Supplementary Materials

Figure S2. ¹³C-DEPTQ-NMR spectra compound-1.

Figure S4. HMBC-NMR spectra compound-1.

Figure S6. 2D-NOESY-NMR spectra compound-1.

Figure S8. ¹³C-DEPTQ-NMR spectra compound-2.

Figure S10. HMBC-NMR spectra compound-2.

FigureS12. 2D-NOESY-NMR spectra compound-2.

Supplementary Material of Compound 1: (2S)-7-Hydroxy-5-methoxy-6,8-dimethyl flavanone.

Table S1. Crystal Data and Details of the Structure Determination for: mo_f16_0m P 21/c R = 0.08.

Table S2. Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: $mo_f 16_0 m P 21/c$, R = 0.08.

Table S3. Hydrogen Atom Positions and Isotropic Displacement Parameters for: mo_f16_0m P 21/c, R = 0.08.

Table S4. (An) isotropic displacement parameters for: mo_f16_0m P 21/c, R = 0.08.

Table S5. Bond distances (angstrom) for: $mo_f16_0m P 21/c$, R = 0.08.

Table S6. Bond angles (degrees) for: $mo_f16_0m P 21/c$, R = 0.08.

Table S7. Torsion angles (degrees) for: mo_{f16} 0m P 21/c, R = 0.08.

Table S8. Contact distances (angstrom) for: $mo_f16_0m P 21/c$, R = 0.08.

Table S9. Hydrogen bonds (angstrom, Deg) for: mo_{f16} 0m P 21/c, R = 0.08.

Crystal Data			
Formula	C18H18O4		
Formula Weight	298.32		
Crystal System	Monoclinic		
Space group	P21/c (No. 14)		
a, b, c [Angstrom]	12.7683 (14), 17.2730 (15), 7.2728 (7)		
alpha, beta, gamma [deg]	90, 105.966 (3), 90		
$V [Å^3]$	1542.1 (3)		
Z	4		
D (calc) [g/cm ³]	1.285		
Mu (MoKa) [/mm]	0.090		
F(000)	632		
Crystal Size [mm]	0.12 imes 0.17 imes 0.48		
Data Colle	ction		
Temperature (K)	294		
Radiation [Angstrom]	MoKa 0.71073		
Theta Min-Max [Deg]	1.7, 27.5		
Dataset	-16:16; -22:22; -8:9		
Tot., Uniq. Data, R (int)	15650, 3514, 0.042		
Observed data $[I > 2.0 \text{ sigma}(I)]$	2558		
Refineme	ent		
Nref, Npar	3514, 274		
R, wR2, S	0.0775, 0.2521, 0.98		
$w = ^{2}(FO^{2}) + (0.1690P)^{2} + 0.7080P]$	WHERE $P = (FO^2 + 2FC^2)/3'$		
Max. and Av. Shift/Error	0.01, 0.00		
Min. and Max. Resd. Dens. [e/Ang^3]	-0.54, 0.90		

Table S1. Crystal data and details of the structure determination for: mo_f16_0m P 21/c, R = 0.08.

Atom	Χ	Y	Z	U (eq) [Ang^2]
01	0.30825(10)	0.43580(7)	0.1711(2)	0.0435(4)
O2	0.60772(12)	0.60656(8)	0.3139(2)	0.0459(4)
O3	0.67455(11)	0.34310(8)	0.2342(2)	0.0437(4)
O4	0.49424(13)	0.24744(8)	0.1414(3)	0.0561(5)
C1	0.41789(14)	0.44505(10)	0.2053(2)	0.0330(4)
C2	0.45384(14)	0.52132(9)	0.2394(2)	0.0329(4)
C3	0.56513(15)	0.53422(10)	0.2775(2)	0.0339(4)
C4	0.64061(14)	0.47483(10)	0.2833(3)	0.0365(5)
C5	0.60129(14)	0.40020(10)	0.2448(3)	0.0350(5)
C6	0.48901(14)	0.38256(10)	0.2049(3)	0.0343(4)
C7	0.44255(15)	0.30561(10)	0.1554(3)	0.0396(5)
* C8	0.3166(3)	0.3032(2)	0.0908(6)	0.0401(10)
* C9	0.2728(2)	0.36046(15)	0.2137(5)	0.0297(7)
* C10	0.1483(4)	0.3606(3)	0.1671(10)	0.0630(8)
* C11	0.0951(4)	0.3170(4)	0.2485(11)	0.0924(16)
* C12	-0.0175(5)	0.3177(5)	0.2100(12)	0.0997(16)
* C13	-0.0771(5)	0.3614(5)	0.0713(13)	0.0821(15)
* C14	-0.0291(5)	0.4062(4)	-0.0254(13)	0.1000(16)
* C15	0.0845(4)	0.4070(4)	0.0136(11)	0.0914(16)
C16	0.37462(16)	0.58557(11)	0.2329(3)	0.0434(5)
C17	0.76017(17)	0.49194(13)	0.3316(4)	0.0559(7)
C18	0.70897(19)	0.29479(13)	0.3986(4)	0.0565(7)
* C12X	0.0023(6)	0.3529(5)	0.2708(16)	0.0876(17)
* C13X	-0.0702(8)	0.3561(7)	0.1000(19)	0.0850(17)
* C14X	-0.0348(6)	0.3637(5)	-0.0614(16)	0.0901(17)
* C8X	0.3295(5)	0.2972(4)	0.1577(11)	0.0536(14)
C9X	0.2639(5)	0.3626(4)	0.0862(13)	0.0691(14)
* C10X	0.1494(6)	0.3628(4)	0.1204(13)	0.0630(8)
* C11X	0.1090(6)	0.3523(4)	0.2953(15)	0.0803(16)
* C15X	0.0784(6)	0.3650(5)	-0.0462(15)	0.0840(16)
C9X	0.2639(5)	0.3626(4)	0.0862(13)	0.0691(14)

Table S2. Final coordinates and equivalent isotropic displacement parameters of the non-hydrogen atoms for: mo_f16_0m P 21/c, R = 0.08.

U (eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0. * Note: Carbon atom showed statistical conformational disorders.

Atom	X	Y	Ζ	U (iso) [Ang^2]
* H8A	0.29040	0.31730	-0.04320	0.0480
* H8B	0.29140	0.25120	0.10630	0.0480
H1O2	0.555(3)	0.6390(18)	0.317(4)	0.073(9)
H16C	0.40070	0.61820	0.34280	0.0650
H17A	0.80060	0.44520	0.37250	0.0840
H17B	0.77870	0.52950	0.43260	0.0840
H17C	0.77780	0.51200	0.22060	0.0840
H18A	0.74950	0.25170	0.37020	0.0850
H18B	0.64630	0.27600	0.43370	0.0850
H18C	0.75430	0.32400	0.50270	0.0850
* H9A	0.30440	0.34870	0.34950	0.0360
* H11A	0.13390	0.28230	0.33990	0.1110
* H12A	-0.05130	0.28720	0.28230	0.1200
* H13A	-0.15270	0.36030	0.04270	0.0990
* H14A	-0.07080	0.43790	-0.12120	0.1200
* H15A	0.11820	0.43740	-0.05920	0.1090
H16A	0.30510	0.56430	0.23290	0.0650
H16B	0.36710	0.61550	0.11870	0.0650
* H8XA	0.29870	0.25230	0.08190	0.0640
* H8XB	0.32750	0.28760	0.28810	0.0640
* H9XA	0.25460	0.36570	-0.05190	0.0830
* H11B	0.15730	0.34570	0.41590	0.0960
* H12B	-0.02330	0.35090	0.37870	0.1060
* H13B	-0.14430	0.35330	0.08980	0.1020
* H14B	-0.08520	0.36800	-0.18070	0.1080
* H15B	0.10180	0.36740	-0.15630	0.1010

Table S3. Hydrogen Atom Positions and Isotropic Displacement Parameters for: $mo_f 16_0 m P 21/c$, R = 0.08.

The Temperature Factor has the Form of Exp (-T) Where T = 8 * (Pi ** 2) * U * (Sin (Theta)/Lambda) ** 2 for Isotropic Atoms. * Note: Hydrogen atom showed statistical conformational disorders.

