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Abstract: Phytochemical investigation of the bark of Juglans sinensis Dode (Juglandaceae)
led to the isolation of two active compounds, 8-hydroxy-2-methoxy-1,4-naphthoquinone (1)
and 5-hydroxy-2-methoxy-1,4-naphthoquinone (2), together with 15 known compounds 3–17.
All compounds were isolated from this plant for the first time. The structures of 1 and 2 were
elucidated by spectroscopic data analysis, including 1D and 2D NMR experiments. Compounds 1–17
were tested for their cytotoxicity against the A549 human lung cancer cell line; compounds 1 and 2
exhibited significant cytotoxicity and additionally had potent cytotoxicity against six human cancer
cell lines, MCF7 (breast cancer), SNU423 (liver cancer), SH-SY5Y (neuroblastoma), HeLa (cervical
cancer), HCT116 (colorectal cancer), and A549 (lung cancer). In particular, breast, colon, and lung
cancer cells were more sensitive to the treatment using compound 1. In addition, compounds 1 and 2
showed strong cytotoxic activity towards human breast cancer cells MCF7, HS578T, and T47D, but not
towards MCF10A normal-like breast cells. They also inhibited the colony formation of MCF7, A549,
and HCT116 cells in a dose-dependent manner. Flow cytometry analysis revealed that the percentage
of apoptotic cells significantly increased in MCF7 cells upon the treatment with compounds 1 and 2.
The mechanism of cell death caused by compounds 1 and 2 may be attributed to the upregulation of
Bax and downregulation of Bcl2. These findings suggest that compounds 1 and 2 may be regarded as
potential therapeutic agents against cancer.

Keywords: Juglans sinensis Dode; Juglandaceae; 8-hydroxy-2-methoxy-1,4-naphthoquinone;
5-hydroxy-2-methoxy-1,4-naphthoquinone; cytotoxicity; antiproliferative activity; apoptosis

1. Introduction

Juglans sinensis Dode (Juglandaceae) is a deciduous tree indigenous to Eastern Asia and commonly
known as the walnut tree. Previous phytochemical reports on this plant identified terpenoids,
diarylheptanoids, naphthalenones, flavonoids, and phenolic compounds [1–4], which were related to
its cytotoxic [1], neuroprotective [2], hepatic fibrosis inhibitory [3], and hepatoprotective [4] activities.
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The extracts of J. sinensis show antiasthma effects [5] and antioxidant activities on liver damage [6] and
acute renal failure [7].

In previous reports on the anticancer effects of Juglans species, the extracts of root barks, fruits, or
seeds of J. regia showed anti-proliferative activity against Caco-2 human colon cancer cells, HepG2
human liver cancer cells, and MDA-MB-231 human breast cancer cells [8–10]; the extract of seeds of
J. sinensis protected UVB-induced human keratinocytes apoptosis [11]. Sesquiterpenes and triterpenes
isolated from the leaves and twigs of J. sinensis inhibited the proliferation of immortalized rat hepatic
stellate cells through apoptosis [1]; however, the mechanism of action of the anti-proliferation activity
of the phenolic compounds of J. sinensis has not been investigated in detail.

Therefore, in continuation of our search for novel natural anticancer agents, we performed a
bioactivity-guided fractionation to isolate and identify cytotoxic compound(s) from J. sinensis. Herein,
we describe the separation and structure elucidation of such cytotoxic compounds, and furthermore,
we evaluated their anti-proliferative and apoptotic activity to study mechanism of the cytotoxicity of
these compounds in human cancer cells.

2. Results and Discussion

2.1. Phytochemical Characterization of the Bark of J. sinensis

The structures of compounds 1 and 2 were identified by spectroscopic data interpretation
(Figure 1). Compound 1 was obtained as a light brown powder. It gave a molecular ion peak at
m/z 204.0421 [M]+ (calcd. for C11H8O4

