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Abstract: Six novel imidazoline derivatives were synthesized and tested in antifungal assays. 

One of the compounds, N-cyclohexyl-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide 

showed moderate activity against several clinical strains of Candida albicans. Its structure 

was solved by X-ray crystallography and its mode of action was deduced using molecular 

modelling. It was found to be similar to that of fluconazole. The potential for further 

optimization including SAR of the compound is briefly discussed. 

Keywords: antifungal; Candida albicans; X-ray analysis; 14-α-sterol demethylase; molecular 

modelling; synthesis 
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1. Introduction 

Candida spp. encompasses a class of fungi that includes over 150 species. It exists harmlessly in the 

body and is a component of the human mycobiome. The mycobiome, which refers to the fungal biota, by 

interacting with other biomes, as well as with the host, contributes to the progression of fungus-associated 

diseases and plays an important role in health and disease [1,2]. Fungi are also pathogens that can  

affect different part of the body. They commonly infect immunocompromised patients, those undergoing 

chemotherapy, infected with HIV or on immunosuppressive medicines after transplantation [3]. Many 

serious infections also happen as a result of the development of a fungal biofilm [4]. Moreover fungi 

cause infections of the skin, hair and nails which are source of substantial discomfort for patients [5,6]. 

Invasive fungal infections (IFIs) are the most serious type in which brain, heart, blood or other important 

parts of the body are infected [7,8]. These present the biggest challenge especially in the light of increased 

occurrence over the past decades and the urgent need for more effective drugs [9]. It is clear that more 

basic research on new antifungal drugs is needed with emphasis on structural biology, homology modelling 

and virtual imaging to drive discovery [10]. 

On the other hand protection of natural microflora, mainly intestinal microbiota should not be neglected. 

Microorganisms colonizing the human gut are responsible for crucial functions to our health such as 

elimination of potentially toxic substances or preventing uncontrolled growth of pathogens [11]. It was 

recently demonstrated that treatment with cyclophosphamide, a drug commonly used in chemotherapy 

benefits from certain bacteria from the intestinal flora by stimulating fresh immune defense mechanisms [12]. 

During the course of another investigation [13] we studied novel urea derivatives with antiproliferative 

properties. Having accounted for their cytotoxicity and consequently the need for protection of the 

natural microbiological flora we deemed it necessary to check how they influence survival of different 

microorganisms. We were particularly interested in assessing antifungal activity because of the similarity 

to imidazole drugs currently in clinical use. 

2. Results and Discussion 

2.1. Chemistry 

The compounds presented in this manuscript were synthesized as outlined in Scheme 1. The synthesis 

started with commercially available 1-chloro-4-nitrobenzene (1) which when refluxed with ethylenediamine 

gave very good yield of N1-(4-nitrophenyl)ethane-1,2-diamine (2). This product was cyclized using 

cyanogen bromide to afford 1-(4-nitrophenyl)imidazolidin-2-imine (3). The last step involved reacting 3 

with a variety of isocyanates (Table 1). In most cases a mixture of two regioisomers was obtained, with 

compounds 4 being the major products. This is probably due to steric hindrance and greater nucleophilicity 

of the ring nitrogen. This corresponds well with a previous report indicating delocalization of electrons 

over guanidinium fragment and shortening of the bond between carbon and the ring nitrogen [14]. The 

obtained regioisomers were virtually indistinguishable by NMR spectroscopy due to their very similar 
1H-NMR spectra. Additionally, the lack of expected correlation between methylene hydrogens and 

carbonyl carbon in compounds 4 made this vital clue unavailable. This was confirmed in compound 4f, 

whose structure was solved by X-ray crystallography and the measured HMBC spectra did not reveal 

H4-C7 coupling even using a range of 3J setting (Figure 1). The position of N-H signals which are most 
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downfield in the 1H-NMR spectra may be characteristic for compounds 4. These signals were shifted 

beyond or close to 10 ppm, but no consistent pattern was revealed in relation to compounds 5. However, 

taking into consideration the fact that these are of poor diagnostic value we relied on X-ray data for 

absolute certainty (Figure 2). Compounds 5 can exist in two main tautomeric forms, as imidazolidine or as 

imidazoline derivatives, however X-ray analysis of another reaction product where R = phenyl suggests 

preference of the former in the solid state [13]. 