Atom	U(1,1) or U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
01	0.0326(6) 0.0276(6)	0.0677(9)	-0.0014(6)	0.0096(6)	0.0001(5)
O2	0.0450(7) 0.0267(6)	0.0658(9)	-0.0037(6)	0.0149(6)	-0.0056(5)
03	0.0430(6) 0.0335(6)	0.0584(8)	0.0038(6)	0.0205(6)	0.0096(5)
O4	0.0520(8) 0.0264(6)	0.0907(11)	-0.0075(7)	0.0212(8)	0.0027(6)
C1	0.0344(8) 0.0265(7)	0.0376(8)	0.0015(6)	0.0089(7)	0.0004(6)
C2	0.0383(8) 0.0257(7)	0.0354(8)	0.0014(6)	0.0111(6)	0.0022(6)
C3	0.0402(8) 0.0256(7)	0.0359(8)	-0.0007(6)	0.0107(7)	-0.0031(6)
C4	0.0362(8) 0.0313(8)	0.0426(9)	0.0039(7)	0.0118(7)	0.0012(7)
C5	0.0377(8) 0.0289(8)	0.0409(8)	0.0027(7)	0.0149(7)	0.0047(6)
C6	0.0378(8) 0.0249(7)	0.0409(8)	0.0003(7)	0.0118(7)	0.0005(6)
C7	0.0426(9) 0.0262(8)	0.0495(10)	-0.0022(7)	0.0121(8)	0.0002(7)
C8	0.0376 (15) 0.0266 (14)	0.053(2)	-0.0081(14)	0.0072(14)	-0.0038(12)
C9	0.0294(12) 0.0214 (11)	0.0376(13)	-0.0002(11)	0.0081(11)	-0.0021(9)
C10	0.0395(10) 0.0376 (10)	0.106(2)	0.0000(14)	0.0102(13)	-0.0024(8)
C11	0.056(2) 0.085(3)	0.130(3)	0.027(3)	0.015(2)	-0.008(2)
C12	0.055(2) 0.102(3)	0.141(3)	0.018(3)	0.025(2)	-0.015(2)
C13	0.0400 (19) 0.074(3)	0.128(3)	-0.012(3)	0.016(2)	-0.002(2)
C14	0.057(2) 0.093(3)	0.136(3)	0.023(3)	0.003(2)	0.005(2)
C15	0.055(2) 0.090(3)	0.124(3)	0.027(3)	0.016(2)	-0.003(2)
C16	0.0450 (9) 0.0266 (8)	0.0589(11)	-0.0033(8)	0.0149(8)	0.0028(7)
C17	0.0383(9) 0.0438(11)	0.0863(16)	0.0009(11)	0.0182(10)	-0.0042(8)
C18	0.0575(12) 0.0451(11)	0.0648(13)	0.0091(10)	0.0131(10)	0.0195(9)
C12X	0.057(3) 0.078(3)	0.126(3)	-0.016(3)	0.022(3)	0.004(3)
C13X	0.047(3) 0.077(3)	0.129(3)	-0.005(3)	0.021(3)	-0.002(3)
C14X	0.053(3) 0.084(3)	0.122(3)	-0.005(3)	0.005(3)	0.002(3)
C8X	0.047(2) 0.037(2)	0.074(3)	-0.006(2)	0.012(2)	-0.005(2)
C9X	0.056(2) 0.045(2)	0.099(3)	-0.006(3)	0.009(2)	-0.002(2)
C10X	0.0395(10) 0.0376(10)	0.106(2)	0.0000(14)	0.0102(13)	-0.0024(8)
C11X	0.051(2) 0.063(3)	0.119(3)	-0.015(3)	0.010(2)	0.004(2)
C15X	C15X 0.057(2) 0.072(3)	0.123(3)	0.004(3)	0.025(3)	0.001(3)

Table S4. (An) isotropic displacement parameters for: mo_f16_0m P 21/c, R = 0.08.

The Temperature Factor has the Form of Exp (-T) Where T = 8 * (Pi ** 2) * U * (Sin (Theta)/Lambda) ** 2 for Isotropic Atoms. T = 2 * (Pi ** 2) * Sumij (h (i) * h (j) * U (i,j) * Astar(i) * Astar (j)), for An Isotropic Atoms. Astar (i) are Reciprocal Axial Lengths and H (i) are the Reflection Indices.

Bond Distances (Angstrom)				
01-C1	1.362(2)	C11X-C12X	1.325(12)	
O1-C9	1.439(3)	C12-C13	1.321(12)	
O1-C9X	1.452(7)	C12X-C13X	1.331(17)	
O2-C3	1.359(2)	C13-C14	1.306(11)	
O3-C5	1.376(2)	C13X-C14X	1.375(16)	
O3-C18	1.425(3)	C14-C15	1.399(9)	
O4-C7	1.222(2)	C14X-C15X	1.419(12)	
O2-H1O2	0.88(4)	C8-H8A	0.9700	
C1-C2	1.395(2)	C8-H8B	0.9700	
C1-C6	1.411(3)	C8X-H8XA	0.9700	
C2-C16	1.494(3)	C8X-H8XB	0.9700	
C2-C3	1.389(3)	C9-H9A	0.9800	
C3-C4	1.400(3)	С9Х-Н9ХА	0.9800	
C4-C17	1.499(3)	C11-H11A	0.9300	
C4-C5	1.384(2)	C11X-H11B	0.9300	
C5 -C6	1.415(3)	C12-H12A	0.9300	
C6 -C7	1.460(3)	C12X-H12B	0.9300	
C7-C8X	1.455(7)	C13-H13A	0.9300	
C7-C8	1.547(5)	C13X-H13B	0.9300	
C8-C9	1.538(5)	C14-H14A	0.9300	
C8X-C9X	1.417(10)	C14X-H14B	0.9300	
C9-C10	1.532(6)	C15-H15A	0.9300	
C9X-C10X	1.549(11)	C15X-H15B	0.9300	
C10-C11	1.265(9)	C16-H16A	0.9600	
C10-C15	1.433(10)	C16-H16C	0.9600	
C10X-C15X	1.299(13)	C16-H16B	0.9600	
C10X-C11X	1.509(13)	C17-H17B	0.9600	
C11-C12	1.387(9)	C17-H17C	0.9600	
C17-H17A	0.9600	C18-H18C	0.9600	
C18-H18B	0.9600	C18-H18A	0.9600	

Table S5. Bond distances (angstrom) for: $mo_f16_0m P 21/c$, R = 0.08.

Bond Angles (Degrees)					
C1-O1-C9	115.79(16)	C7-C8X-C9X	113.8(5)		
C1-O1-C9X	116.2(3)	O1-C9-C8	105.7(2)		
C5-O3-C18	115.49(17)	C8-C9-C10	113.2(3)		
C3-O2-H1O2	109(2)	O1-C9-C10	108.6(3)		
O1-C1-C2	114.50(15)	O1-C9X-C10X	101.8(5)		
C2-C1-C6	122.85(17)	C8X-C9X-C10X	115.6(6)		
O1-C1-C6	122.65(15)	O1-C9X-C8X	114.6(6)		
C1-C2-C16	120.62(16)	C9-C10-C11	123.6(5)		
C3-C2-C16	122.27(15)	C11-C10-C15	115.7(6)		
C1-C2-C3	117.11(16)	C9-C10-C15	120.4(5)		
O2-C3-C4	115.62(17)	C11X-C10X-C15X	118.5(8)		
C2 -C3-C4	123.12(16)	C9X-C10X-C15X	107.3(8)		
O2-C3-C2	121.25(16)	C9X-C10X-C11X	133.8(8)		
C3-C4-C17	120.72(17)	C10-C11-C12	124.1(7)		
C5-C4-C17	121.37(17)	C10X-C11X-C12X	117.6(9)		
C3-C4-C5	117.90(17)	C11-C12-C13	120.4(7)		
O3-C5-C4	117.69(17)	C11X-C12X-C13X	123.5(10)		
C4-C5-C6	122.19(17)	C12-C13-C14	119.5(7)		
O3-C5-C6	120.00(16)	C12X-C13X-C14X	119.6(10)		
C1-C6-C5	116.81(16)	C13-C14-C15	120.7(7)		
C5-C6-C7	124.51(16)	C13X-C14X-C15X	120.1(10)		
C1-C6-C7	118.62(17)	C10-C15-C14	119.2(6)		
O4-C7-C8	119.5(2)	C10X-C15X-C14X	120.5(9)		
O4-C7-C8X	118.6(3)	С7-С8-Н8А	110.00		
C6-C7-C8	114.67(19)	С7-С8-Н8В	110.00		
C6-C7-C8X	115.2(3)	С9-С8-Н8А	110.00		
O4-C7-C6	125.26(19)	C9-C8-H8B	110.00		
C7-C8-C9	108.7(3)	H8A-C8-H8B	108.00		
C7-C8X-H8XA	109.00	C13X-C14X-H14B	120.00		
C7-C8X-H8XB	109.00	C15X-C14X-H14B	120.00		
С9Х-С8Х-Н8ХА	109.00	C14-C15-H15A	120.00		
С9Х-С8Х-Н8ХВ	109.00	C10-C15-H15A	120.00		
H8XA-C8X-H8XB	108.00	C14X-C15X-H15B	120.00		
С10-С9-Н9А	110.00	C10X-C15X-H15B	120.00		
O1 -C9-H9A	110.00	C2-C16-H16B	109.00		
С8-С9-Н9А	110.00	C2-C16-H16A	109.00		
О1-С9Х-Н9ХА	108.00	H16B-C16-H16C	109.00		
С8Х-С9Х-Н9ХА	108.00	H16A-C16-H16C	109.00		
С10Х-С9Х-Н9ХА	108.00	C2-C16-H16C	109.00		
C10-C11-H11A	118.00	H16A-C16-H16B	109.00		
C12-C11-H11A	118.00	C4-C17-H17B	109.00		
C10X-C11X-H11B	121.00	H17A-C17-H17C	109.00		
C12X-C11X-H11B	121.00	C4-C17-H17C	109.00		