+, 204.0423) in HRESIMS, corresponding to an elemental
formula of C11H8O4. The UV spectrum of 1 showed an absorption maximum at 263 nm, indicating
the presence of an aromatic system. The 1H-NMR spectrum of 1 showed signals for a hydroxy group
at δH 11.75 (1H, s), an aromatic ring system at δH 7.25 (1H, dd, J = 2.8, 6.4 Hz) and 7.63 (overlapped
2H, d, J = 2.8, 6.4 Hz), an aromatic singlet at δH 6.11 (1H, s), and a methoxy group at δH 3.92 (3H, s).
The 13C-NMR spectrum of 1 showed signals for two carbonyls at δC 184.9 (C-1) and 183.9 (C-4), two
oxygenated quaternary carbons at δC 162.0 (C-8) and 160.1 (C-2), four aromatic methines at δC 137.2
(C-6), 123.9 (C-7), 118.9 (C-5), and 110.5 (C-3), and two quaternary carbon signals at δC 132.1 (C-10) and
114.3 (C-9). These spectral data supported the notion that compound 1 contained a naphthalenedione,
as evidenced by the HMBC correlations of H-3/C-1, C-2, C-10, H-5 and H-6 (overlapped peak)/C-4, C-6,
C-7, C-9, C-10, H-7/C-6, C-9. The positions of the hydroxyl group at C-8 and the methoxy group at C-2
were confirmed by the HMBC correlations of OH/C-7, C-8, C-9 and OCH3/C-2, respectively (Figure 2).
Based on these observations and by comparison of its spectral data with literature values [12,13],
compound 1 was identified as 8-hydroxy-2-methoxy-1,4-naphthoquinone (Figure 1).

Compound 2 was obtained as a light brown powder and showed a molecular ion peak at m/z
204.0421 [M]+ (calcd. for C11H8O4

+, 204.0423) in HRESIMS, corresponding to an elemental formula
of C11H8O4. The 1H- and 13C-NMR spectra of 2 were similar to those of 1, except for the signals of
the aromatic ring system. The 1H-NMR spectrum of 2 showed an aromatic ring system at δH 7.28
(1H, dd, J = 1.2, 8.1 Hz), 7.59 (1H, t, J = 8.1 Hz), 7.68 (1H, dd, J = 1.2, 8.1 Hz). The positions of the
hydroxyl group at C-5 and the methoxy group at C-2 were confirmed by the HMBC correlations of
OH/C-5, C-6, C-10 and OCH3/C-2, respectively (Figure 2). Therefore, compound 2 was identified as
5-hydroxy-2-methoxy-1,4-naphthoquinone (Figure 1) by comparison of its spectral data with literature
values [14].

The known compounds identified in the present investigation are as follows: (4S)-isosclerone
(3) [15,16], (4S)-5-hydroxy-4-methoxy-α-tetralone (4) [16], juglonbutine (5) [17], (2S)-sakuranetin
(6) [18–20], (2S)-naringenin (7) [19–21], (2R)-sakuranin (8) [19,20,22], kaempferol (9) [22],
quercetin (10) [23], quercitrin (11) [24], afzelin (12) [24], (–)-taxifolin 3-O-α-L-arabinofuranoside
(13) [25], (erythro)-1-(4-hydroxyphenyl)-1,2,3-propanetriol (14) [26], 41-hydroxy-21,61-dimethoxyphenol
1-O-β-D-(6-O-syringoyl) glucopyranoside (15) [27], (7S,8S)-cilicione b (16) [28], and (2R)-1,2-butanediol
(17) [29] by comparison of their physical and spectroscopic data with the literature data (Figure 1).
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These compounds 3–17 were all isolated as the constituents of this plant for the first time. Moreover,
14 and 16 have not been found in the family Juglandaceae.Molecules 2016, 21, 120 3 of 13 
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Figure 2. Key COSY (␖) and HMBC (Ñ) correlations of 1 and 2.

2.2. Biological Evaluations of Compounds

2.2.1. Identification of Cytotoxic Compounds

The cytotoxic activities of the MeOH extract, solvent-partitioned fractions, and the compounds
isolated from J. sinensis were examined on the A549 human non-small cell lung cancer cell line at
various concentrations for 24 h. Inhibitory concentration (IC50) values were calculated from their cell
viability curves. Because the MeOH extract showed cytotoxic activity against A549 cells, this extract
was partitioned into hexane, ethyl acetate, butanol, and aqueous soluble fractions. As shown in Table 1,
the ethyl acetate fraction was the major fraction responsible for the cytotoxic activity compared to
other fractions.