Table 1. Isocyanates and substituents in target compounds. 

Compound R 

a 

b 

c 

d 

e 

f 

 

Scheme 1. Synthetic sequence. Reagents and conditions: (i) NH2CH2CH2NH2, reflux; (ii) 1. 

BrCN, iPrOH, reflux; 2. NaOH; (iii) RNCO, rt. 
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Figure 1. HMBC spectrum of compound 4f shows absence of expected three-bond correlation 

between methylene hydrogens H4 and carbonyl carbon C7. 

 

Figure 2. A view of the molecule 4f with the atom labelling. Non-H atoms are represented 

by displacement ellipsoids at the 30% probability level. 

2.2. Microbiology 

Compound 4f at 1000 mg/L concentration showed potential activity against some Candida species. 

On the basis of the MIC values it was shown that compound 4f had strain-dependent activity against 

both reference strains of Candida albicans (MIC = 250–1000 mg/L) and C. parapsilosis (MIC = 500 mg/L). 
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Antifungal activity against clinical isolates of C. albicans was within MIC values ranged from 0.98  

to ≥1000 mg/L (Table 2). Clotrimazole used as a reference compound had higher activity against the 

reference strains (MIC = 1.95–3.9 mg/L) of Candida spp. and against clinical isolates of C. albicans 

(MIC = 0.06–7.8 mg/L). The activity assessed on the basis of MIC50 = 250 mg/L and MIC90 = 1000 mg/L 

values for 4f was lower in comparison to clotrimazole activity with MIC50 = 0.24 mg/L and  

MIC90 = 1.95 mg/L against C. albicans clinical isolates. 

Table 2. Activity of 4f and clotrimazole against clinical strains of Candida albicans detected 

on the basis of minimal inhibitory concentration (MIC, mg/L) values. 

MIC Value 

4f Clotrimazole 

No. of Strains 

(n = 41) 
% of Strains MIC50 MIC90 

No. of Strains 

(n = 31) 
% of Strains MIC50 MIC90 

0.015 0 (0.0) 0 

250 1000 

3 9.7 

0.24 1.95 

0.03 0 0 5 16.1 

0.06 0 0 2 6.5 

0.12 0 0 3 9.7 

0.24 0 0 5 16.1 

0.49 0 0 5 16.1 

0.98 1 2.4 3 9.7 

1.95 1 2.4 2 6.5 

3.9 1 2.4 1 3.2 

7.82 2 4.9 2 6.5 

15.63 1 2.4 0 0 

31.25 2 4.9 0 0 

62.5 3 7.3 0 0 

125 7 17.1 0 0 

250 5 12.2 0 0 

500 10 24.4 0 0 

1000 7 17.1 0 0 

>1000 1 2.4 0 0 

2.3. X-ray Analysis 

A detailed X-ray analysis of compound 4f was performed in order to confirm the synthesis pathway 

and identification of its tautomeric form in the solid state. Compound 4f crystallizes as isopropanol 

solvate with one solvent molecule in the asymmetric unit (Figure 3). The bond lengths and angles  

are within the normal ranges [15] and are comparable to those found in closely related structures  

1-(3-chlorophenyl)-3-(1-p-tolylimidazolidin-2-ylidene)urea [16] and 2-(methoxyimino)-N-((4-methyl-

phenyl)-sulfonyl)imidazolidine-1-carboxamide monohydrate [17]. The bond length of C7=O8, 1.229(3) Å 

is characteristic of that for the normal C=O double bond (1.230(7) Å in ureas [15]). This value and the 

positions of the H atoms in the vicinity of the N6 and N9 atoms in the difference electron-density map 

indicate that compound 4f exists in the N6-imine/O8-keto tautomeric form in the crystalline state. The 

guanidine-urea moiety of 4f is slightly distorted from planarity with maximum deviation from its mean 

plane of 0.0661(14) Å for the N1 atom. 
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Figure 3. Unit-cell packing of the compound 4f. H atoms not involved in hydrogen bonding 

have been excluded. 