Table S6. Bond Angles (Degrees) for: $mo_f16_0m P 21/c$, R = 0.08.

Bond Angles (Degrees)				
C11-C12-H12A	120.00	H17A-C17-H17B	109.00	
C13-C12-H12A	120.00	C4-C17-H17A	109.00	
C11X-C12X-H12B	118.00	H17B-C17-H17C	110.00	
C13X-C12X-H12B	118.00	O3-C18-H18C	110.00	
C12-C13-H13A	120.00	H18A-C18-H18C	109.00	
C14-C13-H13A	120.00	H18B-C18-H18C	109.00	
C12X-C13X-H13B	120.00	H18A-C18-H18B	109.00	
C14X-C13X-H13B	120.00	O3-C18-H18A	109.00	
C13-C14-H14A	120.00	O3-C18-H18B	109.00	
C15-C14-H14A	120.00			

Table S6. Cont.

Table S7. Torsion Angles (Degrees) for: $mo_f16_0m P 21/c$, R = 0.08.

Torsion Angles (Degrees)				
C9-O1-C1-C2	-155.07(19)			
C9-O1-C1-C6	25.3(3)			
C1-O1-C9-C8	-58.3(3)			
C1-O1-C9-C10	180.0(3)			
C18-O3-C5-C4	101.9(2)			
C18-O3-C5-C6	-82.1(2)			
O1-C1-C2-C3	179.24(13)			
O1-C1-C2-C16	-1.3(2)			
C6-C1-C2-C3	-1.2(2)			
C6-C1-C2-C16	178.33(17)			
O1-C1-C6-C5	-179.29(16)			
O1-C1-C6-C7	3.5(3)			
C2-C1-C6-C5	1.2(3)			
C2-C1-C6-C7	-176.06(16)			
C1-C2-C3-O2	-179.49(14)			
C1-C2-C3-C4	-0.2(2)			
C16-C2-C3-O2	1.0(2)			
C16-C2-C3-C4	-179.68(17)			
O2-C3-C4-C5	-179.18(17)			
O2-C3-C4-C17	1.4(3)			
C2-C3-C4-C5	1.5(3)			
C2-C3-C4-C17	-177.95(18)			
C3-C4-C5-O3	174.45(17)			
C3-C4-C5-C6	-1.5(3)			
C17-C4-C5-O3	-6.1(3)			
C17-C4-C5-C6	178.0(2)			
O3-C5-C6-C1	-175.62(17)			
O3-C5-C6-C7	1.4(3)			
C4-C5-C6-C1	0.2(3)			
C4-C5-C6-C7	177.3(2)			
C1-C6-C7-C8	5.1(3)			
C1-C6-C7-O4	176.6(2)			
C5-C6-C7-O4	-0.4(4)			

Torsion Angles (Degrees)				
C5-C6-C7-C8	-171.9(2)			
04-C7-C8-C9	19.6(2)			
C6-C7-C8-C9	-38.4(3)			
C7-C8-C9-O1	63.5(3)			
C7-C8-C9-C10	-177.8(3)			
O1-C9-C10-C11	-153.0(6)			
O1-C9-C10-C15	32.3(6)			
C8-C9-C10-C11	89.9(7)			
C8-C9-C10-C15	-84.7(6)			
C5-C6-C7-O4	-0.4(4)			
C5-C6-C7-C8	-171.9(2)			
O4-C7-C8-C9	149.6(2)			
C6-C7-C8-C9	-38.4(3)			
C7-C8-C9-O1	63.5(3)			
C7-C8-C9-C10	-177.8(3)			
O1-C9-C10-C11	-153.0(6)			
O1-C9-C10-C15	32.3(6)			
C8-C9-C10-C11	89.9(7)			
C8-C9-C10-C15	-84.7(6)			
C9-C10-C11-C12	178.7(6)			

Table S7. Cont.

Table S8. Contact distances (angstrom) for: mo_f16_0m P 21/c, R = 0.08.

Contact Distances (Angstrom)				
O2.C8X_b	3.382(7)	C8X.O2_e	3.382(7)	
O2.C9_c	3.402(4)	C9.O2_c	3.402(4)	
O2.O4_b	2.820(2)	C14.C14_h	3.322(10)	
03.04	2.763(2)	C14.C15_h	3.309(10)	
O4.O2_e	2.820(2)	C15.C14_h	3.309(10)	
O4.C18	2.977(3)	C16.O4_b	3.258(3)	
O4.O3	2.763(2)	C16.C5_a	3.580(3)	
O4.C16_e	3.258(3)	C17.C18	3.527(3)	
O1.H17C_a	2.9000	C18.C17	3.527(3)	
O1.H16A	2.2700	C18.C7	3.380(3)	
O1.H15A	2.5400	C18.O4	2.977(3)	
O2.H8B_b	2.8000	C1.H8XB	3.0800	
O2.H17B	2.5000	C1.H8A	3.0300	
O2.H9A_c	2.5200	C5.H16C_c	3.0200	
O2.H8XA_b	2.8000	C5.H16B_a	2.8000	
O2.H16C	2.7200	C6.H18B	2.8900	
O3.H16B_a	2.5700	C6.H9A	2.8900	
O3.H13B_d	2.8000	C6.H9XA	3.0800	
O3.H17A	2.4100	C7.H18B	2.8700	
O4.H18B	2.5000	C7.H1O2_e	2.88(3)	
O4.H1O2_e	2.03(3)	C8.H11A_f	2.9300	
O4.H16C_e	2.5900	C8X.H1O2_e	3.09(3)	
O4.H18B_f	2.8000	C8X.H8XB_f	3.0600	
O4.H8XB_f	2.9100	C9X.H17C_a	3.0500	

