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Abstract: Cell penetrating peptides (CPP), including the TAT peptide from the human 

immunodeficiency virus transactivator of transcription (HIV-TAT) protein and penetratin 

from Drosophila Antennapedia homeodomain protein, translocate various cargos including 

peptides and proteins across cellular barriers. This mode of delivery has been harnessed by 

our group and others to deliver antigenic proteins or peptides into the cytoplasm of antigen 

processing cells (APC) such as monocyte-derived dendritic cells (MoDC). Antigens or T cell 

epitopes delivered by CPP into APC in vivo generate antigen-specific cytotoxic T cell and 

helper T cell responses in mice. Furthermore, mice immunised with these peptides or proteins 

are protected from a tumour challenge. The functional properties of CPP are dependent on the 

various cargos being delivered and the target cell type. Despite several studies demonstrating 

superior immunogenicity of TAT and Antp-based immunogens, none has compared the 

immunogenicity of antigens delivered by TAT and Antp CPP. In the current study we 

demonstrate that a cytotoxic T cell epitope from the mucin 1 (MUC1) tumour associated 

antigen, when delivered by TAT or Antp, generates identical immune responses in mice 

resulting in specific MUC1 T cell responses as measured by in vivo CTL assays, IFNγ 

ELISpot assays and prophylactic tumour protection. 
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1. Introduction 

Fundamental to an effective vaccine is the delivery of antigens to antigen presenting cells (APC) and 

the ensuing processing and presentation of epitopes to cytotoxic T cells or helper T cells in the context 

of a relevant MHC haplotype to activate T cells and induce an immune response [1,2]. Vaccination with 

peptides incorporating CTL epitopes has proven limited for a number of reasons including the inability 

of exogenous antigens to be presented efficiently to T cells [3,4]. There are now several strategies to 

promote the delivery of antigens to APC, such as targeting cell surface receptors with carbohydrates or 

antibodies [5–10]. We and others have utilised the unique translocating properties of cell penetrating 

peptides (CPP) to deliver antigenic proteins or T cell epitopes to APC utilizing covalent conjugates or 

synthetic tandem fusion peptides [11–17]. 

CPP offer a unique approach for the transport of peptides and proteins into the cytoplasm of APC. 

The TAT peptide (RKKRRQRRR) from the HIV transactivator of transcription protein and penetratin 

(Antp, RQIKIWFQNRRMKWKK) from Drosophila Antennapedia homeodomain are the two most 

widely investigated CPP [18]. Using dendritic cells pulsed with HIV TAT sequence with the tyrosinase 

related protein 2 (TAT-TRP-2), Wang and colleagues have shown that immunisation ensued complete 

protective immunity along with significant inhibition of lung metastases in a three day tumour model [19]. 

TAT, incorporating fusion proteins with CEA or MUC1, has also been used [20,21]. We have extensively 

used Antp in our studies of vaccine constructs for the delivery of intact proteins, such as ovalbumin 

(OVA) and mucin 1 (MUC1), as well as peptides comprised of single cytotoxic T cell or helper T cell 

epitopes or multiepitope peptides consisting of CD4 and CD8 epitopes [11,12,14–16,18]. Mice immunised 

with these peptides or proteins were protected from a lethal tumour challenge. A recent study investigated 

epicutaneous immunisation with the AntpSIIN OVA CD8 (AntpSIIN) fusion peptide, where topical 

application of AntpSIIN induced potent CTL responses in mice and with the adjuvant CpG conferred 

tumour protection against E.G7-OVA tumour cells [22]. Yet to date no study has directly compared the 

various CPP and their relative capacities to deliver tumour antigens and subsequent immunogenicity. 