Individual compounds were isolated from the ethyl acetate fraction, and their IC50 values were
determined against A549 cells. The cells were treated with 0–50 µM of compounds 1 to 17 for 24 h.
Compounds 1 and 2 showed strong cytotoxicity against A549 cells, with the IC50 values of 1.82 and
1.33 µM, respectively, whereas other compounds were inactive (IC50 > 10 µM, Table 1). Based on
the cytotoxic potency and selectivity, compounds 1 and 2 were selected as the potential anticancer
compounds and for further investigation of their cytotoxicity against different human cancer cell lines.
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Table 1. Cytotoxicity of the extract, fractions, and compounds isolated from J. sinensis.

Samples IC50

Methanol extract 153.4 ˘ 10.61 a

Hexane fraction 41.92 ˘ 3.68 a

Ethyl acetate fraction 31.23 ˘ 0.67 a

Butanol fraction 61.51 ˘ 2.00 a

Aqueous fraction 155.3 ˘ 10.71 a

1 1.33 b

2 1.82 b

3–17 >10 b

a range of activity in µg/mL; b range of activity in µM.

2.2.2. Cytotoxic Effects of Compounds 1 and 2 against Various Human Cancer Cells

Different human cancer cell lines were treated with compounds 1 and 2 using serial dilution
concentrations (10, 5, 2.5, 1.25, 0.625, and 0 µM). As shown in Figure 3, the cell viability rates decreased
with increasing concentrations of compounds 1 and 2 in a dose-dependent manner. Compound 1
showed significant cytotoxic activity for all the cancer cells tested (MCF7, SNU423, SH-SY5Y, HeLa,
HCT116, and A549), with IC50 values of 1.95 ˘ 0.05, 10.87 ˘ 0.33, 4.13 ˘ 0.27, 4.07 ˘ 0.06, 1.83 ˘ 0.12,
and 1.33 ˘ 0.02 µM, respectively (Table 2 and Figure 4A). Similarly, compound 2 demonstrated potent
cytotoxicity against all six cancer cells (MCF7, SNU423, SH-SY5Y, HeLa, HCT116, and A549), with
IC50 values of 1.96 ˘ 0.04, 10.42 ˘ 0.31, 6.07 ˘ 0.05, 3.70 ˘ 0.05, 3.00 ˘ 0.12, and 1.82 ˘ 0.03 µM,
respectively (Table 2 and Figure 4A). Especially, compound 1 displayed strong activity against MCF7
breast cancer, HCT116 colon cancer, and A549 lung cancer cells. A549 and MCF7 cells were used
to further evaluate the cytotoxic effect of compounds 1 and 2. In addition, when compounds 1 or 2
were treated in A549 and MCF7 cells for 24 h, the cell morphology became more round and floated
compared to the untreated healthy cells, showing a dissimilar cytoskeleton (Figure 4B).
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Figure 3. Cytotoxicity of compounds 1 and 2 on human cancer cell lines. Cells were treated with
compounds 1 and 2 at the indicated concentration for 24 h. Cytotoxicity was evaluated by the cell
viability assay. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to the control.
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Table 2. IC50 values (µM) of compounds 1 and 2 against human cancer cell lines.

Compounds MCF7 SNU423 SH-SY5Y HeLa HCT116 A549

1 1.95 ˘ 0.05 10.87 ˘ 0.33 4.13 ˘ 0.27 4.07 ˘ 0.06 1.83 ˘ 0.12 1.33 ˘ 0.02
2 1.96 ˘ 0.04 10.42 ˘ 0.31 6.07 ˘ 0.05 3.70 ˘ 0.05 3.00 ˘ 0.12 1.82 ˘ 0.03

The data are expressed as mean ˘ SD of three independent experiments.
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Figure 4. IC50 values of compounds 1 and 2 against human cancer cell lines. (A) The IC50 values of
compounds 1 and 2 for indicated cell lines; (B) Cell morphology of A549 and MCF7 cells treated with
compounds 1 and 2 for 24 h under microscopic observation (400ˆ).