	Contact Distances (Angstuom)					
Contact Distances (Angstrom)						
$C1.C5_a$	3.595(2) 3.595(2)	C11X H17R	2 9300			
$C_{5}C_{16}a$	3.595(2) 3.580(3)	$C13 H18 \Lambda \sigma$	2.9300			
C7 C18	3.380(3)	C13X H18A a	3.0700			
C14 H1/4 h	3.00(3)	H8R H11A f	2 4500			
C14 H15A h	3.0400	HSB HOA F	2.4300			
C15 H14A h	2 8100	$\frac{116D.117A_1}{H8B.02}$	2.3800			
$C15 H17C_{2}$	2.8100		2.8000			
C16 H102	2.1000	H0A H1O2 c	2.5200			
C17 H15A a	2.40(4)	H9A H11A	2.0000			
C18 H17A	2 8800	Нод Сб	2.4400			
$C18 H16C \circ$	2.0000	HQA HQR i	2.0900			
$H8X \land H11R f$	2 5300	119А.110 <u>1</u> Н11А НОЛ	2.3000			
H8XA H8YR f	2.3300	$H_{11A} C_{8}$	2.4400			
$H8XA \cap 2 \square$	2.3700		2.9300			
$\frac{110}{10}$	2.0000 2.0100	HILA HOR	2.0000			
H8YP C1	2.9100	H11R H17P	2.4300			
H8YR C11V	3.0000	$\frac{111D.111}{D_{c}}$	2.4000			
H8XR C8Y	3.0200	1111D.110ЛА_1 H13A H18A а	2.5500			
HOND.CON_I	2 2700	H12R 02 b	2.4300			
HOYA HISP	2.3700 1 8000	H13B H18A	2.0000			
	3 0800	H144 C14 h	2.5500			
$H0X \land H17C \circ$	2 1200 2 1200	H144 C15 h	2 8100			
H102 C16	2.4200 2 40(A)	$H15A \cap I$	2.8100			
H102.010	2.70(7) 2 4700	H15A C14 h	3 0600			
H102.1110B	2.1700	H15A H17C a	2 1800			
H102.04_0	2.03(3) 2.88(3)	H15A C17 a	3 0900			
H102.C8X h	3 (19(3)	H15B H9XA	1 8900			
H1O2 H9A c	2.6000	H16A O1	2,2700			
H102 H16C	2.0000	H16B C5 a	2.2700			
H8A C1	3.0300	H16B H102	2.4700			
H8A H11A f	2 6000	H16B 03 a	2 5700			
H16C H102	2.0600	H17C C15 a	3,1000			
H16C.O2	2.7200	H17C.H15A a	2,1800			
H16C 04 b	2.5900	H17C C9X a	3.0500			
H16C C5_c	3.0200	H18A H13A i	2.4500			
H16C.C18 c	3.0300	H18A.C13X i	3,0700			
H17A.03	2.4100	H18A H13B i	2,5500			
H17A.C18	2.8800	H18A.C13 i	3,0100			
H17A.H18C	2.4400	H18B.O4	2.5000			
H17B.O2	2.5000	H18B.C6	2,8900			
H17B.O2	2.5000	H18B.C6	2.8900			
H17B.O2	2.5000	H18B.C6	2,8900			
H17B.C11X c	2.9300	H18B.O4 i	2,8000			
H17B.H11B c	2.4600	H18B.C7	2,8700			
H17C.H9XA a	2.4200	H18C.H17A	2.4400			
H17C.O1 a	2.9000					

Table S8. Cont.

Hydrogen Bonds (Angstrom, Deg)					
O2H1O2O4	0.88(4)	2.03(3)	2.820(2)	150(3) 2_655	
С9Н9АО2	0.9800	2.5200	3.402(4)	150.00 3_666	
C16H16AO1	0.9600	2.2700	2.721(2)	108.00	
C16H16BO3	0.9600	2.5700	3.504(3)	163.00 3_665	
С16Н16СО4	0.9600	2.5900	3.258(3)	127.00 2_655	
С17Н17АО3	0.9600	2.4100	2.807(3)	104.00	
C18H18BO4	0.9600	2.5000	2.977(3)	110.00	

Table S9. Hydrogen bonds (angstrom, Deg) for: mo_f16_0m P 21/c, R = 0.08.

Translation of Symmetry Code to Equiv. Pos. a = [3665.00] = 1 - x, 1 - y, -z; b = [2655.00] = 1 - x, /2 + y, 1/2 - z; c = [3666.00] = 1 - x, 1 - y, 1 - z; d = [1655.00] = 1 + x, y, z; e = [2645.00] = 1 - x, -1/2 + y, 1/2 - z; f = [4554.00] = x, 1/2 - y, -1/2 + z; g = [4454.00] = -1 + x, 1/2 - y, -1/2 + z; h = [3565.00] = -x, 1 - y, -z; i = [4555.00] = x, 1/2 - y, -1/2 + z; j = [4655.00] = 1 + x, 1/2 - y, -1/2 + z; h = [3565.00] = -x, 1 - y, -z; i = [4555.00] = x, 1/2 - y, 1/2 + z; j = [4655.00] = 1 + x, 1/2 - y, 1/2 + z; k = [1455.00] = -1 + x, y, z.

Supplementary material of compound-2: (S)-5,7-dihydroxy-6,8-dimethyl flavanone.

Table S10. Crystal data and details of the structure determination for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S11. Final coordinates and equivalent isotropic displacement parameters of the non-hydrogen atoms for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S12. Hydrogen atom positions and isotropic displacement parameters for: cu_rf4_0m P 21/c, R = 0.06.

Table S13. (An) isotropic displacement parameters for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S14. Bond distances (angstrom) for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S15. Bond angles (degrees) for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S16. Torsion angles (degrees) for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S17. Contact distances (angstrom) for: $cu_rf4_0m P 21/c$, R = 0.06.

Table S18. Hydrogen bonds (angstrom, Deg) for: $cu_rf4_0m P 21/c$, R = 0.06.

Crystal Data			
Formula	C17H16O4		
Formula Weight	284.30		
Crystal System	Monoclinic		
Space group	P21/c (No. 14)		
a, b, c [Angstrom]	4.8133 (1), 24.5685 (6), 12.7303 (4)		
alpha, beta, gamma [deg]	90, 100.1616 (17), 90		
V [Å ³]	1481.82 (7)		
Z	4		
$D(calc) [g/cm^3]$	1.274		
Mu(CuKa) [/mm]	0.744		
F(000)	600		
Crystal Size [mm]	0.03 imes 0.09 imes 0.32		
Data Collection			
Temperature (K)	294		
Radiation [Angstrom]	CuKa 1.54178		
Theta Min-Max [Deg]	4.0, 70.2		
Dataset	-5:5; -28:29; -15:14		
Tot., Uniq. Data, R(int)	26315, 2751, 0.037		
Observed data $[I > 2.0 \text{ sigma } (I)]$	2104		
Refineme	nt		
Nref, Npar	2751, 240		
R, wR2, S	0.0562, 0.1714, 1.10		
$w = ^{2}(FO^{2}) + (0.0838P)^{2} + 0.3993P]$	WHERE $P = (FO^{2^{+}} + 2FC^{2^{+}})/3'$		
Max. and Av. Shift/Error	0.00, 0.00		
Min. and Max. Resd. Dens. [e/Ang^3]	-0.21, 0.24		

Table S10. Crystal Data and Details of the Structure Determination for: $cu_rf4_0m P 21/c$, R = 0.06.

Atom	X	Y	Z	U (eq) [Ang^2]
01	0.1456(3)	0.64746(5)	0.59881(10)	0.0537(5)
02	0.4666(4)	0.79909(7)	0.42296(13)	0.0680(6)
O3	-0.0674(4)	0.83136(7)	0.68834(13)	0.0695(6)
04	-0.2424(3)	0.74901(6)	0.78283(12)	0.0691(6)
C1	0.1622(4)	0.70269(8)	0.58604(14)	0.0451(6)
C2	0.3063(4)	0.72074(8)	0.50797(14)	0.0470(6)
C3	0.3268(4)	0.77743(9)	0.49614(15)	0.0513(6)
C4	0.2080(4)	0.81530(8)	0.55692(16)	0.0558(7)
C5	0.0568(4)	0.79524(8)	0.63155(16)	0.0528(7)
C6	0.0330(4)	0.73891(8)	0.64884(15)	0.0484(6)
C7	-0.1220(4)	0.71838(9)	0.72700(16)	0.0541(7)
C8	-0.1377(5)	0.65840(10)	0.7369(2)	0.0714(9)
* C9	0.1108(12)	0.6294(2)	0.7043(4)	0.0474(16)
* C10	0.0577(13)	0.56607(17)	0.6894(4)	0.072(3)
* C11	0.1805(17)	0.5340(3)	0.7751(3)	0.102(3)
* C12	0.1477(18)	0.4778(2)	0.7705(4)	0.111(3)
* C13	-0.0080(14)	0.45365(16)	0.6802(6)	0.118(4)
* C14	-0.1308(14)	0.48568(19)	0.5945(6)	0.116(3)
* C15	-0.0980(14)	0.54189(18)	0.5991(5)	0.092(2)
C16	0.4331(5)	0.68193(9)	0.43819(17)	0.0592(7)
C17	0.2394(6)	0.87549(10)	0.5423(2)	0.0802(10)
* C15X	-0.2069(17)	0.5400(3)	0.6416(6)	0.103(3)
* C9X	-0.035(3)	0.6273(3)	0.6678(10)	0.094(4)
* C10X	0.0232(18)	0.5706(2)	0.6901(6)	0.085(3)
* C11X	0.2599(15)	0.5449(3)	0.7469(8)	0.118(4)
* C12X	0.2666(17)	0.4884(3)	0.7553(8)	0.143(4)
* C13X	0.0365(19)	0.4578(2)	0.7069(7)	0.130(5)
* C14X	-0.2003(16)	0.4836(3)	0.6500(8)	0.131(4)

Table S11. Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: $cu_rf4_0m P 21/c$, R = 0.06

U (eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0. * Note: Carbon atom showed statistical conformational disorders.

