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Although mentions of nanoparticles in relation to biomedicine appeared in the late 1970s and
are now the subject of over 10,000 publications per year, the term “Nanomedicine” only appeared
at the turn of this century, and less than 30 papers including this term were published up to 2005.
Ten years later, Web of Science indicates the publication of more than 1000 Nanomedicine articles
in 2015 among more than ten times more articles involving nanoparticles for biomedical usage.
Nanomedicine has been defined by the European Science Fundation’s forward Look Nanomedicine
as follows: “Nanomedicine uses nano-sized tools for the diagnosis, prevention and treatment of disease and
to gain increased understanding of the complex underlying patho-physiology of disease. The ultimate goal is
to improve quality of life.” [1]. It involves the three nanotechnology areas of diagnosis, imaging agents
and drug delivery with nanoparticles in the 1–1000 nm range, bioships (from both “top-down” and
“bottom-up” sources) and polymer therapeutics [2,3]. A relevant more recent terminology is that of
“theranostics” [4,5] involving both diagnostics and therapy with the same nanopharmaceutics.

In fact, Nanomedicine can be traced back to the use of colloidal gold in ancient times [6,7],
but Metchnikov and Ehrlich (Nobel Prize for Medicine in 1908) are the modern pioneers of
nanomedicine for their works on phagocytosis [8] resp. cell-specific diagnostic and therapy [9]. Seminal
works on nanoparticles for nanomedicine were increasingly developed in the last 30 years of the 20th
century and included liposomes [10,11], DNA-drug complexes [12], polymer-drug conjugates [13],
antibody-drug conjugates [14], polymer nanocapsules [15–17], polymer-protein conjugates [18],
albumin-drug conjugates [19], block-copolymer micelles [20], anti-arthritis gold nanoparticles [21] and
anti-microbial silver nanoparticles [22]. These nanomedicines have various size ranges that are often
not strictly within the standard definition of the nanoworld that is 1–100 nm [23]. Clinical toxicities
including side effects have been broadly studied and sometimes point toward patient individualization.

Problems that need be overcome are that most drugs are neither specific nor water-soluble. The above
nanocarriers have been designed to first solubilize drugs in aqueous media, then serve as nanovectors
toward specific targets and control drug release. A majority of nanocarriers used now allow oral drug
delivery. Although these nanovectors are designed to translocate across the gastro-intestinal tract, lung, and
blood-brain barriers, the amount of drug transferred to the organ is lower than 1%, therefore improvements
are challenging [24,25]. Nanovector-drug assemblies are designed to maximize the benefit/risk ratio, and
their toxicity must be evaluated not only by sufficiently long term in vitro and in vivo studies, but also pass
multiple clinical studies. For biological assays, these nanomaterials must be characterized very strictly in a
fully reproducible way [26,27]. Suitable nanocarriers (including metabolites) must be subjected to research
of their antigenicity, immunotoxicity and possible activation of complements (that are a group of serum
proteins that activates inflammation, destroys cells and participates in opsonization), pharmacokinetics,
biodistribution, and drug release rates [28].

Tumor targeting drugs are a major focus in this context, and they use liposomes, polymers,
micelles, conjugates, nanoparticles and conjugates of these nanopharmaceutics [29]. Two main routes
are passive targeting using the enhanced permeation and retention (EPR) effect [30,31] and active
targeting involving covalent drug attachment using linkers to a receptor that should be specifically
recognized by the cancer cells [32]. Drug release rates and stability until the targeted cells are
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reached are key factors. Imaging using gamma cameras, magnetic resonance (MRI), position emission
tomography (PET) and near infrared (NIR) luminescence and fluorescence are major techniques
allowing one to quantize drugs in biological fluids and tissues. Active targeting using drug attachment
to a receptor is a powerful concept that has been probed for several decades, but progress remains very
slow, and positive in vitro results are only too rarely confirmed in vivo. For instance antibody-targeted
radiotherapy was shown to localize less than 0.01% of the administrated dose to the tumor [32].
Evaluation of dose-dependent targeting is essential for pharmacological evaluation, and receptor
saturation often occurs at low dose. Biomarkers are required in various nanomedicine technologies
to measure the efficacy and safety of these drugs, because only a few % of drugs entering clinical
investigation reach marketing approval [33]. Several families of new nanomaterials have attracted
increased attention as nanovectors and theranostics in nanomedicine, in particular during the
last decade:

- Carbon materials that include fullerene (mainly C60), single-wall and multi-wall carbon nanotubes
(SWCNTs and MWCTs respectively) [34], graphene oxide (GO) and nanodiamond (ND) [35].
Although these materials are insoluble in most solvents, including aqueous media, they can be
polyfunctionalized with solubilizing groups such as polyethylene glycol, etc. The carbon cores of
the functionalized carbon materials are essentially used as a scaffold, and tumor targeting and
imaging using Raman signatures have potential. Although the problem of safety concerning
these cores must be addressed, the functional groups ensure protection and penetration into
organs. Long-term toxicity remains an issue, however, and clinical tests should be crucial.