The conformation of this system is stabilized by an intramolecular N9–H9···N6 hydrogen bond 

(Table 3). The nitro group in p-nitrophenyl substituent is almost coplanar with the benzene ring which 

is shown by the torsion angle C23–C24–N27–O28 of 11.1(4)o, while the benzene and imidazoline rings 

are twisted of each other with the dihedral angle of 31.79(15)°. The imidazoline ring adopts an envelope 

conformation, with puckering parameters of Q = 0.252(3) Å and φ = 140.4(7)° [18]. The cyclohexane 

ring is disordered in two chair conformations A and B (Figure 3), which is confirmed by the puckering 

parameters of Q = 0.536(9) Å and θ = 8.7(9)° for ring A and Q = 0.57(2) Å and θ = 15.1(2)° for ring B. 

Table 3. Hydrogen bonding geometry (Å, °) for compound 4f. 

D–H···A D–H H···A D···A D–H···A Symmetry Codes 

N6–H6···O44A 0.86(4) 2.57(4) 3.263(11) 139(3) i = x, y, z 
C22–H22···O44A 0.93 2.56 3.462(15) 164 ii = 1 − x, 1 − y, −z 

N9–H9···N6 0.94(4) 1.88(4) 2.692(3) 143(4)  

The gauche conformation of the cyclohexane ring with respect to the urea moiety is described by  

the torsion angle C7–N9–C31–C36 of 87.1(5) and 106.3(9)° for rings A and B respectively. In the crystal 

structure, the molecules of 4f interact with each other by van der Waals forces but in addition each of the 

these molecules is linked with two molecules of isopropanol solvent via the intermolecular N6–H6···O44A 

and C22–H22···O44A hydrogen bonds (Table 3, Figure 4). 
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Figure 4. Molecular interactions of 4a and 4f with cytochrome P450 14-α-sterol demethylase 

(homology model) from Candida albicans. (A) comparison of binding poses of fluconazole 

(yellow carbon atoms), inactive 4a (cyan carbon atoms) and active 4f (magenta carbon atoms). 

Protein shown in cartoon representation, ligands shown as sticks. Non-polar hydrogen atoms 

omitted for clarity; (B) 2D map of binding site for 4f; (C) details of binding site of 4f. Ligand 

and protein shown as sticks with magenta and grey carbon atoms, respectively. Non-polar 

hydrogen atoms omitted for clarity; (D) 2D map of the binding site of 4a; (E) details of binding 

site of 4a. Ligand and protein shown as sticks with cyan and grey carbon atoms, respectively. 

Hydrogen bonds shown as red dashed lines. Non-polar hydrogen atoms omitted for clarity. 

2.4. Molecular Modelling 

It is a well-known fact that imidazole derivatives, such as fluconazole exert their pharmacological 

activity through inhibition of enzyme cytochrome P450 14-α-sterol demethylase from C. albicans. Thus, 
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this mechanism of action has already been suggested for similar compounds despite a lack of experimental 

verification of this hypothesis [19]. 

As the crystal structure of cytochrome P450 14-α-sterol demethylase from C. albicans is not available, 

the homology model of this enzyme was constructed using cytochrome P450 14-α-sterol demethylase 

from Mycobacterium tuberculosis in complex with fluconazole (PDB ID: 1EA1) [20] as a template with 

sequence identity 28.97%. The model is similar to earlier published models [21–23]. 