Atom	X	Y	Z	U (iso) [Ang^2]
H1O2	0.547(7)	0.7751(13)	0.388(3)	0.106(10)
* H14A	-0.23490	0.46950	0.53410	0.1390
* H15A	-0.18010	0.56330	0.54170	0.1100
H16A	0.39430	0.64520	0.45680	0.0890
H16B	0.63350	0.68740	0.44840	0.0890
H16C	0.35230	0.68840	0.36480	0.0890
* H17A	0.17230	0.89460	0.59870	0.1210
* H17B	0.13120	0.88630	0.47490	0.1210
* H17C	0.43470	0.88410	0.54400	0.1210
H1O3	-0.164(6)	0.8110(14)	0.731(3)	0.109(11)
* H8A	-0.31020	0.64560	0.69270	0.0860
* H8B	-0.14630	0.64920	0.81040	0.0860
* H9A	0.28310	0.63630	0.75620	0.0570
* H11A	0.28460	0.55020	0.83560	0.1230
* H12A	0.22990	0.45640	0.82790	0.1330
* H13A	-0.02990	0.41600	0.67710	0.1420
* H9XA	-0.20770	0.62310	0.61480	0.1120
* H8C	-0.04100	0.64860	0.80780	0.0860
* H8D	-0.33480	0.64880	0.73290	0.0860
* H11B	0.41390	0.56530	0.77930	0.1410
* H12B	0.42500	0.47120	0.79330	0.1710
* H13B	0.04090	0.42010	0.71250	0.1560
* H14B	-0.35420	0.46310	0.61760	0.1570
* H15B	-0.36530	0.55730	0.60360	0.1240
* H17D	0.32320	0.89160	0.60910	0.1210
* H17E	0.05700	0.89140	0.51820	0.1210
* H17F	0.35800	0.88200	0.49040	0.1210

Table S12. Hydrogen Atom Positions and Isotropic Displacement Parameters for: $cu_rf4_0m P 21/c$, R = 0.06

The Temperature Factor has the Form of Exp (-T) Where T = 8 * (Pi ** 2) * U * (Sin (Theta)/Lambda) ** 2 for Isotropic Atoms. * Note: Hydrogen atom showed statistical conformational disorders.

Atom	U(1,1) or U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
01	0.0651(9) 0.0473(8)	0.0558(8)	0.0018(6)	0.0304(7)	-0.0012(6)
O2	0.0874(11) 0.0597(10)	0.0687(10)	0.0067(8)	0.0465(9)	-0.0034(8)
O3	0.0897(12) 0.0570(9)	0.0715(10)	-0.0083(7)	0.0412(9)	0.0066(8)
O4	0.0804(11) 0.0739(11)	0.0649(9)	-0.0040(7)	0.0453(8)	0.0053(8)
C1	0.0474(11) 0.0460(11)	0.0447(10)	0.0004(8)	0.0159(8)	-0.0009(7)
C2	0.0492(11) 0.0523(11)	0.0434(10)	-0.0007(8)	0.0187(8)	-0.0006(8)
C3	0.0555(11) 0.0554(12)	0.0474(10)	0.0033(9)	0.0214(8)	-0.0035(9)
C4	0.0665(13) 0.0504(12)	0.0545(12)	0.0005(9)	0.0214(10)	-0.0012(9)
C5	0.0599(12) 0.0531(12)	0.0496(11)	-0.0060(9)	0.0214(9)	0.0021(9)
C6	0.0515(11) 0.0525(11)	0.0461(10)	-0.0014(8)	0.0217(8)	0.0006(8)
C7	0.0531(12) 0.0629(13)	0.0518(11)	-0.0016(9)	0.0244(9)	0.0019(9)
C8	0.0851(17) 0.0656(15)	0.0763(15)	0.0082(12)	0.0493(13)	-0.0004(11)
C9	0.037(3) 0.057(2)	0.051(3)	0.0079(18)	0.0155(19)	0.0015(19)
C10	0.101(5) 0.045(3)	0.083(5)	0.014(3)	0.054(4)	0.009(3)
C11	0.148(6) 0.073(4)	0.089(4)	0.020(3)	0.029(4)	-0.016(4)
C12	0.140(7) 0.073(4)	0.122(5)	0.032(4)	0.029(5)	-0.008(4)
C13	0.141(7) 0.068(5)	0.147(7)	0.011(4)	0.028(6)	-0.003(5)
C14	0.153(6) 0.080(4)	0.116(5)	-0.002(4)	0.029(4)	-0.016(4)
C15	0.106(5) 0.069(3)	0.103(4)	0.008(3)	0.028(3)	-0.003(3)
C16	0.0698(13) 0.0597(13)	0.0557(12)	-0.0031(10)	0.0323(10)	0.0007(10)
C17	0.114(2) 0.0514(14)	0.0853(18)	-0.0006(12)	0.0454(15)	-0.0049(13)
C15X	0.122(6) 0.095(4)	0.102(5)	0.005(4)	0.044(4)	0.008(4)
C9X	0.130(8) 0.061(3)	0.113(7)	0.013(4)	0.086(6)	0.003(4)
C10X	0.114(6) 0.064(5)	0.096(7)	0.009(4)	0.070(5)	0.008(4)
C11X	0.129(6) 0.074(4)	0.160(8)	0.044(5)	0.050(5)	-0.006(4)
C12X	0.151(7) 0.082(6)	0.206(9)	0.069(6)	0.063(7)	0.028(5)
C13X	0.227(10) 0.045(5)	0.139(8)	0.018(5)	0.088(8)	-0.006(5)
C14X	0.185(8) 0.098(5)	0.118(7)	-0.017(6)	0.052(6)	-0.034(5)
C14X	0.185(8) 0.098(5)	0.118(7)	-0.017(6)	0.052(6)	-0.034(5)

Table S13. (An) Isotropic Displacement Parameters for: $cu_rf4_0m P 21/c$, R = 0.06.

The Temperature Factor has the Form of Exp (-T) Where T = 8 * (Pi ** 2) * U * (Sin(Theta)/Lambda) ** 2 for Isotropic Atoms T = 2 * (Pi ** 2) * Sumij(h(i) * h(j) * U(i,j) * Astar(i) * Astar(j)), for An isotropic Atoms. Astar (i) are Reciprocal Axial Lengths and h (i) are the Reflection Indices.

Bond Distances (Angstrom)				
O1-C1	1.371(2)	C12-C13	1.390(9)	
O1-C9	1.452(5)	C12X-C13X	1.390(12)	
O1-C9X	1.429(13)	C13-C14	1.390(9)	
O2-C3	1.351(3)	C13X-C14X	1.391(12)	
O3-C5	1.349(3)	C14-C15	1.390(6)	
O4-C7	1.246(3)	C14X-C15X	1.390(10)	
O2-H1O2	0.87(3)	C8-H8A	0.9700	
O3-H1O3	0.92(3)	C8-H8B	0.9700	
C1-C2	1.382(3)	C8-H8C	0.9700	
C1-C6	1.412(3)	C8-H8D	0.9700	
C2-C16	1.504(3)	С9-Н9А	0.9800	
C2-C3	1.406(3)	С9Х-Н9ХА	0.9800	
C3-C4	1.396(3)	C11-H11A	0.9300	
C4-C17	1.501(3)	C11X-H11B	0.9300	
C4-C5	1.385(3)	C12-H12A	0.9300	
C5-C6	1.409(3)	C12X-H12B	0.9300	
C6-C7	1.436(3)	C13-H13A	0.9300	
C7-C8	1.482(3)	C13X-H13B	0.9300	
C8-C9	1.512(6)	C14-H14A	0.9300	
C8-C9X	1.325(12)	C14X-H14B	0.9300	
C9-C10	1.583(7)	C15-H15A	0.9300	
C9X-C10X	1.439(9)	C15X-H15B	0.9300	
C10-C15	1.390(8)	C16-H16B	0.9600	
C10-C11	1.390(7)	C16-H16A	0.9600	
C10X-C15X	1.390(11)	C16-H16C	0.9600	
C10X-C11X	1.389(11)	C17-H17F	0.9600	
C11-C12	1.390(9)	C17-H17A	0.9600	
C11X-C12X	1.392(10)	C17-H17B	0.9600	
C17-H17C	0.9600	C17-H17E	0.9600	
C17-H17D	0.9600			

Table S14. Bond Distances (Angstrom) for: cu_rf4_0m P 21/c, R = 0.06.