We have compared the efficiency of TAT and penetratin linked to either the H-2Kb CD8 8-mer epitope 

SIINFEKL from the model antigen ovalbumin (OVA) (TATSIIN, AntpSIIN), or to the H-2Kb CD8 9-mer 

epitope SAPDTRPAP from the human tumour associated antigen mucin 1 (MUC1) (TATMUC1Kb, 

AntpMUC1Kb). These studies showed that the tandem fusion peptide of Antp with SIINFEKL was 

immunogenic in mice, whereas TAT fused to SIINFEKL was not. In contrast, the immunogenicity of 

the MUC1 cytotoxic T cell epitope fused in tandem to either TAT or Antp CPP was identical. 
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2. Results 

2.1. Stimulation of B3Z T Cells in Vitro by AntpSIIN and TATSIIN Pulsed DC 

To establish the toxicity of Antp and TAT peptides on cells, AntpSIIN, TATSIIN, AntpMUC1Kb and 

TATMUC1Kb at varying concentrations were added to DC2.4 cells and cell death was measured 

quantitatively by lactate dehydrogenase (LDH) levels, a stable cytosolic enzyme that is released upon 

cell lysis. Cells exposed to Triton-X-100 were used as a positive control. None of these peptide antigens 

induced detectable levels of cell death when used at up to 200 µg/mL (not shown). 

To compare the processing and presentation of AntpSIIN and TATSIIN, BMDC (bone marrow 

derived dendritic cells) were pulsed with varying peptide concentrations then incubated with B3Z T cells 

for 18 h. The recognition of the SIINFEKL epitope on the MHC class I molecule by its specific TCR 

was assessed via a colorimetric assay. Untreated DC and DC with Antp or TAT were used as negative 

controls. DC pulsed with AntpSIIN strongly presented SIINFEKL to B3Z T cells (Figure 1). Surprisingly 

and in contrast, DC pulsed with TATSIIN at 1 to 20 µM did not measurably activate T cells. DC pulsed 

with SIINFEKL peptide alone, which is surface loaded, was used as a positive control. 

 

Figure 1. In vitro stimulation of T cells by AntpSIIN or TATSIIN pulsed bone marrow 

derived dendritic cells (BMDC). DC were incubated with AntpSIIN, TATSIIN, OVACD8, 

Antp, TAT peptide or media for 8 h and added to B3Z T cells for 18 h. LacZ activity in B3Z 

T cells was assayed by total culture lysates with LacZ substrate CPRG. The absorbance  

(560 nm) of chlorophenol red released by β-galactosidase was read after 4 h incubation at 

37 °C. Values are the mean ± SEM for 4 replicates. 

2.2. AntpSIIN but not TATSIIN Induce Potent in Vivo Proliferation and Killing 

To assess the ability of AntpSIIN and TATSIIN to induce proliferation of T cells in vivo, mice were 

immunised with 25 µg AntpSIIN or TATSIIN and 20 h later were injected i.v. with purified OT-1 
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splenocyte T cells labelled with CFSE. 60 h after i.v injection, CD3+ splenocyte T cells were analysed 

by flow cytometry for antigen specific proliferation. Mice immunised with AntpSIIN demonstrated 

substantial T cell proliferation in vivo, seen as a sequential diminution of CFSE fluorescence in the 

daughter cells. However mice immunised with TATSIIN showed no proliferation greater than the control 

group (Figure 2A,B). To further investigate the in vivo T cell responses, the capacity of mice to generate 

SIINFEKL specific killing in vivo was assessed (Figure 2C). No SIINFEKL specific CTL response was 

detected in the spleens of control mice. Mice immunised with TATSIIN had evidence of weak  

antigen-specific killing (19% ± 3%), and much greater target cell killing (80% ± 3%) was detected in 

mice immunised with AntpSIIN (Figure 2C). 

 

Figure 2. Measurement of in vivo CD3+ T cell proliferation and CTL lysis. C57BL/6 mice 

were immunised i.d. with PBS, AntpSIIN or TATSIIN and purified CFSE labelled OT-I 

strain T cells were injected i.v. Splenocytes were subsequently assessed via flow cytometry. 