Molecular docking allowed to conclude that the binding pocket occupied by 4f partially overlaps with 

the one occupied by fluconazole. The overview of potential inhibitor-enzyme complex is shown in 

Figure 4A. It can be seen that the position of the active compound 4f is different than this of the inactive 

compound 4a. The details of the binding pocket are presented in Figure 4B,C for 4f and in Figure 4D,E  

for 4a. Similarly for fluconazole in the respective crystal structure of the template, no hydrogen bond 

interactions were found for 4f in the binding site of the enzyme. Except for Thr311 and Ser312, only 

non-polar amino acids are present in the enzyme binding site, including aromatic Phe145, Phe463 and 

Phe475 as well as aliphatic Ala149, Leu150, Leu204, Ile304, Gly307, Gly308, Cys370, Met374, 

Leu376, Ile379, Pro462, Gly464, Gly472 and Ala476. The stability of the inhibitor-enzyme complex 

was confirmed in molecular dynamics simulations. The complex of compound 4f with cytochrome P450 

14-α-sterol demethylase was stable during 100 ns simulations as indicated by decreasing value of complex 

potential energy (Figure 5A) and complex RMSD (Figure 5B). The stability of selected potential inhibitor 

binding pose is confirmed by ligand RMSD value below 3 Å Figure 5C). RMSD values were measured 

in comparison to initial position. 

 

Figure 5. Cont. 
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Figure 5. Molecular dynamics simulations results for 4f in complex with P450 14-α-sterol 

demethylase (homology model) from Candida albicans. (A) changes of potential energy for 

inhibitor-enzyme complex during 100 ns simulations; (B) changes in complex RMSD during 

100 ns simulations; (C) changes in ligand RMSD during 100 ns simulations. 

3. Experimental Section  

3.1. Synthesis 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further 

purification unless stated otherwise. NMR spectra were recorded on Fourier 300 and AVANCE III  

600 MHz spectrometers (Bruker, Fallanden, Switzerland). Solvents for NMR spectroscopy were obtained 

from Armar Chemicals (Dottingen, Switzerland). Abbreviations used in NMR spectra s- singlet, d- doublet, 

t- triplet, q- quarter, m- multiplet, br- broad. MS spectra were acquired on a Bruker microTOF-Q II 

spectrometer. TLC analysis was carried out on HPTLC Silica gel 60 F254 plates (Merck, Darmstadt, 

Germany) prewashed with methanol. 

N1-(4-Nitrophenyl)ethane-1,2-diamine (2). 1-Chloro-4-nitrobenzene (1, 10 g, 0.06 mol) and ethylenediamine 

(40 g, 0.6 mol) were refluxed together for 90 min. Excess ethylenediamine was distilled and the remaining 

residue was dissolved in hot water, filtered while hot and allowed to cool. Crystals formed very quickly. 

They were filtered, washed with water and air dried. Thus 9.6 g (83%) of orange solid was obtained. All 

analytical data corresponds to that found in the literature [24] m.p. 148–150 °C. 1H-NMR (300 MHz, 

DMSO-d6) δ 7.89–8.07 (m, 2H), 7.30 (br t, J = 4.66 Hz, 1H), 6.56–6.72 (m, 2H), 3.13 (q, J = 6.08 Hz, 

2H), 2.73 (t, J = 6.29 Hz, 2H), 1.60 (brs, 2H); 13C-NMR (75 MHz, DMSO-d6) δ 155.2, 135.9, 126.7, 111.1, 

46.5, 41.1. 

