden). Radial chromatography (centrifugal chromatography) was
performed on a Chromatotron (Analtech Inc., Newark, Denmark) using silica gel 60 GF 254 containing
gypsum (TLC grade) (Merck, art. 7749). Organic solvents such as hexane, ethyl acetate, chloroform,
diethyl ether and methanol were purchased from Merck.
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3.2. Plant Material

Ficus aurantiaca Griff was collected from Banting, Selangor, Malaysia and a voucher specimen
(SM2109) was identified and deposited at the Herbarium of Universiti Kebangsaan Malaysia (UKM),
Bangi, Malaysia.

3.3. Extraction and Isolation

Extraction and isolation of compounds from F. aurantiaca was carried out by modification of the
method described by Rukachaisirikul [36]. The plant material was dried at room temperature and
its air-dried stems were ground. The ground powder (196 g) was sequentially extracted thrice with
n-hexane, ethyl acetate and methanol (500 mL each) by soaking at least for 48 h at room temperature
for each time. After filtration each of the solvent extracts was evaporated to dryness under reduced
pressure using a rotary evaporator to yield crude n-hexane (7.8 g), ethyl acetate (4.0 g) and methanol
(10.0 g) extracts, respectively. The separation of hexane, ethyl acetate and methanol extracts was carried
out using vacuum liquid chromatography (VLC), column chromatography and Chromatotron over
silica gel, respectively.

The n-hexane crude extract (6.0 g) of F. aurantiaca was chromatographed using VLC on silica gel
60 GF254 (TLC grade) and hexane–ethyl acetate (10:0 to 0:10, v/v) as solvent system to give sixteen
fractions (F1–F16) that were analyzed using TLC and combined into five fractions (Fa1–Fa5) based
on their TLC profiles. For further isolation and purification, each fraction was subjected to column
chromatography (CC) using silica gel 60 (230–400 mesh ASTM). Fa1 (1.234 g) was subjected to CC
on silica gel as stationary phase and hexane–ethyl acetate (10:0 to 0:10, v/v) of increasing polarity as
mobile phase to obtain seven subfractions (Fa1A–Fa1G). Subfractions Fa1A and Fa1B were subjected
to silica gel CC eluted with hexane–ethyl acetate (9:1 to 5:5 v/v) and further recrystallized from 100%
n-hexane to obtain compound 6. Fraction Fa3 (2.135 g) was purified by silica gel CC eluted with
hexane–ethyl acetate (9:1 to 0:10 v/v) to obtain compound 7.

The ethyl acetate crude extract (3.0 g) of F. aurantiaca was subjected to silica gel CC eluted with
hexane–ethyl acetate (5:5 to 0:10, v/v) and ethyl acetate–methanol (10:0 to 6:4, v/v) to obtain eighteen
fractions (F1–F18). Based on the TLC profiles, these eighteen fractions were combined into six fractions
(Faa–Faf). Fractions Faa (322.1 mg) and Fab (173.2 mg) were separated and purified using repeated CC
to obtain compounds 1 and 4, respectively. In the same way 5, 2 and 8 were obtained from fractions
Fad (321.7 mg), Fae (523.2 mg) and Faf (457.2 mg), respectively. Similarly the methanol extract of
F. aurantiaca (8.0 g) was fractionated using VLC on silica gel 60 GF254 using ethyl acetate-methanol of
increasing polarity as eluent and the fractions were purified by silica gel CC to obtain subfractions
FF1–FF10. Subfractions FF2 (567.0 mg), FF5 (234.0 mg) and FF7 (638.0 mg) was run on a Chromatotron
eluted with ethyl acetate–methanol (10:0 to 2:8, v/v) to yield compounds 9, 3 and 10, respectively.
To summarize, compounds 6 and 7 were obtained from the n-hexane extract; compounds 1, 4, 5, 2
and 8 were isolated from ethyl acetate extract while compounds 9, 3 and 10 were isolated from the
methanol extract. The structure elucidation of the isolated compounds was performed using UV, IR,
ESIMS and NMR spectral data analyses and comparison with appropriate literature values.