Bond Angles (Degrees)				
C1-O1-C9	115.5(2)	O1-C9-C8	109.6(3)	
C1-O1-C9X	118.1(4)	O1-C9-C10	103.4(4)	
С3-О2-Н1О2	114(2)	C8-C9X-C10X	120.6(9)	
С5-О3-Н1О3	106(2)	O1-C9X-C8	123.2(6)	
C2-C1-C6	122.16(18)	O1-C9X-C10X	109.8(9)	
O1-C1-C6	121.07(17)	C9-C10-C11	115.2(5)	
O1-C1-C2	116.76(17)	C11-C10-C15	120.0(5)	
C1-C2-C3	116.65(17)	C9-C10-C15	124.9(4)	
C1-C2-C16	121.93(18)	C11X-C10X-C15X	120.1(6)	
C3-C2-C16	121.41(17)	C9X-C10X-C11X	131.0(8)	
O2-C3-C2	121.12(18)	C9X-C10X-C15X	108.9(8)	
C2-C3-C4	123.89(18)	C10-C11-C12	120.0(5)	
O2-C3-C4	114.99(19)	C10X-C11X-C12X	119.9(7)	
C3-C4-C17	121.86(19)	C11-C12-C13	120.0(5)	
C3-C4-C5	117.34(18)	C11X-C12X-C13X	120.0(8)	
C5-C4-C17	120.80(19)	C12-C13-C14	120.0(4)	
O3-C5-C6	120.42(18)	C12X-C13X-C14X	120.0(6)	
O3-C5-C4	118.01(18)	C13-C14-C15	120.0(6)	
C4-C5-C6	121.57(18)	C13X-C14X-C15X	120.0(7)	
C5-C6-C7	121.30(18)	C10-C15-C14	120.0(5)	
C1-C6-C5	118.33(17)	C10X-C15X-C14X	120.0(7)	
C1 -C6-C7	120.36(18)	С7-С8-Н8А	109.00	
O4-C7-C8	121.08(19)	С7-С8-Н8В	109.00	
O4-C7-C6	122.3(2)	С7-С8-Н8С	108.00	
C6-C7-C8	116.65(19)	C7-C8-H8D	108.00	
C7-C8-C9X	119.1(5)	С9-С8-Н8А	109.00	
C7-C8-C9	113.0(3)	С9-С8-Н8В	109.00	
C8-C9-C10	112.2(4)	H8A-C8-H8B	108.00	
C9X-C8-H8C	107.00	C15X-C14X-H14B	120.00	
C9X-C8-H8D	108.00	C14-C15-H15A	120.00	
H8C-C8-H8D	107.00	C10-C15-H15A	120.00	
О1-С9-Н9А	110.00	C10X-C15X-H15B	120.00	
С8-С9-Н9А	110.00	C14X-C15X-H15B	120.00	
С10-С9-Н9А	111.00	C2-C16-H16C	109.00	
С10Х-С9Х-Н9ХА	98.00	C2-C16-H16B	110.00	
С8-С9Х-Н9ХА	98.00	C2-C16-H16A	109.00	
О1-С9Х-Н9ХА	98.00	H16A-C16-H16C	109.00	
C10-C11-H11A	120.00	H16B-C16-H16C	109.00	
C12 -C11-H11A	120.00	H16A-C16-H16B	109.00	
C12X-C11X-H11B	120.00	H17D-C17-H17F	109.00	
C10X-C11X -H11B	120.00	H17E-C17-H17F	109.00	
C11-C12-H12A	120.00	C4-C17-H17A	110.00	
C13-C12-H12A	120.00	C4-C17-H17B	109.00	
C11X-C12X-H12B	120.00	C4-C17-H17C	109.00	

Table S15. Bond angles (degrees) for: $cu_rf4_0m P 21/c$, R = 0.06.

Bond Angles (Degrees)				
C13X-C12X-H12B	120.00	C4-C17-H17D	109.00	
С14-С13-Н13А	120.00	С4-С17-Н17Е	110.00	
С12-С13-Н13А	120.00	C4-C17-H17F	110.00	
C14X-C13X-H13B	120.00	H17A-C17-H17B	109.00	
C12X-C13X-H13B	120.00	H17A-C17-H17C	109.00	
C13-C14-H14A	120.00	H17B-C17-H17C	110.00	
C15-C14-H14A	120.00	H17D-C17-H17E	109.00	
C13X-C14X-H14B	120.00			

 Table S15. Cont.

Table S16. Torsion Angles (Degrees) for: cu_rf4_0m P 21/c, R = 0.06.

Torsion Angles	(Degrees)
C9-O1-C1-C2	154.0(3)
C9-O1-C1-C6	-27.1(3)
C1-O1-C9-C8	52.9(4)
C1-O1-C9-C10	172.7(3)
O1-C1-C2-C3	-179.05(16)
O1-C1-C2-C16	1.5(3)
C6-C1-C2-C3	2.1(3)
C6-C1-C2-C16	-177.39(19)
O1-C1-C6-C5	-179.75(17)
O1-C1-C6-C7	-0.7(3)
C2-C1-C6-C5	-0.9(3)
C2-C1-C6-C7	178.13(18)
C1-C2-C3-O2	179.14(18)
C1-C2-C3-C4	-1.0(3)
C16-C2-C3-O2	-1.4(3)
C16-C2-C3-C4	178.51(19)
O2-C3-C4-C5	178.59(18)
O2-C3-C4-C17	-1.0(3)
C2-C3-C4-C5	-1.3(3)
C2-C3-C4-C17	179.1(2)
C3-C4-C5-O3	-177.77(18)
C3-C4-C5-C6	2.6(3)
C17-C4-C5-O3	1.8(3)
C17-C4-C5-C6	-177.9(2)
O3-C5-C6-C1	178.83(18)
O3-C5-C6-C7	-0.2(3)
C4-C5-C6-C1	-1.5(3)
C4-C5-C6-C7	179.45(19)
C1-C6-C7-O4	-178.92(18)
C5-C6-C7-O4	0.1(3)
C1-C6-C7-C8	-0.2(3)
C5-C6-C7-C8	178.85(19)
O4-C7-C8-C9	-154.2(3)
C6-C7-C8 -C9	27.1(3)
C7-C8-C9-O1	-52.4(4)
C7-C8-C9-C10	-166.6(3)

 Torsion Angles	(Degrees)
O1-C9-C10-C11	142.5(5)
O1-C9-C10-C15	-37.5(7)
C8-C9-C10-C11	-99.5(6)
C8-C9-C10-C15	80.6(7)
C9-C10-C11-C12	-179.9(6)
C15-C10-C11-C12	0.0(11)
C9-C10-C15-C14	179.9(6)
C11-C10-C15-C14	0.0(10)
C10-C11-C12-C13	0.0(12)
C11-C12-C13-C14	0.0(11)
C12-C13-C14-C15	0.0(11)
C13-C14-C15-C10	0.0(10)

Table S16. Cont.

Table S17. Contact distances (angstrom) for: cu_rf4_0m P 21/c, R = 0.06.