1-(4-Nitrophenyl)imidazolidin-2-imine (3). Cyanogen bromide (3.18 g, 30 mmol) dissolved in iPrOH 

(50 mL) was added dropwise to N-(4-nitrophenyl)ethane-1,2-diamine (2, 5.44 g, 30 mmol) suspended 

in iPrOH (50 mL). During addition the amine went into solution and colour turned orange-brown. The 

reaction was heated under reflux for 90 min and then the solvent was removed on a rotavap. The yellow 

residue was recrystallized from EtOH to afford 7.3 g (85%) of yellow solid as a hydrobromide salt. The 

salt was converted to a free base form by dissolving it in warm water, adding to 5% NaOH (2.5 eq) and 

filtering the resulting precipitate. Free base 1H-NMR (300 MHz, DMSO-d6) δ 8.09–8.18 (m, 2H), 7.96–8.07 
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(m, 2H), 6.06 (brs, 2H), 3.81–3.94 (m, 2H), 3.35–3.43 (m, 2H); 13C-NMR (75 MHz, DMSO-d6) δ 158.5, 

148.2, 140.0, 124.9, 117.1, 47.5, 40.0. 

General Procedure to Obtain Compounds 4 

To a stirred mixture of 1 eq. of 1-(4-nitrophenyl)imidazolidin-2-imine (3) in dichloromethane (DCM), 

tetrahydrofuran (THF) or acetonitrile (ACN) there was added a solution of 1 eq. of an isocyanate in  

the same solvent. The mixture was stirred for 2 h at room temperature and resulting precipitate filtered 

(reaction mixture becomes clear as soon as the isocyanate is added and then starts turning cloudy and 

opaque as it progresses) or the solvent was evaporated. 

N-(3-Chlorophenyl)-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide (4a). THF was used as solvent. 

The formed precipitate was filtered and washed with THF. 1H-NMR (600 MHz, CDCl3) δ = 12.28 (brs, 

1H), 8.39–8.36 (m, 2H), 7.69 (t, J = 2.1 Hz, 1H), 7.41 (ddd, J = 0.8, 2.1, 8.2 Hz, 1H), 7.39–7.36 (m, 2H), 

7.25 (t, J = 8.0 Hz, 1H), 7.06 (ddd, J = 0.8, 2.0, 8.0 Hz, 1H), 6.46 (brs, 1H), 4.16–4.11 (m, 2H), 3.99–3.91 

(m, 2H); 13C-NMR (151 MHz, CDCl3) δ = 152.48, 151.24, 144.93, 144.18, 139.59, 134.60, 129.91, 125.81, 

123.41, 120.78, 119.67, 117.60, 44.75, 40.66; HRMS (ESI) [M + H]+ calc. 360.0858 exp. 360.0855. 

N-(3,4-Dichlorophenyl)-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide (4b). THF was used as 

solvent. The formed precipitate was filtered and washed with THF. 1H-NMR (600 MHz, CDCl3)  

δ = 12.35 (brs, 1H), 8.41–8.36 (m, 2H), 7.81 (d, J = 2.6 Hz, 1H), 7.40–7.36 (m, 4H), 6.46 (brs, 1H), 

4.15–4.11 (m, 2H), 3.98–3.93 (m, 2H); 13C-NMR (151 MHz, CDCl3) δ = 152.51, 151.22, 144.86, 144.30, 

138.02, 132.72, 130.47, 126.43, 125.87, 121.21, 120.88, 118.87, 44.81, 40.68; HRMS (ESI) [M + H]+ 

calc. 394.0468 exp. 394.0468. 

N-Benzyl-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide (4c). THF was used as solvent and 

removed on a rotavap when the reaction was finished. The residue was recrystallized repeatedly from 

iPrOH. 1H-NMR (600 MHz, CDCl3) δ = 10.10 (brs, 1H), 8.33 (d, J = 9.1 Hz, 2H), 7.42–7.24 (m, 7H), 6.30 

(s, 1H), 4.57 (d, J = 5.8 Hz, 2H), 4.12–4.04 (m, 2H), 3.94–3.85 (m, 2H); 13C-NMR (151 MHz, CDCl3) 

δ = 152.48, 151.24, 144.93, 144.18, 139.59, 134.60, 129.91, 125.81, 123.41, 120.78, 119.67, 117.60, 

44.75, 40.66; HRMS (ESI) [M + H]+ calc. 340.1404 exp. 340.1401. 