28,28,30-Trihydroxylupeol (1): White powder (20.0 mg), melting point 222–224 ˝C, UV λmax (C2H5OH)
nm: 272, 210 (log ε 3.4, 2.2). IR λmax (CHCl3) cm´1: 3310, 2920, 2158, 2042, 1976, 1611, 1411, 1021.
1H-NMR (CDCl3): δH 0.79 (s, 3H, H-23), 0.83 (s, 3H, H-24), 0.94 (s, 3H, H-25), 1.01 (s, 3H, H-26), 1.07
(s, 3H, H-27), 0.88 (m, 10H, H-9), 1.26 (m, 4H, H-15, H-16), 1.28 (m, 4H, J = 6.6 Hz, H-6, H-7), 1.32
(m, 1H, J = 7.2 Hz, H-5), 1.34 (m, 4H, H-22, H-13), 1.61 (m, 4H, H-11), 1.68 (m, 4H, J = 3.0 Hz, H-2,
H-12), 1.88–1.94 (m, 2H, H-21), 2.04 (m, 1H, H-18), 2.38 (d, 1H, J = 7.2 Hz, H-19), 3.39 (dd, 1H, J = 10.8,
4.8 Hz, H-3), 4.57 (br s, 1H, H-29), 4.69 (br s, 1H, H-29), 4.79 (t, 1H, J = 6.0 Hz, H-28), 5.14 (m, 1H,
H-30) 5.19 (m, 1H, H-30). 13C-NMR (CDCl3): δC 14.1(C-27), 14.5 (C-23), 15.9 (C-25), 16.1 (C-26), 17.7
(C-6), 18.0 (C-24), 21.0 (C-11), 25.1 (C-12), 27.3 (C-2), 27.4 (C-15), 29.7 (C-21), 34.1 (C-7), 35.5 (C-16), 37.3
(C-10), 37.9 (C-13), 38.1 (C-1), 39.6 (C-4), 39.9 (C-22), 40.9 (C-8), 42.8 (C-14), 43.0 (C-17), 47.9 (C-18), 48.2
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(C-19), 50.3 (C-9), 55.6 (C-5), 69.2 (C-30), 80.1(C-3), 95.1 (C-28), 109.3 (C-29), 150.9 (C-20). ESIMS m/z:
463.3393 [M + H ´ 12]+, 931.7436 [2M + H ´ 18]+, HRESIMS m/z: 474.1465 [M]+, calculated 474.1465
for molecular formula C30H50O4.

3,21,21,26-Tetrahydroxylanostanoic acid (2): White powder (17.2 mg), melting point 150–155 ˝C, UV νmax

(C2H5OH) nm: 272, 207 (log ε 2.3, 2.8). IR νmax (CHCl3) cm´1: 3215, 2915, 2850, 2134, 1985, 1735,
1678, 1642, 1472, 1120. ESIMS (negative mode) m/z: 502.3290 [M]+, 479.1023 [M ´ 23]+, 453.0885
[M ´ CH3OH ´ 17]+, and 311.1563 [M ´ side chain (C8H14O5) ´ 1]+, HRESIMS (positive mode) m/z:
503.3570 [M + H]+, calculated 502.3290 for molecular formula C30H50O. 1H-NMR (CDCl3): δH 0.80 (s,
3H, H-28), 0.85 (s, 1H, H-29), 0.92 (q, 3H, H-30), 0.94 (m, 2H), 0.99 (s, 2H, H-18), 1.01(m, 2H, H-2), 1.03
(s, 1H, H-19), 1.18 (m, 2H, H-22), 1.31 (m, 2H, H-12), 1.34 (m, 2H, H-11), 1.35 (m, 2H, H-23), 1.48 (m,
1H, H-8, H-17), 1.57 (m, 2H, H-15), 1.63 (m, 2H, H-16), 1.68 (m, 1H, H-20), 1.77 (m, 2H, H-7), 3.44 (t,
1H, H-3), 4.03 (d, 1H, J = 12.0 Hz, H-26), 4.57 (m, 1H, H-24), 4.79 (t, 1H, J = 6.0 Hz, H-6), 4.80 (m, 1H,
H-21), 2.25 (C-21), 2.30 (C-21), 4.68 (C-3), 4.69 (C-26). 13C-NMR (CDCl3): δC 29.8 (C-1), 25.7 (C-2), 80.1
(C-3), 43.0 (C-4), 151.0 (C-5), 109.3 (C-6), 31.9 (C-7), 50.3 (C-8), 48.2 (C-9), 39.9 (C-10), 23.7 (C-11), 22.7
(C-12), 42.8 (C-13), 40.9 (C-14), 34.5 (C-15), 29.4 (C-16), 55.6 (C-17), 27.4 (C-18), 17.7 (C-19), 35.3 (C-20),
95.1 (C-21), 35.5 (C-22), 25.0 (C-23), 150.9 (C-24), 109.3 (C-25), 69.2 (C-26), 173.8 (C-27), 14.1 (C-28), 15.9
(C-29), 16.5 (C-30).

