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Abstract: Amentotaxus, a genus of Taxaceae, is an ancient lineage with six relic and endangered
species. Four Amentotaxus species, namely A. argotaenia, A. formosana, A. yunnanensis, and A. poilanei,
are considered a species complex because of their morphological similarities. Small populations
of these species are allopatrically distributed in Asian forests. However, only a few codominant
markers have been developed and applied to study population genetic structure of these endangered
species. In this study, we developed and characterized polymorphic expressed sequence tag-simple
sequence repeats (EST-SSRs) from the transcriptome of A. formosana. We identified 4955 putative
EST-SSRs from 68,281 unigenes as potential molecular markers. Twenty-six EST-SSRs were selected
for estimating polymorphism and transferability among Amentotaxus species, of which 23 EST-SSRs
were polymorphic within Amentotaxus species. Among these, the number of alleles ranged from 1–4,
the polymorphism information content ranged from 0.000–0.692, and the observed and expected
heterozygosity were 0.000–1.000 and 0.080–0.740, respectively. Population genetic structure analyses
confirmed that A. argotaenia and A. formosana were separate species and A. yunnanensis and A. poilanei
were the same species. These novel EST-SSRs can facilitate further population genetic structure
research of Amentotaxus species.
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1. Introduction

Amentotaxus (Taxaceae) represents an ancient evolutionary plant lineage and includes six relic
species [1]. Currently, Amentotaxus species are locally distributed in Taiwan, from southwest China to
Assam in the eastern Himalayas, and in southern Vietnam [2]. Amentotaxus argotaenia (Hance) Pilg.,
A. formosana H. L. Li, A. poilanei (Ferré & Rouane) D. K. Ferguson, and A. yunnanensis H. L. Li are
considered a species complex; yet, the presence of intermediate morphotypes [3] poses some taxonomic
challenges. While A. argotaenia and A. yunnanensis have been reported to have 2n = 36 chromosomes,
the number of chromosomes in A. formosana and A. poilanei remains unknown [4]. There is little
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information about Amentotaxus genome size; only the nuclear DNA content of A. yunnanensis has been
estimated as 2C = 60.40 [5]. In ecologic terms, these four species have a small population size and are
allopatrically distributed in subtropical Asian forests. According to the conservation status assigned
by the International Union for the Conservation of Nature [6], A. argotaenia is near threatened (NT),
while A. formosana, A. yunnanensis, and A. poilanei are vulnerable (VU). Human overexploitation and
development of the lumber industry have resulted in habitat loss and a continuous population decline
of these four species. Therefore, governments must develop conservation strategies for providing a
sustainable environment for the endangered Amentotaxus species. Population genetic structure studies
have used inter-simple sequence repeat (ISSR), organellar DNA, and genomic SSR analyses to evaluate
low genetic diversity within species and considerable genetic differentiation among populations or
species [7,8]. Molecular markers are now widely employed for assessing genetic patterns or population
genetic structure, and are vital for the management of threatened and endangered species. Such genetic
information can facilitate the development of more efficient conservation strategies [9].

Expressed sequence tag-simple sequence repeats (EST-SSRs) differ from, and have several
advantages over traditional genomic SSR markers, such as lower development cost and higher
transferability across related species [10]. Moreover, the flanking sequences of EST-SSRs are located in
well-conserved regions of transcribed genes from phylogenetically related species, permitting a high
level of transferability [11–13]. EST-SSRs have been extensively used for quantifying genetic diversity
and population genetic structure of plants [14]. While the use of microsatellites as species-specific
markers is expensive, its cost effectiveness has benefited from the development of next-generation
sequencing techniques. These enable the straightforward detection and characterization of SSR
loci through highly parallel sequencing processes. Random sequencing approaches for identifying
microsatellites are rapid and effective and can identify numerous useful and polymorphic microsatellites
in unstudied or understudied species [15–17].

Although phylogeographic patterns of Amentotaxus species have already been assessed by
ISSR, organellar DNA, and genomic SSR marker analyses [7,8], EST-SSR markers developed in this
study provide an additional and distinct solution for investigating population genetic structure of
Amentotaxus species. We applied a next-generation sequencing method for developing SSR markers
from the transcriptome of A. formosana. Our objectives were as follows: (1) assess the frequency
distribution of microsatellite motifs in the transcriptome of A. formosana; (2) examine the transferability
of EST-SSR markers to three other Amentotaxus species; and (3) estimate the extent of genetic diversity
and differentiation among Amentotaxus species using the developed EST-SSR markers. The ensuing
genetic information can help develop conservation strategies for these threatened taxa.