- Gold nanoparticles have a many centuries of historic tradition in therapeutics, but nanosciences
has brought about novel theranostic concepts based on the medium-sensitive plasmonic
absorption resulting from the visible and infrared light-induced collective oscillation of the
surface electrons when the nanoparticle size is much smaller than the light wavelength [36,37].
Gold nanoparticle plasmons can be applied in various ways to nanomedicine [38–40], in particular
photothermal therapy with gold nanorods and hollow gold nanoshells with plasmon bands in
the near infrared region and various imaging techniques [37,40]. Gold nanoparticles indeed
provide versatile scaffolds for cell surface sensing with the use of both specific recognition and
array-based “chemical nose” approaches [41–43]. Passive tumor targeting with PEG for EPR
effect and active targeting upon covalent linking to rhTNFa (CYT-6091) have reached anticancer
clinical trials [44]. The preparation of gold nanoparticles and their functionalization are well
controlled and reproducible, which is important for patenting, and the small size of these
particles (<10 nm) represents an advantage compared with other nanoparticles that are probed
for nanomedicine [36,45]. Although safety studies in vitro and in vivo are often contradictory,
gold nanoparticles are considered as a standard for safety issues [46,47]. Silver and copper
nanoparticles also present plasmonic properties, but the gold nanotechnology appears much
superior to those of the lighter the group 11 elements. Nethertheless, “nanocrystalline silver” is
well known for its established antimicrobial properties [48], although it is also cytotoxic [49].

- Super Paramagnetic Iron Oxide Nanoparticles (SPIONs), usually magnetite, Fe3O4, are widely
explored [50], despite their toxicity [51], in combination with a magnet for magnetic resonance
imaging (MRI) and tumor ablation by hyperthermia. This technique has reached clinical
use and phase II investigation in brain cancer (multiform glioblastoma) and also clinical
study of non-metastatic prostate cancer [52]. Other oxide nanoparticles include silica (usually
mesostructured silica) that is used to encapsulate drugs or SPIONs [53,54].

- Quantum Dots (QD), binary semiconductor nanoparticles, are most often CdSe particles coated
with ZnS or CdS. They are 2–10 nm dimension fluorescent imaging labels that are frequently
used in nanomedicine [55,56] in spite of the toxicity of heavy metals [57].

- Polymers and other macromolecules including co-polymers, antibodies, proteins, aptamers and
dendrimers are intensively studied as drug nanovectors in nanomedicine [58–62]. A number
of successful polymers are biodegradable and used in pre-clinical and clinical studies [63].
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Major advances have been published, but important obstacles still remain concerning the
use of encapsulated drugs in polymer nanoparticles including “burst release”, poor drug
loading, and poor miscibility of some drugs with the polymer carrier [64]. Dendrimers
that are cauliflower-shaped nano-scale macromolecules bearing many functional branch
termini [65,66] have considerable capacity to encapsulate drugs and traverse biological
barriers [67–71]. The dendritic microbiocide Vivagel was evaluated clinically [72]. Other
commercial dendrimers [73] include Ocuseal, a microbial barrier [74], gadomer-17, a dendritic
MRI [75], Stratus CS, a cardiac biomarker [76], Alert Ticket for anthrax detection, and Qiagen for
in vitro DNA transfection [77]. Clinical trials are slow, however. Challenging problems remaining
are purity, reproducibility, biodegradability and biocompatibility [78].

- Various forms of liposomes have long been and remain among the most successful drug
careers [79]. They include lipids, proteins, albumin, vesicles and related biopolymers and
can involve combined drugs such as anti-cancer agents. Combination of imaging agents for
diagnostics and drugs for therapy are examples called theranostics.

Many reviews cited in this introduction discuss the various clinical trials of these nano-drugs.
Research in nanomedicine is exploding, but multi-phase clinical trials are very demanding. In the end,
only a few nanodrug candidates successfully pass regulatory authority requirements. No doubt that
interdisciplinary collaborations between biomedical scientists, chemists and biophysicists will in the
future favor the arrival of more nanoengineered drugs on the market [80–84].
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