2.2.3. Cancer Cell Specific Cytotoxicity of Compounds 1 and 2

To examine whether compounds 1 and 2 inducesd cancer cell specific cytotoxicity, human normal
mammary epithelial cells (MCF10A) and breast cancer cell lines (MCF7, Hs578T, T47D) were treated
with 2.5 µM of compounds 1 and 2 for 24 h. As shown in Figure 5, the cell viability of compound
1- or 2-treated MCF10A cells was 87.83% ˘ 0.94% and 80.45% ˘ 0.69%, respectively. However, the
cytotoxic effect of compounds 1 and 2 was higher in the breast cancer cells than in normal-like breast
cells. Cell viability of T47D, Hs578T and MCF7 treated with compound 1 was 49.50% ˘ 0.76%,
31.40% ˘ 0.56%, and 24.54% ˘ 1.08%, respectively. Cell viability of T47D, Hs578T, and MCF7 cells
treated with compound 2 was 60.29% ˘ 1.21%, 59.39% ˘ 0.31%, and 19.89% ˘ 1.10%, respectively.
These findings indicate that compounds 1 and 2 displayed significant cytotoxicity to human breast
cancer cells.
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from three independent observations.

2.2.4. Anti-Proliferative Activity of Compounds 1 and 2

To explore the anticancer properties of compounds 1 and 2, colony formation assays were
performed. MCF7 cells were incubated with compounds 1 and 2 at various concentrations (0, 0.5,
1, and 2 µM) for two weeks. Compounds 1 and 2 suppressed the colony formation of MCF7 breast
cancer cells in a dose-dependent manner, and compound 1 was more sensitive than compound 2 for
MCF7 cells (Figure 6A). To further confirm these results, the inhibitory effect of colony formation was
also examined using another two cell lines, HCT116 colon cancer cells and A549 lung cancer cells,
at the same concentrations of compounds 1 and 2 (Figure 6B,C). The results show that compounds 1
and 2 can inhibit the colony formation capacity; especially compound 1 was also more sensitive than
compound 2 for both A549 and HCT116 cells, which was consistent with that of MCF7 cells. Taken
together, compounds 1 and 2 showed the inhibitory effect of the colony formation in human cancer
cells, and compound 1 was more sensitive than compound 2 for human cancer cells.
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Figure 6. Inhibitory effects of compounds 1 and 2 on colony formation capacity of human cancer cells.
The colony formation assays of MCF7 (A); A549 (B); and HCT116 cells (C) treated with compounds
1 and 2 at the indicated concentrations for two weeks. Data presented are mean ˘ SD from three
independent observations.

2.2.5. Apoptotic Activity of Compounds 1 and 2

To determine whether compounds 1 and 2 caused apoptosis, flow cytometry was performed
using Annexin V-FITC and propidium iodide (PI) double staining assay in MCF7 cells. At 24 h after
treatment with 1 and 2, the proportion of apoptotic cells was 61% higher in 2 µM compound 1-treated
MCF7 cells than in the control cells (72.19% ˘ 0.36% vs. 10.79% ˘ 0.19%, p < 0.01) and 76% higher in
2 µM compound 2-treated MCF7 cells than in the control cells (87.02% ˘ 0.18% vs. 11.04% ˘ 0.26%,
p < 0.01) (Figure 7A).
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Figure 7. Cellular apoptosis by compounds 1 and 2 in MCF7 cells. (A) Flow cytometry was performed
to measure cellular apoptosis. * p < 0.05; ** p < 0.01 vs. control; (B) western blot was performed using
the indicated antibodies. The numbers represent the mean fold change of the respective protein levels
in compounds-treated cells relative to the control cells. The Bax/Bcl2 ratio is shown as fold changes
compared to that of the untreated cells.

Moreover, compound 1 induced cell necrosis at 2 µM compared to the untreated control group
(2.02% ˘ 0.62% vs. 21.02% ˘ 1.12%); however, compound 2 did not induce cell necrosis (Figure 7A).
These findings indicate that compounds 1 and 2 could induce apoptosis and inhibit cancer cell
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growth. To study the mechanism of compounds 1 and 2-induced apoptosis, the expression levels of
apoptosis-related proteins were measured using western blotting (Figure 7B). The treatment with these
compounds increased the expression level of Bax, a pro-apoptotic protein, whereas the expression
level of Bcl2, an anti-apoptotic protein, decreased by the treatment with these compounds. When
the expression level of Bax was represented as ratios to the level of Bcl2, the treatment with these
compounds increased the ratio of Bax/Bcl2, and especially a significant elevation in the ratio of
Bax/Bcl2 in compound 1-treated cells was observed. Altogether, these findings demonstrate that
compounds 1 and 2 induced apoptosis by regulating pro- and anti-apoptotic genes.