2. Results and Discussion

2.1. Frequency Distribution of Various SSRs in the Transcriptome

The assembled unigenes from the transcriptome of A. formosana were screened for the presence
of EST-SSRs, using the SSR Locator software. In total, 4955 putative EST-SSRs were identified from
68,281 unigenes (ě300 bp) with perfect di-, tri-, tetra-, penta-, and hexanucleotide motifs. Dinucleotide
repeats constituted the largest group of repeat motifs, accounting for more than half of the total EST-SSR
content (62.54%), followed by tri- (31.95%), hexa- (2.52%), tetra- (1.82%), and pentanucleotide (1.17%)
repeats (Figure 1). Di- and trinucleotide repeats formed a large proportion of EST-SSRs, whereas the
remaining repeats constituted 5.51% of EST-SSRs.

The number of EST-SSR repeats ranged widely from 5–15, 5–12, 5–9, 5–11, and 5–7 in di-, tri-,
tetra-, penta-, and hexanucleotides, respectively. EST-SSR frequencies of dinucleotide repeats decreased
stepwise with an increase in motif length. Among various SSRs, AT/AT accounted for the highest
proportion (42.63%) of total dinucleotide repeats, followed by AG/CT (38.24%), AC/GT (18.94%),
and CG/CG (0.19%) (Figure 2a). Among trinucleotide repeats, AAG/CTT was the most abundant
(23.50%), followed by AGG/CCT (16.49%); while AAC/GTT, ACC/GGT, ACG/CGT, ACT/AGT, and
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CCG/CGG, accounted for <10% each (Figure 2b). By contrast, Ranade et al. [18] indicated the most
abundant motif among angiosperms and gymnosperms was AG/CT. AT/AT is the most common
repeat motif in other gymnosperms, such as Pinus massoniana [19], P. dabeshanensis [20], P. densiflora [21],
and Cryptomeria japonica [22].
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2.2. EST-SSR Marker Polymorphism and Cross-Species Transferability

Of the EST-SSR markers identified in the transcriptome of A. formosana, we selected 26 primer
pairs to assess polymorphisms and transferability across Amentotaxus species (Table 1 and Table S1).
All 26 primer pairs were successfully amplified to match the expected size using an initial repetitive
DNA fragment. Twenty-three primer pairs were polymorphic among species. Amen24, Amen25, and
Amen42 primer pairs were monomorphic in all four Amentotaxus species. The transferability of EST-SSR
markers across Amentotaxus species was assessed by screening for the selected 26 EST-SSR markers.
All 26 markers were transferable between Amentotaxus species. In total, 23 of the 26 EST-SSR markers
were used to further analyze polymorphism information content (PIC), Hardy-Weinberg equilibrium
(HWE), and genetic diversity of each Amentotaxus species. PIC values of the 23 polymorphic primer
pairs ranged from 0.000 to 0.623 (mean = 0.169 ˘ 0.145) in A. formosana. PIC values were higher in
A. argotaenia (mean = 0.328 ˘ 0.087) than in A. poilanei (mean = 0.291 ˘ 0.135) and A. yunnanensis
(mean = 0.291 ˘ 0.184) (Table 1). In this study, transferability of polymorphic markers across Amentotaxus
species was 100%. Furthermore, a high transferability of genomic SSRs was detected across Amentotaxus
species [23,24]. The cross-amplification ratio varied among plants. Transferability was higher across
Amentotaxus than Taxus [25] and Pinus [26] species, where it was 80% and 60%–80%, respectively. These
results confirmed that the high cross-species transferability of the microsatellite markers developed
in A. formosana can be used in related Amentotaxus species in order to assess genetic diversity and
population genetic structure. The 23 polymorphic EST-SSR markers demonstrated low (PIC < 0.25)
and moderate (0.5 > PIC > 0.25) polymorphisms in A. formosana and the other Amentotaxus species,
respectively. A low EST-SSR polymorphism was also detected in P. dabeshanensis [20]. However,
polymorphism of EST-SSRs was lower than that of genomic SSRs reported by Ko [24], indicating
the occurrence of a typical low to medium polymorphism in the current study. Indeed, PIC values
were 0.640, 0.614, 0.250, and 0.300 in A. argotaenia, A. formosana, A. poilanei, and A. yunnanensis,
respectively [24]. The lower level of polymorphism of EST-SSRs compared to genomic SSRs may result
from a higher level of conservation among expressed genes [27].