2-Imino-3-(4-nitrophenyl)-N-(2-phenylethyl)imidazolidine-1-carboxamide (4d). ACN was used as solvent 

and removed on a rotavap when the reaction was finished. The residue was recrystallized repeatedly 

from iPrOH. 1H-NMR (600 MHz, CDCl3) δ = 9.71 (brs, 1H), 8.37–8.28 (m, 2H), 7.36–7.20 (m, 7H), 

6.23 (s, 1H), 4.08–4.00 (m, 2H), 3.91–3.83 (m, 2H), 3.65–3.57 (m, 2H), 2.91 (t, J = 7.3 Hz, 2H);  
13C-NMR (151 MHz, CDCl3) δ = 154.04, 152.56, 145.36, 143.75, 139.29, 128.83, 128.48, 126.34, 

125.69, 120.40, 44.91, 41.58, 40.72, 36.29; HRMS (ESI) [M + H]+ calc. 354.1561 exp. 354.1558. 

2-Imino-N-[(4-methoxyphenyl)methyl]-3-(4-nitrophenyl)imidazolidine-1-carboxamide (4e). DCM was 

used as solvent and removed on a rotavap when the reaction was finished. The residue was recrystallized 

repeatedly from iPrOH. 1H-NMR (600 MHz, CDCl3) δ = 10.01 (brs, 1H), 8.36–8.28 (m, 2H), 7.35–7.29 

(m, 4H), 6.93–6.85 (m, 2H), 6.27 (brs, 1H), 4.49 (d, J = 5.6 Hz, 2H), 4.09–4.03 (m, 2H), 3.90–3.86 (m, 

2H), 3.81 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ = 158.80, 154.04, 152.58, 145.32, 143.76, 131.11, 
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128.83, 125.68, 120.40, 113.99, 55.31, 44.92, 43.43, 40.78; HRMS (APCI) [M + H]+ calc. 370.1510 

exp. 370.1514. 

N-Cyclohexyl-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide (4f). THF was used as solvent. 

The reaction mixture was filtered through a plug of silica and eluted with fresh THF. The eluant was 

stripped of solvent and recrystallized repeatedly from iPrOH. 1H-NMR (600 MHz, CDCl3) δ = 9.64 (br 

d, J = 6.9 Hz, 1H), 8.35–8.31 (m, 2H), 7.33 (d, J = 9.0 Hz, 2H), 6.27 (brs, 1H), 4.07–4.02 (m, 2H), 3.90–3.85 

(m, 2H), 3.84–3.76 (m, 1H), 2.00–1.91 (m, 2H), 1.76–1.68 (m, 2H), 1.63–1.56 (m, 1H), 1.47–1.38 (m, 

2H), 1.38–1.23 (m, 3H); 13C-NMR (151 MHz, CDCl3) δ = 153.14, 152.73, 145.43, 143.71, 125.68, 120.35, 

48.65, 44.90, 40.73, 33.15, 25.71, 24.59; HRMS (ESI) [M + H]+ calc. 332.1717 exp. 332.1713. 

3.2. Microbiology 

The antimicrobial activity of six tested compounds was screened using the reference strains of bacteria 

and fungi. The reference strains of Gram-positive bacteria from American Type Culture Collection (ATCC; 

LGC Standards, London, UK) included Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis 

ATCC 12228, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 10876, Micrococcus luteus ATCC 

10240, while from MICROBANK collection (National Institute of Hygiene—NIH, Warsaw, Poland)—

Staphylococcus aureus MICROBANK 14001 (MRSA—Methicillin Resistant Staphylococcus aureus) were 

used. The panel of Gram-negative bacteria contained Escherichia coli ATCC 25922, Klebsiella pneumoniae 

ATCC 13883, Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa ATCC 9027. Moreover, the 

yeasts belonging to Candida spp.—3 reference strains (C. albicans ATCC 2091, C. albicans ATCC 10231, 

and C. parapsilosis ATCC 22019) and 41 clinical isolates of C. albicans from the Department of 

Pharmaceutical Microbiology of Medical University of Lublin collection were used.  