2.3. Discussion

Breast cancer is the second most common reason for death in females worldwide [30]. In this
study, 17 phenolic compounds 1–17 were isolated from the bark of J. sinensis; their cytotoxic activities
were tested against diverse human cancer cells. Among them, compounds 1 and 2 exhibited cytotoxic
activities and inhibited human cancer cell growth, which was in agreement with the previous reporters
for similar compounds [31–33].

2-Methoxy-1,4-naphthoquinone (MNQ) exerts anticancer activity by the induction of
apoptosis [34]. Our data demonstrate that compounds 1 and 2 induced apoptotic characteristics
such as cytoplasm retraction, bleb formation, and the condensation of nuclear material [35,36], in
a dose-dependent manner (Figure 4B). Identified apoptotic pathways in cells can divide into two
pathways mediated by: (i) the death receptor and (ii) mitochondria [37,38]. Recent report showed
that MNQ promotes cancer cell death by a reactive oxygen species (ROS)-dependent mechanism [34].
Since compounds 1 and 2 have the same skeleton as MNQ, compounds 1 and 2 should have similar
activity as MNQ based on their structures. The mitochondrial-mediated apoptosis is regulated
by the Bcl2 protein family [39]. Pro-apoptotic protein Bax transposes to the mitochondrial outer
membrane, and anti-apoptotic protein Bcl2 expression decreases followed by cytochrome c release
inducing cell apoptosis. Our results show that compounds 1 and 2 induced cell apoptosis by
reducing Bcl2 protein and increasing Bax protein, therefore they may induce cell apoptosis by a
mitochondrial-mediated pathway.

3. Experimental Section

3.1. General Procedures

Optical rotations were measured on a P-1010 polarimeter (Jasco, Tokyo, Japan). UV spectra were
recorded on a U-3000 spectrophotometer (Hitachi, Tokyo, Japan). CD spectra were obtained using a
J-810 CD-ORD spectropolarimeter (Jasco). HR-ESI mass spectrometric analyses were performed with an
ACQUITY UPLC system (Waters Co., Milford, MA, USA) coupled to a Micromass Q-TOF Micromass
spectrometer and a 6220 Accurate-Mass TOF LC/MS system (Agilent Technologies, Inc., Santa Clara, CA,
USA). The 1D and 2D NMR experiments were performed on a Unity Inova 400 MHz FT-NMR instrument
(Varian, Inc., Palo Alto, CA, USA) with tetramethylsilane (TMS) as an internal standard. Thin-layer
chromatographic (TLC) analysis was performed on Kieselgel 60 F254 (Merck, Darmstadt, Germany), with
visualization under UV light (254 and 365 nm) and 10% (v/v) sulfuric acid spray followed by heating
(120 ˝C, 5 min). Silica gel (230–400 mesh, Merck), YMC Gel ODS-A (12 nm, S-150 µm; YMC Co., Kyoto,
Japan), and Sephadex LH-20 (Pharmacia Co., Uppsala, Sweden) were used for column chromatography
(CC). (Please provide us the full information of company, city, country for all the equipment).

3.2. Materials and Chemicals

The barks of J. sinensis were collected at the Medicinal Plant Garden, College of Pharmacy, Ewha
Womans University, in August 2010, and identified by Prof. Je-Hyun Lee (Dongguk University,
Geongju 780-714, Korea). A voucher specimen (No. EA310) was deposited at the Natural Product
Chemistry Laboratory, College of Pharmacy, Ewha Womans University. Cell culture reagents were
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purchased from WelGENE (Daegu, Korea). The EZ-CyTox Cell Viability assay kit was purchased from
Daeil Lab Service Co. (Seoul, Korea). Formaldehyde, crystal violet and DMSO were obtained from
Sigma (St. Louis, MO, USA). The EzWay Annexin V-FITC apoptosis detection kit was purchased from
KOMA Biotech (Seoul, Korea). Xpert protease inhibitor cocktail was purchased from GenDEPOT
(Barker, TX, USA). Primary antibodies against Bcl2, Bax and β-actin were purchased by Santa Cruz
Biotechnology (Santa Cruz, CA, USA), and horseradish peroxidase (HRP)-conjugated secondary
antibody was obtained from Jackson Immuno Research laboratories, Inc. (West Grove, PA, USA).
The enhanced chemiluminescence (ECL) kit was obtained from Advansta Inc. (Advansta, CA, USA).