Contact Distances (Angstrom)			
O2.O4 b	2.724(2)	C2.C7 a	3.556(3)
$O3.C13\overline{X} d$	3.374(6)	C7.C2 g	3.556(3)
03.04	2.571(2)	C11X.C14X a	3.416(11)
O4.O2 f	2.724(2)	C11X.C15X a	3.100(11)
O4.C16_f	3.213(3)	C12X.C15X_a	3.379(12)
04.03	2.571(2)	C12X.C14X_a	3.100(12)
O1.H15A	2.6200	C13X.O3 i	3.374(6)
O1.H8A_a	2.6800	C14.C15_h	2.950(10)
O1.H16A	2.3400	C14.C14_h	2.990(10)
O1.H8D_a	2.7700	C14X.C12X_g	3.100(12)
O2.H16C	2.8500	C14X.C11X_g	3.416(11)
O2.H16B	2.8600	C15.C14_h	2.950(10)
O2.H8C_c	2.9200	C15.C15_h	3.512(8)
O2.H17C	2.6200	C15X.C12X_g	3.379(12)
O2.H17B	2.8300	C15X.C11X_g	3.100(11)
O2.H9A_c	2.6700	C16.O4_b	3.213(3)
O2.H17F	2.3100	C1.H16B_g	2.8500
O2.H8B_b	2.8400	C1.H8D_a	3.0800
O3.H17D	2.7200	C1.H8A_a	3.0100
O3.H13B_d	2.5100	C5.H16C_e	3.0800
O3.H16C_e	2.7900	C6.H9XA	3.0700
O3.H17A	2.3500	C6.H9A	3.0200
O3.H17E	2.7700	C7.H1O2_f	2.81(4)
O3.H13A_d	2.6800	C7.H1O3	2.29(3)
O4.H1O3	1.73(3)	C8.H9A_g	2.8900
O4.H1O2_f	1.91(4)	C8.H15B	3.1000
O4.H16B_f	2.7700	C9.H8A_a	2.8400
O4.H16C_f	2.8200	C11X.H15B_a	2.8000
C11X.H8C	3.1000	H8B.H17B_e	2.4400
C12X.H14B_a	2.8100	H8C.C11X	3.1000
C14.H15A_h	2.7600	H8C.O2_e	2.9200
C14.H14A_h	2.8300	H8D.C1_g	3.0800
C14X.H12B_g	2.8000	H8D.C15X	3.0200

Con	Contact Distances (Angstrom)			
C15.H8A	3.0600	H8D.O1 g	2.7700	
C15.H14A_h	2.5500	H8D.H11B_g	2.5000	
C15X.H11B g	2.8100	H9A.C8 a	2.8900	
C15X.H8D	3.0200	H9A.H8A a	2.2600	
C16.H1O2	2.46(3)	H9A.C6	3.0200	
C16.H9XA_a	2.9600	H9A.O2_e	2.6700	
H1O2.C16	2.46(3)	H9A.H11A	2.3400	
H1O2.H16B	2.3000	H11A.H9A	2.3400	
H1O2.H16C	2.3200	H11A.H17B e	2.5700	
H1O2.O4_b	1.91(4)	H11B.H8D_a	2.5000	
H16B.O2	2.8600	H17C.O2	2.6200	
H1O2.C7_b	2.81(4)	H11B.C15X_a	28100	
H1O3.O4	1.73(3)	H12B.C14X_a	2.8000	
H1O3.C7	2.29(3)	H12B.H17D_j	2.5100	
H9XA.C16_g	2.9600	H13A.O3_i	2.6800	
H9XA.H16A_g	2.5800	H13B.O3_i	2.5100	
H9XA.H15B	1.7800	H14A.C14_h	2.8300	
H9XA .C6	3.0700	H14A.C15_h	2.5500	
H8A.H9A_g	2.2600	H14A.H15A_h	2.5000	
H8A.C1_g	3.0100	H14B.C12X_g	2.8100	
H8A.C15	3.0600	H15A.O1	2.6200	
H8A.O1_g	2.6800	H15A.C14_h	2.7600	
H8A.C9_g	2.8400	H15A.H14A_h	2.5000	
H8B.O2_f	2.8400	H15B.H9XA	1.7800	
H15B.C8	3.1000	H16C.O4_b	2.8200	
H15B.C11X_g	2.8000	H16C.C5_c	3.0800	
H16A.O1	2.3400	H17A.O3	2.3500	
H16A.H9XA_a	2.5800	H17B.O2	2.8300	
H16B.H1O2	2.3000	H17B.H8B_c	2.4400	
H16B.O4_b	2.7700	H17B.H11A_c	2.5700	
H16B.C1_a	2.8500	H17D.O3	2.7200	
16C.O2	2.8500	H17D.H12B_k	2.5100	
H16C.H1O2	2.3200	H17E.O3	2.7700	
H16C.O3_c	2.7900	H17F.O2	2.3100	

 Table S17. Cont.

Table S18. Hydrogen Bonds (Angstrom, Deg) for: cu_rf4_0m P 21/c, R = 0.06.

Hydrogen Bonds (Angstrom, Deg)					
O2H1O2O4	0.87(3)	1.91(4) 2.724(2)	155(3) 4_664		
O3H1O3O4	0.92(3)	1.73(3) 2.571(2)	150(3)		
C16H16AO1	0.9600	2.3400 2.795(3)	108.00		
C17H17AO3	0.9600	2.3500 2.790(3)	107.00		

Translation of Symmetry Code to Equiv. Pos. a = [1655.00] = 1 + x, y, z; b = [4664.00] = 1 + x, 3/2 - y, -1/2 + z; c = [4564.00] = x, 3/2 - y, -1/2 + z; d = [2556.00] = -x, $\frac{1}{2} + y$, 3/2 - z; e = [4565.00] = x, 3/2 - y, 1/2 + z; f = [4465.00] = -1 + x, 3/2 - y, 1/2 + z; g = [1455.00] = -1 + x, y, z; h = [3566.00] = -x, 1 - y, 1 - z; i = [2546.00] = -x, -1/2 + y, 3/2 - z; j = [2646.00] = 1 - x, -1/2 + y, 3/2 - z; k = [2656.00] = 1 - x, 1/2 + y, 3/2 - z.

Compound	Parameters	Optimized	Used	Retention	Peak	Remarks	
		•		Time (min)	Asymmetry		
	a. Flow rate ($\pm 0.1 \text{ mL} \cdot \text{min}^{-1}$)	$1.0 (mL \cdot min^{-1})$	$0.9 (mL \cdot min^{-1})$	5.6 0.84		Robust	
-			$1.1 (\text{mL} \cdot \text{min}^{-1})$	$1 (mL \cdot min^{-1})$ 4.60.88 $205 (nm)$ 5.2 0.84 $215 (nm)$ 5.2 0.85 $55:45 v/v$ 6.2 0.84 $65:35 v/v$ 4.2 0.84 $25 \ ^{\circ}C$ 5.2 0.85 $35 \ ^{\circ}C$ 5.2 0.86 $9 (mL \cdot min^{-1})$ 8.9 0.90			
	h Detection wavelength $(+5 \text{ nm})$	210 (nm)	205 (nm)	5.2	0.84	Robust	
1 -	b. Detection wavelength (± 5 mil)	210 (1111)	215 (nm)	5.2	0.85	Robust	
1	c. Mobile Phase composition: Acetonitrile contents	60.40/.	55:45 v/v	6.2	0.84	Robust	
	(±5%)	00.40 V/V	65:35 v/v	4.2	0.84		
_		20.00	25 °C	5.2 0.85			
	d. Column Temperature (±5 °C)	30 °C	35 °C	5.2	5.2 0.86 Ro		
			$0.9 (mL \cdot min^{-1})$	8.9	0.90		
	a. Flow rate ($\pm 0.1 \text{ mL} \cdot \text{min}^{-1}$)	$1.0 (\text{mL} \cdot \text{min}^{-1})$	$1.1 (\text{mL} \cdot \text{min}^{-1})$	6.6	0.94	Robust	
-		210 ()	205 (nm)	7.4	0.90		
2	b. Detection wavelength (±5 nm)	210 (nm)	215 (nm)	7.3	0.93	Robust	
2 -	c. Mobile Phase composition: Acetonitrile contents	(0.40.1	55:45 v/v	7.7	0.89		
_	(±5%)	60:40 <i>v</i> / <i>v</i>	65:35 v/v	65:35 v/v 5.7 0.8			
	d Calumn Tamparatura (15 °C)	20.90	25 °C 7.7 0.9		0.91	Dahuat	
	a. Column Temperature $(\pm 5 {}^{\circ}C)$	30 °C	35 °C	7.7	0.91	KODUSI	
	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$	$1.0(mL_{min}^{-1})$	$0.9 (mL \cdot min^{-1})$	11.0	0.93	Daharat	
	a. Flow rate ($\pm 0.1 \text{ mL} \cdot \text{min}$)	$1.0 (\text{mL} \cdot \text{min})$	$1.1 (mL \cdot min^{-1})$	8.9	0.91	Kobust	
_	h Detection menulemeth (15 mm)	210 ()	205 (nm)	9.9	0.94	Daharat	
2	b. Detection wavelength (±5 nm)	210 (nm)	215 (nm)	9.9	0.91	Robust	
3	c. Mobile Phase composition: Acetonitrile contents		55:45 v/v	13.8	0.91		
	(±5%)	60:40 <i>v</i> / <i>v</i>	65:35 v/v	7.3	0.89	Robust	
-		20.00	25 °C	10.4	0.93	Robust	
	a. Column Temperature (±5 °C)	30 °C	35 °C	10.4	0.93		

Table S19. Robustness results of compounds (1–5).