2.3. Genetic Diversity and Population Genetic Structure Analyses

Based on 23 polymorphic EST-SSRs, we assessed standard genetic diversity parameters, such as
the number of alleles per locus (A), and observed (Ho) and expected (He) levels of heterozygosity, for
each of the four taxa (Table 1). Overall, the number of alleles per locus ranged from 1–4 in A. formosana
(mean = 1.783 ˘ 0.177), A. argotaenia (mean = 2.348 ˘ 0.198), and A. yunnanensis (mean = 2.478 ˘ 0.234),
and from 1–3 in A. poilanei (mean = 2.174 ˘ 0.149). All 23 EST-SSRs were polymorphic in A. argotaenia;
while 14, 17, and 19 EST-SSRs were polymorphic in A. formosana, A. yunnanensis and A. poilanei,
respectively. Ho and He levels ranged between 0.000–0.667 and 0.000–0.678, respectively, in
A. formosana; 0.000–0.909 and 0.080–0.670 in A. argotaenia; 0.000–0.917 and 0.000–0.740 in A. yunnanensis;
and 0.000–1.000 and 0.000–0.653 in A. poilanei. The HWE test showed significant deviations for 11 and
10 EST-SSRs in A. argotaenia, and A. formosana, respectively; and 5 EST-SSRs in A. yunnanensis and
A. poilanei. These could result from a deficiency of heterozygosity among Amentotaxus species.

The possibility of EST-SSR markers being located within functional genes, implies that the
neutrality of EST-SSR markers observed in this study should not be assumed a priori. Non-neutral
loci may bias population genetic structure analysis. Before proceeding any further, we used the
LOSITAN software to identify possible outlier loci for all 23 polymorphic markers. Five outlier loci
were identified (Figure 3): Amen15, Amen18, Amen30, Amen38, and Amen43. Because previous
studies revealed that certain SSR markers were non-neutral, it is essential to conduct a neutrality
test before applying SSR data to population genetic structure analysis [28–30]. Finally, we selected
18 polymorphic and neutral EST-SSR markers, with which to assess genetic diversity and population
genetic structure among the four Amentotaxus species.
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Table 1. Characterization of the selected 26 EST-SSRs from four Amentotaxus species.