3.3. Extraction and Isolation

The air-dried barks of J. sinensis (18 kg) were extracted with MeOH (25 L ˆ 4) for 24 h at room
temperature. The solvent was evaporated in vacuo to provide a concentrated MeOH extract (1.6 kg),
which was then diluted with distilled water (1.2 L) to afford an aqueous methanolic solution. The
aqueous solution was sequentially partitioned with n-hexane (3 L ˆ 3), EtOAc (2 L ˆ 3), and n-BuOH
(3 L ˆ 3) to afford the following fractions: n-hexane (170 g), EtOAc (755 g), and n-BuOH-soluble
(414 g) fractions. The partial EtOAc fraction (350 g) was subjected to silica gel column chromatography
(CC) (CHCl3–MeOH, 99:1 to 2:1, v/v) to yield ten fractions (E01–E10). Fraction E09 (66.84 g) was
recrystallized using MeOH to afford 11 (10 g). Fraction E02 (6.5 g) was applied to silica gel CC
(CHCl3–acetone, 99.5:0.5 to 98:2, v/v), leading to fifteen sub-fractions (E0201–E0215). Among them,
sub-fraction E0205 (99.5:0.5, 50 mg), E0206 (99.5:0.5, 45 mg), and E0214 (98.5:1.5, 598.78 mg) were
identified as 1 (40 mg), 2 (50 mg), and 6 (500 mg), respectively. Sub-fraction E0215 (2.3 g) was
subjected to silica gel CC (CHCl3–acetone, 99:1 to 98:2, v/v) and was further purified by RP-C18 CC
(MeOH–water, 1:1 to 2:1, v/v) to afford 3 (7 mg). Fraction E0210 (166 mg) was purified by RP-C18 CC
(CH3CN–water, 1:9 to 1:1, v/v) to furnish 4 (4 mg). Fraction E07 (56 g) was applied to silica gel CC
(CHCl3–MeOH, 99:1 to 1:1, v/v), leading to twelve sub-fractions (E0701–F0712). Sub-fraction E0711
(7.6 g) was subjected to RP-C18 CC (MeOH–water, 1:3 to 1:1, v/v) and Sephadex LH-20 CC (100%
MeOH), affording 5 (8 mg), 13 (7 mg), and 17 (2 mg). The combined sub-fractions, E0707 and E0708
(17 g), were further purified by silica gel CC (CHCl3–acetone, 99:1 to 1:1, v/v) to afford 9 (116 mg), 10
(8 mg), and 16 (70 mg). Sub-fraction E0710 (11 g) was subjected to silica gel CC (CHCl3–MeOH, 99:1 to
1:1, v/v) to obtain 12 (9 mg). The combined fractions, E04 and E05 (4.6 g) was applied to silica gel CC
(CHCl3–acetone, 99:1 to 1:1, v/v) leading to 15 sub-fractions (E0401–F0415) and 7 (36 mg). Sub-fraction
E0409 (161 mg) was further purified by RP-C18 CC (MeOH–water, 1:1 to 3:1, v/v), affording 14 (2 mg).
The BuOH fraction (414 g) was subjected to silica gel CC (CH2Cl2–MeOH, 98:2 to 1:1, v/v) to yield 13
fractions (B01–B13). The combined sub-fractions, B06, B07, and B08 (6.2 g), were applied to RP-C18

CC (MeOH–water, 1:4 to 1:2, v/v) providing eighteen sub-fractions (B0601–B0618) and 8 (70 mg).
The combined sub-fractions, B0609 and B0610 (811 mg), were purified by silica gel CC (CH2Cl2–MeOH,
49:1 to 1:1, v/v) to obtain 15 (100 mg).