Dehydroxybetulinic acid (3): White powder (17.4 mg) with a melting point 285–290 ˝C. UV λmax

(C2H5OH) nm: 195. IR νmax(CHCl3) cm´1: 2924, 2238, 2158, 1732 1648, 1463, 1248 and 971 cm´1.
ESIMS (positive mode) m/z: 441.3663 [M + H]+ 463.3474 [M + Na]+and ESIMS (negative mode) m/z:
439.3759 [M ´ H]´, 879.7791 [2M ´ H]. HRESIMS (positive mode) m/z: 457.2734 [M + OH]+, calculated
440.3787 for molecular formula C30H48O2. 1H-NMR (CDCl3): δH 1.41 (m, 1H, H-1), 1.31 (m, 1H, H-1),
1.42 (m, 1H, H-2), 1.32 (m, 1H, H-2), 1.42 (m, 1H, H-3), 1.33 (m, 1H, H-3), 1.34 (m, 1H, H-5), 1.65 (m, 2H,
H-6), 1.46 (m, 1H, H-7), 1.56 (m, 1H, H-9), 1.54 (m, 1H, H-11), 1.29 (m, 1H, H-11), 1.55 (m, 1H, H-12),
1.29 (m, 1H, H-12), 1.24 (m, 1H, H-13), 1.49 (m, 1H, H-15), 1.00 (m, 1H, H-15), 1.80 (m, 1H, H-16), 1.25
(m, 1H, H-16), 1.68 (m, 1H, H-18), 2.09 (m, 1H, H-19), 1.60 (m, 6H, H-21), 1.75 (t, 2H, J = 5.4 Hz, H-22),
0.83 (s, 6H, H-23), 0.90 (s, 3H, H-24), 0.76 (s, 3H, H-25), 0.89 (s, 3H, H-26), 0.73 (s, 6H, H-27), 5.32 (br s,
1H, H-29), 1.10 (s, 3H, H-30). 13C-NMR (CDCl3): δC 36.1 (C-1), 28.2 (C-2), 36.7 (C-3), 30.8 (C-4), 59.6
(C-5), 18.6 (C-6), 37.4 (C-7), 40.1 (C-8), 51.9 (C-9), 37.7 (C-10), 20.6 (C-11), 25.2 (C-12), 37.7 (C-13), 42.9
(C-14), 39.7 (C-15), 40.4 (C-16), 59.6 (C-17), 46.5 (C-18), 37.2 (C-19), 150.9 (C-20), 29.2 (C-21), 23.0 (C-22),
22.1 (C-23), 16.6 (C-24), 15.4 (C-25), 17.6 (C-26), 13.9 (C-27), 183.5 (C-28), 116.3 (C-29), 20.1 (C-30).

3.4. Chemicals, Reagents and Equipment

Serum opsonized zymosan A (Saccharomyses cerevisiae suspensions and serum), luminol
(3-aminophthalhydrazide), phosphate buffer saline (PBS), Hanks Balance Salt Solution (HBSS++),
ficoll, N-formyl-methionylleucyl-phenilalanine (fMLP), tryphan blue, phorbol 12-myristate 13-acetate
(PMA), dimethyl sulfoxide (DMSO), acetylsalicylic acid (purity 99%) and ibuprofen (purity 99%)
were purchased from Sigma. Haematoxylin and xylene were obtained from BDH (London, UK).
Chemiluminscence measurements were carried out on a Luminoscan Ascent luminometer (Thermo
Scientific, Loughborough, UK). A Boyden chamber with a 3 and 5 µm polycarbonate membrane
filter separating the upper and lower compartments was purchased from Neuro probe (Cabin John,
Montgomery County, MD, USA).