Antimicrobial activity was detected according to the method described previously [25] using microbial 

suspensions in sterile 0.85% NaCl standardized with an optical density of 0.5 McFarland standard— 

150 × 106 CFU/mL. All stock solutions of the tested compounds were prepared in DMSO (Sigma-Aldrich). 

Mueller-Hinton agar buffered at pH 7.2 (for bacteria) or Mueller-Hinton agar supplemented with 2% 

glucose and buffered at pH 5.6 (for fungi) was used for examination of antibacterial or antifungal activity. 

Ciprofloxacin and clotrimazole (both from Sigma-Aldrich Co.) were used as reference antibacterial and 

antifungal agents, respectively. 

Initially, the in vitro antimicrobial potencies of all tested compounds were screened using the agar 

dilution method on the basis of the microbial growth inhibition on the agar medium to which the tested 

compounds were added at concentrations of 1000 mg/L. 10 μL of each microbial suspension was put onto 

the prepared solid media. The plates were pre-incubated at room temperature for 1–1.5 h and then were 

incubated at 35 °C for 18 h for bacteria and for 24–48 h for yeasts. The medium with DMSO at the final 

concentration and without the tested compounds served as a negative control; no microbial growth 

inhibition was observed. 

Subsequently, for the compound 4f showing an inhibitory effect on the visible growth of some tested 

bacteria and yeasts, MIC values were estimated using the broth microdilution technique, according to 

the Clinical and Laboratory Standards Institute (CLSI) standards for bacteria and yeasts, with some 

modification described previously [25]. The MIC values, defined as the lowest concentration of a compound 
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that prevents visible growth of the tested microorganisms, were determined after 24 h by comparison 

with the microbial growth in control (compound free) medium. 

The microdilution technique was developed using sterile 96-well microplates (Nunc, Roskilde, 

Denmark), which were inoculated with 2 µL of the microbial suspension (0.5 McFarland standard) put 

into 198 µL of Mueller Hinton broth without (for bacteria) or with 2% glucose (for fungi) and buffered 

at pH 7.2 or at pH 5.6, respectively. The two-fold dilution of the tested compound at final concentration 

from 0.0019 to 1000 mg/L was added to the broth medium. The medium without the tested compound was 

used as negative control. The optical density (OD600) measurements were determined spectrophotometrically 

(ELx800 microreader, BioTek Instruments, Inc., Winooski, VT, USA) after incubation at 35 °C for 24 h. 

The blank control wells with two-fold dilution of each of the tested compounds added to broth medium (total 

volume—200 µL) without the bacteria or yeast suspension were incubated under the same conditions. 

3.3. X-ray Analysis 

Straw-yellow needle-like crystals, suitable for X-ray diffraction analysis, were obtained from an 

isopropanol solution upon slow evaporation at room temperature. X-ray data of 4f was collected on a 

Bruker SMART APEX II CCD diffractometer using CuKα (λ = 1.54178 Å) radiation; crystal sizes  

0.26 × 0.25 × 0.18 mm, ω scans, T = 142 K, absorption correction: multi-scan SADABS [26],  

Tmin/Tmax = 0.835/0.883. The structure was solved by direct methods using SHELXS-2013/1 [27] and 

refined by full-matrix least-squares with SHELXL-2014/7 [27]. The C32, C33, C35 and C36 atoms in 

the cyclohexane ring and the C41, C43 and O44 atoms of the isopropanol molecule were disordered over 

two positions with a ratio of occupancy of 0.63(1):0.37(1). The N-bond H atoms were located by 

difference Fourier synthesis and refined freely. The remaining H atoms were positioned geometrically and 

treated as riding on their parent C atoms with C–H distances of 0.98 Å (methine), 0.97 Å (methylene),  

0.96 Å (methyl), 0.93 Å (aromatic) and 0.82 Å (hydroxyl). All H atoms were refined with isotropic 

displacement parameters taken as 1.5 times those of the respective parent atoms. All calculations  

were performed using WinGX v. 2014.1 package [28]. CCDC 1412468 contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk. 