8-Hydroxy-2-methoxy-1,4-naphthoquinone (1). Light brown needle-like crystals. 1H-NMR (CDCl3,
400 MHz) δ 11.75 (1H, s, OH), 7.63 (2H, dd, J = 2.8 , 6.4 Hz, overlapped H-5 and H-6), 7.25 (1H,
dd, J = 2.8, 6.4 Hz, H-7), 6.16 (1H, s, H-3), 3.92 (3H, s, OCH3); 1H-NMR (DMSO, 400 MHz) δ 11.57 (1H,
s, OH), 7.74 (1H, t, J = 7.7 Hz, H-6), 7.50 (1H, dd, J = 7.7, 1.0 Hz, H-5), 7.25 (1H, dd, J = 7.7, 1.0 Hz, H-7),
6.34 (1H, s, H-3), 3.87 (3H, s, OCH3); 13C-NMR (CDCl3) δ 184.9 (C-1), 183.9 (C-4), 162.0 (C-8), 160.1
(C-2), 137.2 (C-6), 132.1 (C-10), 123.9 (C-7), 118.9 (C-5), 114.3 (C-9), 110.5 (C-3), 56.6 (OCH3); HRESIMS
m/z 204.0421 [M]+ (calcd. for C11H8O4

+, 204.0423).

5-Hydroxy-2-methoxy-1,4-naphthoquinone (2). Light brown powder. 1H-NMR (CDCl3, 400 MHz) δ 12.23
(1H, s, OH), 7.68 (1H, dd, J = 1.2, 8.1 Hz, H-8), 7.59 (1H, t, J = 8.1 Hz, H-7), 7.28 (1H, dd, J = 1.2, 8.1 Hz,
H-6), 6.11 (1H, s, H-3), 3.93 (3H, s, OCH3); 13C-NMR (CDCl3) δ 190.8 (C-4), 179.4 (C-1), 161.1 (C-2),
161.1 (C-5), 135.5 (C-7), 131.1 (C-9), 125.2 (C-6), 119.6 (C-8), 114.2 (C-10), 109.5 (C-3), 56.6 (OCH3);
HRESIMS m/z 204.0421 [M]+ (calcd. for C11H8O4

+, 204.0423).
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(4S)-Isosclerone (3). Amorphous solid. CD (MeOH, c = 5.62 ˆ 10´3 M) ∆ε (nm): ´27.6 (255), +10.7
(203) [16].

(4S)-5-Hydroxy-4-methoxy-α-tetralone (4). Amorphous powder. CD (MeOH, c = 5.20 ˆ 10´3 M) ∆ε (nm):
´0.8 (345), +10.8 (230) [16].

(2S)-Sakuranetin (6). Pale yellow powder. CD (MeOH, c = 3.5 ˆ 10´3 M) +1.5 (334), ´23.6 (293) [19,20].

(2S)-Naringenin (7). Pale brown powder. CD (MeOH, c = 3.7 ˆ 10´3 M) +2.0 (331), ´21.6 (291) [19,20].

(2R)-Sakuranin (8). White amorphous powder. CD (MeOH, c = 3.3 ˆ 10´3 M) ´1.9 (333), +9.2
(290) [19,20].

(–)-Taxifolin 3-O-α-L-arabinofuranoside (13). Amorphous solid. rαs24
D ´26.7 (c 0.1, MeOH) [40].

(erythro)-1-(4-Hydroxyphenyl)-1,2,3-propanetriol (14). Brown needle. rαs24
D ´48.2 (c 0.05, MeOH) [41].

(7S,8S)-Cilicione b (16). Yellow solid. rαs24
D +16.0 (c 0.1, MeOH) [42].

(2S)-1,2-Butanediol (17). Light yellow solid. rαs24
D +7.8 (c 0.1, EtOH) [29].