3.5. Isolation of Polymorphonnuclear Leucocytes (PMNs)

Human blood was collected from a healthy volunteer fasted for at least 8 h. PMNs were isolated
by Ficol-gradient separation following the published method [37]. The use of human blood in this
study was approved by the Human Ethics Committee, Universiti Kebangsaan Malaysia Medical
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Centre (HUKM), Cheras with permission (number FF-220-2008). Cell counts were performed using
a haemocytometer.

3.6. Cell Viability

Cell viability tests were performed using trypan blue dye exclusion method with the modification
of a published procedure [38]. The neutrophils (1 ˆ 106 mL´1) were incubated with 6.25 or 100 µg/mL
of pure compounds in triplicate at 37 ˝C for 1 to 2 h. The cell death was indicated by the blue dye
uptake. The percentage of cell viability was considered from the total cell counts.

3.7. Chemiluminescence Assay

Luminol enhanced chemiluminescence assay was carried out using the modification of the
published method [39]. In brief, 25 µL of human whole blood or 25 µL of isolated PMN cells were
suspended in HBSS++ into each well of 96-well microplate. The plate was incubated with 25 µL of
tested compounds and aspirin at five different concentrations (12.5, 6.25, 3.18, 1.56 and 0.78 µg/mL)
of each sample for 50 min at 37 ˝C in a luminoscan while 25 µL of HBSS++ was used as the negative
control. The cells were induced with 25 µL of serum opsonized zymosan (SOZ) followed by 25 µL of
luminol into each well. Then HBSS++ solution was added into each well to make the final volume of
200 µL. Aspirin was used as a positive control while the negative control contained zymosan, luminol,
DMSO (0.5%), HBSS++ and cells. The percentage of inhibition was calculated by the measurement of
RLU (reading luminometer unit) of peak and total integral values with repeated scans.

3.8. Chemotaxis Assay

The assay was carried out using the modified 48-well Boyden chamber method [40]. The Boyden
chamber contains 48 wells with a diameter of 8 µm and is divided into two compartments by a filter
separation. In brief, 25 µL of chemo attractant, fMLP (10´8 M, diluted with chemo attractant buffer
solution) was added to the lower compartment of the Boyden chamber. PMN cell suspension (45 µL)
with 5 µL of test compounds and ibuprofen at five different concentrations (6.25, 12.5, 25, 50, and
100 µg/mL) were added to the upper compartment of the chamber whereas the negative control
contained 45 µL of PMN cell suspension and 5 µL of chemo attractant buffer. Ibuprofen was used
as a positive control. The final concentrations of test compounds and ibuprofen in the wells were
0.625, 1.25, 2.5, 5 and 10 µg/mL. The chamber was incubated in 5% carbon dioxide incubator for 1 h
at 37 ˝C. After incubation the polycarbonate membrane (where the migrated cells were remained)
was stained with PBS, methanol (99.5%), haematoxylin, distilled water, ethanol (70% and 95.8%) and
xylene respectively. The distance of cell’s migration was measured using a low power microscope with
magnifications 40ˆ.

3.9. Statistical Analysis

Data were analyzed using One-way ANOVA, post hoc Tukey’s test. p < 0.05 was considered to be
statistically significant using the SPSS 17.0 (SPSS Inc., Chicago, IL, USA) statistical software. All values
were characterized as mean ˘ SEM. Probit programme was used to determine the IC50 values for
active compounds.

4. Conclusions

In conclusion, a phytochemical investigation of the stem of F. aurantiaca afforded three new
triterpenoids—28,28,30-trihydroxylupeol (1), 3,21,21,26-tetrahydroxylanostanoic acid (2) and
dehydroxybetulinic acid (3) together with five known triterpenoids: taraxerone (4), taraxerol (5),
stigmasterol (8), ursolic acid (9), acetyl ursolic acid (10), one coumarin, herniarin (7) and one
unsaturated hydrocarbon, ethyl palmitate (6). This is the first report on the phytochemical investigation
and biological effects of compounds from F. aurantiaca on PMN chemotaxis and ROS inhibitory activity
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of human whole blood and PMNs. Compounds 1–3, 6, 7 and 9 showed the strongest inhibitory
activities for both chemiluminescence and chemotaxis whereas the IC50 values were lower than
those of the standard drugs used. This study provided evidence that F. aurantiaca is a source of new
immunomodulatory compounds to modulate the innate immune response of phagocytes and further
studies are needed to investigate the mechanisms of their immuno-modulatory responses.
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