A. argotaenia A. formosana A. yunnanensis A. poilanei

Locus A Ho He PIC HWE
p-value A Ho He PIC HWE

p-value A Ho He PIC HWE
p-value A Ho He PIC HWE

p-value

Amen03 2.000 0.000 0.153 0.141 0.001 1.000 0.000 0.000 0.000 - 3.000 0.182 0.517 0.422 0.057 2.000 0.286 0.245 0.215 0.659
Amen04 2.000 0.167 0.500 0.375 0.021 1.000 0.000 0.000 0.000 - 3.000 0.417 0.344 0.307 0.842 2.000 0.429 0.337 0.280 0.471
Amen07 2.000 0.250 0.219 0.195 0.621 1.000 0.000 0.000 0.000 - 2.000 0.167 0.153 0.141 0.753 1.000 0.000 0.000 0.000 -
Amen10 2.000 0.167 0.375 0.305 0.054 1.000 0.000 0.000 0.000 - 2.000 0.100 0.375 0.305 0.020 2.000 0.833 0.486 0.368 0.080
Amen13 2.000 0.909 0.496 0.373 0.006 4.000 0.667 0.543 0.480 0.003 4.000 0.917 0.740 0.692 0.000 2.000 1.000 0.500 0.375 0.008
Amen15 3.000 0.500 0.406 0.371 0.721 1.000 0.000 0.000 0.000 - 2.000 0.500 0.375 0.305 0.248 3.000 0.286 0.255 0.240 0.978
Amen18 2.000 0.083 0.080 0.077 0.880 2.000 0.167 0.375 0.305 0.174 1.000 0.000 0.000 0.000 - 2.000 0.143 0.133 0.124 0.839
Amen19 3.000 0.333 0.500 0.449 0.000 2.000 0.000 0.219 0.195 0.005 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 -
Amen20 2.000 0.417 0.413 0.328 0.977 2.000 0.000 0.153 0.141 0.001 1.000 0.000 0.000 0.000 - 3.000 0.000 0.571 0.501 0.003
Amen24 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 -
Amen25 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 -
Amen26 2.000 0.333 0.278 0.239 0.488 2.000 0.083 0.080 0.077 0.880 3.000 0.583 0.434 0.369 0.565 3.000 0.857 0.541 0.453 0.268
Amen27 2.000 0.000 0.500 0.375 0.001 2.000 0.000 0.278 0.239 0.001 1.000 0.000 0.000 0.000 - 3.000 0.286 0.653 0.580 0.066
Amen30 4.000 0.750 0.670 0.606 0.562 2.000 0.000 0.494 0.372 0.003 4.000 0.500 0.618 0.562 0.174 3.000 0.429 0.449 0.406 0.497
Amen35 2.000 0.000 0.444 0.346 0.001 2.000 0.000 0.165 0.152 0.001 3.000 0.250 0.226 0.212 0.970 1.000 0.000 0.000 0.000 -
Amen38 2.000 0.091 0.351 0.290 0.014 2.000 0.000 0.298 0.253 0.001 1.000 0.000 0.000 0.000 - 3.000 0.429 0.357 0.325 0.914
Amen40 2.000 0.636 0.434 0.340 0.122 1.000 0.000 0.000 0.000 - 3.000 0.250 0.538 0.432 0.133 3.000 0.429 0.500 0.427 0.808
Amen41 3.000 0.667 0.486 0.424 0.392 1.000 0.000 0.000 0.000 - 4.000 0.714 0.541 0.502 0.904 2.000 0.857 0.490 0.370 0.047
Amen42 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 - 1.000 0.000 0.000 0.000 -
Amen43 4.000 0.500 0.535 0.498 0.075 2.000 0.100 0.255 0.222 0.055 3.000 0.545 0.533 0.432 0.838 3.000 0.714 0.602 0.523 0.214
Amen44 2.000 0.167 0.278 0.239 0.166 2.000 0.000 0.486 0.368 0.001 4.000 0.667 0.517 0.482 0.809 2.000 0.571 0.408 0.325 0.290
Amen46 2.000 0.083 0.469 0.359 0.004 1.000 0.000 0.000 0.000 - 2.000 0.182 0.165 0.152 0.740 2.000 0.429 0.337 0.280 0.471
Amen47 2.000 0.364 0.397 0.318 0.782 1.000 0.000 0.000 0.000 - 4.000 0.200 0.575 0.526 0.034 2.000 0.286 0.245 0.215 0.659
Amen48 2.000 0.000 0.500 0.375 0.001 2.000 0.200 0.180 0.164 0.725 1.000 0.000 0.000 0.000 - 2.000 0.000 0.490 0.370 0.008
Amen50 3.000 0.000 0.406 0.371 0.001 2.000 0.000 0.375 0.305 0.046 3.000 0.000 0.594 0.511 0.001 2.000 0.000 0.375 0.305 0.046
Amen52 2.000 0.000 0.165 0.152 0.001 4.000 0.000 0.678 0.623 0.000 2.000 0.000 0.444 0.346 0.001 1.000 0.000 0.000 0.000 -

Mean a 2.348 ˘

0.198

0.279
˘

0.057

0.394
˘

0.029

0.328
˘

0.087
-

1.783
˘

0.177

0.053
˘

0.030

0.1993
˘

0.044

0.1693
˘

0.145
-

2.478
˘

0.234

0.2683
˘

0.058

0.3343
˘

0.051

0.291
˘

0.184
-

2.174
˘

0.149

0.359
˘

0.067

0.347
˘

0.043

0.291
˘

0.135
-

Mean b 2.167 ˘

0.090

0.250
˘

0.064

0.370
˘

0.028

0.317
˘

0.070
-

1.778
˘

0.222

0.053
˘

0.038

0.175
˘

0.051

0.152
˘

0.145
-

2.556
˘

0.258

0.258
˘

0.067

0.342
˘

0.057

0.300
˘

0.177
-

2.000
˘

0.162

0.348
˘

0.083

0.343
˘

0.051

0.281
˘

0.140
-

a for 23 polymorphic EST-SSRs; b for 18 polymorphic and neutral EST-SSRs; HWE: Hardy-Weinberg equilibrium.
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Figure 3. Assessment of outlier EST-SSR loci using LOSITAN software, which evaluated the expected
distribution of the Wright inbreeding coefficient (Fst) and expected heterozygosity (He) by applying
an island model of migration along with neutral markers. The five loci, Amen15, Amen18, Amen30,
Amen38, and Amen43, were identified as outliers. Dots in the red and yellow areas represent candidate
loci for positive or balanced selection.