Crystal data of 4f: C16H21N5O3 C3H7OH, M = 364.44, triclinic, space group P , a = 9.0739(3),  

b = 9.5028(3), c = 14.0775(4) Å, α = 78.537(2), β = 71.537(2), γ = 65.896(2)°, V = 1047.61(6) Å3, Z = 2, 

Dcalc = 1.241 gcm−3, F(000) = 420, μ (CuKα) = 0.727 mm−1, T = 142 K, 6787 measured reflections  

(θ range 5.12–66.58°), 3265 unique reflections (Rint = 0.0388) final R = 0.0576, wR = 0.1772, S = 1.063 

for 2336 reflections with I > 2σ(I). 

3.4. Molecular Modelling 

The X-ray structure of cytochrome P450 14-α-sterol demethylase from Mycobacterium tuberculosis 

in complex with fluconazole (PDB ID: 1EA1) [20] was used as a template. Sequence alignment was 

performed with Muscle software [29]. Homology modelling was carried out using Modeller v.9.14 [30]. 

A hundred homology models of cytochrome P450 14-α-sterol demethylase from Candida albicans in 

complex with fluconazole were generated, and subsequently assessed by Modeller objective function and 

Discrete Optimized Protein Energy profiles [31]. The best model was subjected to quality assessments 

1
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using the Schrödinger software suite [32] tool for Ramachandran plots. Chimera software v. 1.5.3 [33] 

was used for visualization of results. 

Molecular docking was performed using Glide from the Schrödinger software suite [32]. The grid file 

was generated indicating fluconazole as a reference ligand. The structure of 4a was modelled using 

LigPrep protocol from Schrödinger software suite. Crystal structure of 4f was used as input ligand 

conformation. Molecular docking of compound 4a and 4f was performed using the SP (standard precision) 

protocol of Glide. 50 poses were generated for the ligand. PyMol v. 0.99 [34] was used for visualization 

of results. 

Molecular dynamics studies of the ligand-receptor complex was performed using Desmond  

v. 3.0.3.1 [35]. The complex was hydrated and ions were added to neutralize protein charges and then to 

the concentration of 0.15 M NaCl. The complex was minimized and subjected to MD first in the NVT 

ensemble for 1 ns and then in NPT ensemble for 20 ns with the restrictions on the protein backbone in 

each case. The production run was performed in NPT ensemble with no restrictions for 100 ns. Analysis 

of molecular dynamics simulations was performed with the Schrödinger software suite tools [32]. 

4. Conclusions 

Six novel imidazoline derivatives were successfully synthesized and examined for their antifungal 

activity. All compounds showed no activity in tested assays except compound 4f which exhibited  

strain-depending activity against C. albicans. 

The Candida fungi, mainly C. albicans, can be opportunistic etiological factors of invasive or  

non-invasive infections. These yeasts pose the greatest threat especially in immunocompromised and/or 

hospitalized patients with serious underlying diseases. The search for new compounds active against 

opportunistic fungi is important because agents available today are characterized by their high toxicity, 

many side effects, undesired drug interactions, limited routes of administration and very varied activity. 

Compound 4f with antifungal activity against Candida spp. therefore possesses potential for further 

optimization especially since it constitutes a novel structure. Molecular modelling suggested a similar 

mode of action to that of fluconazole. It can be envisioned that by replacing the saturated imidazoline 

ring with aromatic imidazole activity could be enhanced. Furthermore the presence of the cyclohexyl 

substituent is likely to be the key element for the antifungal activity of this compound, as compounds 

without the cyclohexyl functionality were inactive. Any further modification would need to take into 

account fact that the majority of amino acids in the binding site are non-polar. This suggests incorporating 

structural features that lack possibility to form hydrogen bonds. 
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