3.4. Cell Culture

A549 (human non-small cell lung carcinoma cell), HCT116 (human colorectal carcinoma cell),
SNU423 (human hepatocellular carcinoma cell), MCF7 (human breast adenocarcinoma cell), SH-SY5Y
(human neuroblastoma cell), and HeLa (human cervical adenocarcinoma cell) were obtained from
the Korean Cell Line Bank (Seoul, Korea). A549, HCT116, SNU423, and HeLa cells were maintained
in the RPMI-1640 medium containing 10% FBS, 1% penicillin/streptomycin at 37 ˝C under 5% CO2

conditions. MCF7 and SH-SY5Y cells were cultured in the DMEM supplemented with 10% FBS and
1% penicillin/streptomycin at 37 ˝C under 5% CO2 conditions.

3.5. Cell Viability Assay

Cells were cultured on 96-well plates at a density of 5ˆ 104 cells/mL and treated with compounds
at the indicated concentrations. After 24 h of incubation, cell viability was analyzed according
to the manufacturer’s instructions using the EZ-CyTox Cell Viability assay kit. Briefly, 10 µL of
kit solution was added to each well for additional 4 h incubation. Absorbance was detected at
450 nm using a VERSA max microplate reader (Molecular Devices, Sunnyvale, CA, USA) and used to
calculate the percentage of viable cells compared to the untreated cells. Results were expressed as cell
viability (%) = (mean absorbency in test wells/mean absorbency in control wells) ˆ 100. Cytotoxicity
was expressed as the concentration of inhibiting cell growth by 50% (IC50 value).

3.6. Colony Formation Assay

Cells were treated with compounds 1 and 2 at indicated concentrations for two weeks.
The medium was changed every three days by the treatment with compounds 1 and 2. After that,
the supernatant was thrown away, and the cells were washed three times with phosphate-buffered
saline (PBS). The cells were fixed with 4% formaldehyde for 30 min and stained with 0.1% crystal
violet for 30 min. Colonies were photographed, and the number of colonies was counted using Image
J (National Institutes of Health, Bethesda, MD, USA) from three independent experiments.

3.7. Flow Cytometry Analysis

Annexin V positive MCF7 cells were detected using an EzWay Annexin V-FITC apoptosis detection
kit according to the manufacturer’s protocol. Briefly, MCF7 cells were seeded and incubated with
the indicated concentration of compounds 1 and 2 for 24 h. The cells were harvested, washed three
times with PBS, and incubated with 1 ˆ Binding Buffer. Then, the cells were incubated with 1.25 µL
of Annexin V-FITC and 10 µL of propidium iodide (PI) at room temperature for 15 min in the dark.
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The samples were analyzed using a FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA).
The apoptosis percentage was calculated as the number of PI positive and Annexin-V positive cells
divided by the total number of cells. The experiments were repeated three times independently.

3.8. Western Blotting

Cells were washed with PBS and lysed in lysis buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10%
glycerol, 50 mM EDTA, 1% Triton X-100) containing a protease inhibitor cocktail at 4 ˝C for 20 min.
After centrifugation at 12,000 rpm for 15 min, the supernatants were collected. Protein concentration
was determined using the Bradford protein assay (Bio-Rad, Hercules, CA, USA). Equal amounts
of proteins were subjected to a 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) and transferred to a nitrocellulose membrane. The membranes were then blocked with
5% skim milk for 1 h and incubated with primary antibody. After washing, the membranes were
incubated with a horseradish peroxidase (HRP)-conjugated secondary antibody for 1 h. Proteins bands
were visualized using an enhanced chemiluminescence (ECL) system.

3.9. Statistical Analysis

All the data are presented as the mean ˘ SD and are representative of at least three independent
experiments. Comparisons between the two groups were analyzed by Student’s t-test. A p value of
less than 0.05 was considered to be statistically significant.

4. Conclusions

The leaves and (or) twigs of J. sinensis have usually been subjected to phytochemical and biological
studies previously; however, this is the first report of the phytochemical study on the bark of this plant.
In this study, bioassay-guided fractionation of an ethyl acetate-soluble fraction of the bark of J. sinensis
using the A549 cell line, led to the isolation of 17 phenolic compounds 1–17, which were found in this
plant for the first time. Moreover, 14 and 16 have never been isolated from the family Juglandaceae.
This study suggests that compounds 1 and 2 are the main compounds responsible for the biological
activity for the bark extract of J. sinensis. The most active compound 1 is a potential candidate for
antitumor drug based on its effective cytotoxic and apoptotic activities.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
1/120/s1.
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