The number of alleles per locus for the 18 polymorphic and neutral EST-SSRs was highest
in A. yunnanensis (mean = 2.556 ˘ 0.258) and lowest in A. formosana (mean = 1.778 ˘ 0.222).
In addition, the level of observed heterozygosity was highest in A. poilanei (mean= 0.348 ˘ 0.083)
and lowest in A. formosana (mean = 0.053 ˘ 0.038). The levels of observed heterozygosity in all
species were significantly lower than expected heterozygosity levels, and lower than those observed
in other conifers [31,32], suggesting a deficiency of heterozygosity in Amentotaxus species. Generally,
widespread species exhibit higher levels of genetic diversity than narrowly distributed species. The
patterns of genetic variation are attributed to numerous evolutionary factors, such as founder effects,
bottlenecks, and gene flows. Therefore, current population size may not be a reliable indicator for
determining genetic diversity levels [33–36]. Nevertheless, Ge et al. [8] reported high levels of genetic
diversity in A. poilanei and A. yunnanensis with small population sizes. Our results agree with other
studies reporting high genetic diversity levels in a few threatened and endangered species, with a
small population size and a narrow distribution [37–39].

We also examined population genetic structure at a finer resolution using STRUCTURE
software [40]. Here, ∆K values computed for all classes indicated a strong signal for K = 3
(∆K = 2.754). The proportions of each individual in each population were assigned to three clusters.
For K = 3, the four Amentotaxus species were divided into three clusters, with A. yunnanensis and
A. poilanei clustering together. Several individuals displayed an intermixed composition, which could
be attributed to a historical gene flow between species (Figure 4). Furthermore, pairwise comparisons
indicated significant genetic differentiation (Fst) between species (Fst = 0.134–0.315; p < 0.05).
Consistent with STRUCTURE analysis results, A. formosana exhibited high genetic differentiation levels
(Fst = 0.242–0.315), compared to the closely related A. yunnanensis and A. poilanei (Fst = 0.134) species,
because of geographical isolation. Similar trends were observed by organellar DNA, genomic SSR,
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and ISSR fingerprinting analysis [7,8], confirming that both, A. argotaenia and A. formosana, could be
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Figure 4. Genetic composition of Amentotaxus species in three clusters (K = 3) were detected through
structure analyses by using the highest ∆K value.

3. Experimental Section

3.1. Plant Material and DNA Extraction

Twenty-four plant samples of A. formosana were collected from Chinshuiying (120˝461 E, 22˝161 N),
Taiwan. In addition, we sampled 24 individuals of A. argotaenia from Suining, Hunan Province
(110˝101 E, 26˝291 N, N = 12), and Datian, Fujian Province (117˝481 E, 25˝401 N, N = 12), China;
24 individuals of A. yunnanensis from Malipo (104˝581 E, 23˝161 N, N = 12) and Xichou (104˝131 E,
23˝161 N, N = 12), Yunnan Province, China; and seven individuals of A. poilanei from Lao Va Chai
Municipality (105˝041 E, 23˝061 N), Vietnam. Samples for DNA extraction were dried in silica gel.
Total genomic DNA was extracted using cetyltrimethylammonium bromide [41].

3.2. cDNA Preparation, Illumina Sequencing, and de Novo Assembly

Trizol reagent (Life Technologies, Carlsbad, CA, USA) was used for extracting total RNA from
the leaves of whole young juveniles of A. formosana previously frozen in liquid nitrogen and ground
into a powder. Total extracted RNA was purified using the RNeasy Mini RNA kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions. mRNA was isolated from purified total RNA
using Dynabeads (Life Technologies). The purity and quality of mRNA were verified. A cDNA library
was constructed using the SMART™ cDNA library construction kit (Clontech, Mountain View, CA,
USA). The synthesized cDNA was subjected to end-repair and phosphorylation, in which the repaired
cDNA fragments were 31-adenylated using Klenow 31 to 51 exopolymerase, and then ligated with an
adapter using T4 DNA ligase. Finally, the cDNA library was constructed using a 200 bp insertion
fragment excised from the gel. PCR primer pairs PE 1.0 and 2.0 (Illumina Inc., San Diego, CA, USA)
were used for amplifying the cDNA fragments. The cDNA library was sequenced using the Illumina
HiSeq™ 2000 (Illumina Inc.).