Compound Parameters		Optimized	Used	Retention Time (min)	Peak Asymmetry	Remarks			
	a Eleverate $(10.1 \text{ mJ} \text{ min}^{-1})$	$1.0 (mL min^{-1})$	$0.9 (mL \cdot min^{-1})$	16.8	1.00	Dahuat			
	a. Flow rate (\pm 0.1 mL/mm)	1.0 (mL·mm)	$1.1 (mL \cdot min^{-1})$	UsedRetention Time (min)Peak AsymmetryRet $0 (mL \cdot min^{-1})$ 16.81.00Ro $1 (mL \cdot min^{-1})$ 13.61.09Ro $205 (nm)$ 15.10.91Ro $205 (nm)$ 15.10.91Ro $215 (nm)$ 15.11.10Ro $55:45 v/v$ 23.01.01Ro $55:45 v/v$ 10.31.01Ro $25 \circ C$ 15.51.00Ro $35 \circ C$ 15.51.00Ro $205 (nm)$ 15.91.10Ro $215 (nm)$ 15.91.10Ro $55:45 v/v$ 24.11.10Ro $55:35 v/v$ 10.91.01Ro $55:35 v/v$ 10.91.01Ro $25 \circ C$ 16.31.10Ro	Kobust				
	h Dotaction wavelength (+5 nm)	210(nm)	205 (nm)	15.1	RetentionPeak AsymmetryRemarksTime (min)AsymmetryRobust16.81.00Robust13.61.09Robust15.10.91Robust15.11.10Robust23.01.01Robust10.31.01Robust15.51.00Robust15.51.01Robust15.51.01Robust15.91.10Robust15.91.10Robust15.91.10Robust15.91.10Robust15.91.10Robust16.31.10Robust	Robust			
4	b. Detection wavelength (±5 mm)	210 (1111)	215 (nm)	Retention Time (min) Peak Asymmetry Remarks 16.8 1.00 Robust 13.6 1.09 Robust 15.1 0.91 Robust 15.1 1.10 Robust 23.0 1.01 Robust 15.5 1.00 Robust 15.5 1.00 Robust 15.5 1.00 Robust 15.5 1.01 Robust 15.5 1.00 Robust 15.5 1.01 Robust 15.5 1.01 Robust 15.5 1.01 Robust 15.5 1.01 Robust 15.9 1.10 Robust 15.9 1.10 Robust 15.9 1.10 Robust 10.9 1.01 Robust 10.9 1.01 Robust					
4	c. Mobile Phase composition: Acetonitrile contents	(0.40/	55:45 v/v	23.0	1.01 Pohyst				
	(±5%)	00.40 V/V	65:35 v/v	10.3	1.01	Robust			
	d Column Tommentum (15 °C)	20.00	25 °C	15.5	15.5 1.00	Dahuat			
	d. Column Temperature $(\pm 5^{\circ}C)$	30 °C	35 °C	15.5	1.01	Robust			
	a Eleverate $(10.1 \text{ mJ} \text{ min}^{-1})$	$1.0 (mL min^{-1})$	$1.0 (mL min^{-1})$ $0.9 (mL min^{-1})$ 17.6 1		1.10	Dahuat			
	a. Flow fate $(\pm 0.1 \text{ mL}^{-1}\text{mm})$	1.0 (mL·mm)	$1.1 (mL \cdot min^{-1})$	JsedTime (min)AsymmetryRemain $1L \cdot min^{-1}$)16.81.00Robu $1L \cdot min^{-1}$)13.61.09Robu5 (nm)15.10.91Robu5 (nm)15.11.10Robu:45 v/v23.01.01Robu:35 v/v10.31.01Robu:5 °C15.51.00Robu:5 °C15.51.00Robu:5 °C15.51.01Robu:5 °C15.91.10Robu:5 (nm)15.91.10Robu:45 v/v24.11.10Robu:45 v/v24.11.10Robu:45 v/v16.31.10Robu:5 °C16.31.10Robu	Kobust				
	h Detection manual meth (15 mm)	210 (mm)	205 (nm)	15.9	1.10	Dahuat			
-	b. Detection wavelength (\pm 5 nm)	210 (nm) 215 (nm) 15.9 1.10		Kobust					
5	c. Mobile Phase composition: Acetonitrile contents	(0.40/	55:45 v/v	24.1	1.10 Pob	Dahuat			
	(±5%)	00.40 V/V	65:35 v/v	215 (nm) 15.9 1.10 Robust 55:45 v/v 24.1 1.10 Robust 65:35 v/v 10.9 1.01 Robust	Robust				
-	d Column Tommonoture (15 °C)	20.90	25 °C	16.3	1.10	Dahuat			
	a. Column Temperature $(\pm 5 \text{°C})$	30 °C	35 °C	16.3	1.10	Kobusi			

Table S19. Cont.

	Compound	und Intraday Precision Intermediate Precision Interday Precis				Precision							
	Conc. (µg∙mL ⁻¹)	Peak Area (mAU*S)	%RSD	Retention Time (min)	%RSD	Peak Area (mAU*S)	%RSD	Retention Time (min)	% RSD	Peak area (mAU*S)	%RSD	Retention Time (min)	%RSD
1	12.5	605.80	0.64	5.30	0.00	605.4	0.09	5.29	0.02	605	0.65	5.29	0.08
	25	1257.8	0.21	5.29	0.15	1257.8	0.00	5.29	0.02	1257.8	0.15	5.30	0.18
	50	2513.6	0.06	5.30	0.21	2513.6	0.00	5.30	0	2513.6	0.08	5.30	0.16
	100	4999.2	0.04	5.30	0.16	4998.7	0.01	5.30	0.05	4998.2	0.10	5.31	0.18
	200	9561.6	0.02	5.31	0.26	9560.1	0.02	5.30	0.05	9558.6	0.02	5.30	0.25
2	12.5	631.20	0.17	7.31	0.18	630.70	0.11	7.31	0.05	630.2	0.13	7.30	0.14
	25	1227.2	0.06	7.30	0.11	1224.9	0.26	7.30	0.01	1222.6	0.10	7.30	0.07
	50	2531.2	0.03	7.30	0.07	2531.6	0.02	7.30	0.01	2532	0.04	7.30	0.07
	100	5201.2	0.02	7.30	0.00	5201	0.00	7.30	0.00	5200.8	0.01	7.30	0.00
	200	10970.2	0.00	7.31	0.20	10970.1	0.00	7.32	0.07	10970	0.01	7.32	0.07
	12.5	625	0.00	9.99	0.05	624.8	0.04	10.00	0.14	624.6	0.08	10.01	0.47
	25	1214.2	0.09	10.0	0.04	1214.1	0.01	10.00	0.00	1214	0.05	10.00	0.04
3	50	2527.2	0.06	10.0	0.44	2527	0.01	10.02	0.00	2526.8	0.05	10.02	0.44
	100	5197.6	0.01	10.0	0.00	5197.7	0.00	10.01	0.14	5197.8	0.00	10.02	0.44
	200	10967.8	0.01	10.0	0.46	10967.7	0.00	10.01	0.01	10967.6	0.00	10.01	0.47
	12.5	16.0	0.00	15.11	0.07	16.0	0.00	15.11	0.01	16.0	0.00	15.11	0.08
	25	31.0	2.28	15.09	0.34	30.6	1.84	15.09	0.00	30.2	1.48	15.09	0.34
4	50	55.8	0.80	15.12	0.27	55.7	0.25	15.11	0.09	55.6	0.98	15.10	0.05
	100	115.4	0.77	15.10	0.05	115.5	0.12	15.10	0.00	115.6	0.47	15.10	0.05
	200	241.8	0.18	15.09	0.34	241.9	0.05	15.08	0.00	242.0	0.00	15.08	0.33
5	12.5	57.78	1.44	16.00	0.03	57.95	0.41	16.00	0.01	58.12	1.84	16.0	0.02
	25	111.82	0.42	16.00	0.00	111.9	0.10	16.00	0.03	111.98	0.63	16.0	0.11
	50	225.40	0.48	16.00	0.10	225.22	0.11	16.00	0.03	225.04	0.53	16.0	0.03
	100	504.54	0.09	16.00	0.03	504.31	0.06	16.00	0.01	504.08	0.12	16.0	0.08
	200	1030.84	0.08	16.00	0.08	1031.12	0.03	16.01	0.00	1031.4	0.13	16.0	0.13

Table S20. Analytical results of precision and accuracy.