Quality trimming was performed to filter out poor quality or ambiguous data from raw
sequencing reads. The reads from >10% of bases gave a poor quality score (Q < 20), and ambiguous
sequences with an excess of N nucleotides were removed. We then applied SOAPdenovo software
(http://soap.genomics.org.cn/soapdenovo.html) for a de novo assembly of the transcriptome using
default settings, except for the K-mer value (default K = 29) [42]. To this end, we applied de Bruijn
graphs to assemble the reads assigned to each gap and construct contigs without ambiguous bases.
Paired-end libraries and connecting overlapping contigs were employed to build the scaffolds. Paired-end
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reads were used to fill in gaps and generate larger scaffolds, which were defined as unigenes. Finally,
we used overlapping unigenes to assemble a large and continuous DNA sequence and screen for
EST-SSR markers.

3.3. Detection of EST-SSR Markers and Primer Design

SSR Locator software [43] was applied to screen for SSR regions within 68,281 unigenes (>300 bp).
Parameters were adjusted to identify the perfect di-, tri-, tetra-, penta-, and hexanucleotide motifs with
a minimum of five and a maximum of 15 repeats. Next, 26 microsatellites were selected to determine
transferability across species. We assumed that tri- or hexanucleotide motifs might possess a higher
level of polymorphism than the other motifs. Therefore, most of the selected 26 microsatellites contained
tri- or hexanucleotide motifs. EST-SSR primers were designed using Primer3 software [44], and primer
sequences of the identified microsatellites are listed in Table S1.

3.4. DNA Amplification and Genotyping

The 26 selected microsatellites were examined for transferability and polymorphism among
species. Microsatellites were subjected to PCR amplification in a 25-µL volume containing 10 ng
genomic DNA, 0.2 mM dNTP, 2 mM MgCl2, and 5 pmol of each primer. Forward primers used for the
PCR reaction were fluorescently labeled. PCR conditions were as follows: 3 min at 94 ˝C, 40 cycles
of 30 s at 94 ˝C, 30 s at a primer-specific annealing temperature (Table S1), 30 s at 72 ˝C, and a final
extension step of 5 min at 72 ˝C. PCR products were separated using an ABI 3100 automated sequencer,
and fragment size was assessed using genemapper Version 3.7 software (Applied Biosystems, Foster City,
CA, USA).

3.5. Data Analysis

After assessing transferability across species, standard genetic diversity parameters, A, Ho,
and He, were calculated for polymorphic microsatellites using GenAlEx Version 6.5 software [45].
In addition, we conducted PIC and HWE tests on PowerMarker Version 3.25 [46] and GENEPOP
Version 3.4 software [47]. A biased genetic diversity analysis may have resulted because of non-neutral
loci. A pairwise comparison of the genetic differentiation (Fst) outlier test was performed using
LOSITAN software [48,49] in order to identify candidate non-neutral SSR loci, which might have
biased the genetic diversity analysis. The identified neutral SSR loci were used for further genetic
diversity and population genetic analyses of each species. Fst among species was performed using
GenAlEx Version 6.5 software [45]. Genetic composition of Amentotaxus species was examined using
STRUCTURE Version 2.3.3 software [40,50,51]. structure applies a Bayesian method for inferring K
values, without using prior information of individual sampling locations. Stability of the results was
estimated by executing 10 separate runs with K = 1–5. Each run was pursued for 1,000,000 Markov
chain Monte Carlo interactions with an initial burn-in of 100,000 and an ancestry model that allowed
for admixture [52]. The most favorable grouping number (K) was determined by calculating ∆K [53]
using STRUCTURE HARVESTER Version 0.6.8 software [54].

4. Conclusions

A total of 4955 EST-SSR markers were revealed when screening the transcriptome of A. formosana.
The AT/AT motif was the most common repeat unit in A. formosana and other gymnosperms,
such as P. massoniana, P. dabeshanensis, P. densiflora, P. dabeshanensis, and C. japonica. The identified
polymorphic and neutral EST-SSR markers were used to assess genetic diversity and differentiation
among Amentotaxus species. Population genetic structure analysis indicated that A. argotaenia and
A. formosana were separate species and that A. yunnanensis and A. poilanei were the same species.
In summary, the Amentotaxus species exhibited a higher level of genetic differentiation, except between
A. yunnanensis and A. poilanei. The low level of genetic diversity estimated by EST-SSR markers is
possibly caused by past fragmentation and recent habitat degradation. EST-SSR markers developed
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in this study can potentially be used for assessing genetic diversity and population genetic structure
among Amentotaxus species.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
21/1/67/s1.
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