CD3+ OT-I T cells that have undergone 0–5 cell divisions are shown as representative dot 

plots (A) and as CFSE profile histograms (B); with viable CD3+ OT-I T cells (black line) 

and CFSE curve fitting generated by the Weasel curve fitting software (red line); (C) The 

percentage of SIINFEKL specific lysis was determined in immunised mice by the in vivo 

killing assay 8 days later, shown by representative histograms and mean percent killing ± SEM 

(n = 6). 
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2.3. AntpSIIN but not TATSIIN Induce Strong OVA-Specific IFNγ T Cell Responses in Vivo 

The ability of AntpSIIN and TATSIIN to induce CD8+ T cell responses in vivo was determined using 

an IFN-γ ELISpot assay. C57BL/6 mice were immunised with 25 µg AntpSIIN or TATSIIN on days 0, 

10 and 17 and IFN-γ was measured 14 days later. Mice immunised with AntpSIIN generated potent  

IFN-γ secreting cells which recognised SIINFEKL as well as OVA (Figure 3). The CD4 epitope of OVA 

(OVA323-339) was used as a negative control. Mice immunised with TATSIIN or PBS did not generate 

measurable IFN-γ secreting cells to either SIINFEKL or OVA (Figure 3). 

 

Figure 3. In vivo IFN-γ response to AntpSIIN and TATSIIN immunisation. C57BL/6 mice 

were injected i.d. on days 0, 10 and 17 with PBS, 25 µg AntpSIIN or 25 µg TATSIIN.  

The number of IFN-γ secreting cells in response to stimulation by OVACD8 (SIINFEKL), 

OVACD4 (OVA323-339) or media was analysed by ELISpot assay. Results are shown as 

mean spot-forming units (SFU)/5 × 105 cells ± SEM in triplicate wells. 

To ascertain if the lack of SIINFEKL-specific responses in vitro and in vivo was due to an inability of 

TATSIIN to be processed appropriately a similar peptide (TATXSIIN), incorporating a linker of 4 amino 

acids preceding SIINFEKL in the native OVA sequence, was used in the B3Z assay. When the peptide 

was incubated with DC2.4 cells in vitro it was processed and stimulated the SIINFEKL-specific B3Z  

T cells. A control peptide (PEPCD8) of equal length to TATSIIN, incorporating only the amino acids 

preceding SIINFEKL in the native OVA sequence, was not efficiently presented to B3Z cells by DC2.4 

cells (Figure 4). To demonstrate that the SIINFEKL epitope of TATSIIN can be presented by DC2.4 if 

correctly processed, the enzyme trypsin that cleaves at arginine and lysines present in the TAT sequence 

was used. DC2.4 cells incubated with a tryptic digest of TATSIIN efficiently activated B3Z cells by surface 

loading the class I molecules with enzymatically released SIINFEKL (Figure 4B). Similarly tryptic digests 

of TATXSIIN and SIINFEKL also activated B3Z cells indicating the resistance of SIINFEKL epitope  

to trypsin. 
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Figure 4. (A) In vitro stimulation of SIINFEKL-specific T cells by AntpSIIN, TATSIIN and 

TATXSIIN pulsed DC2.4. Cells were incubated with the peptide antigens for 8 h and added 

to B3Z T cells for 18 h. Controls included cells alone, Antp, OVACD8 (SIINFEKL) and 

PEPCD8, a non-internalising peptide; (B) In vitro stimulation of SIINFEKL-specific cells 

by DC2.4 cells pulsed with tryptic digests (Tryp) of TATSIIN, TATXSIIN and SIINFEKL. 

Cells were incubated with the tryptic digests as in A. In both (A) and (B), LacZ activity in 

B3Z T cells was assayed by total culture lysates with LacZ substrate CPRG. The absorbance 

(560 nm) of chlorophenol red released by β-galactosidase was read after 4 h incubation at 

37 °C. Values show the mean ± SEM for 4 replicates. 

2.4. Rapid Internalisation of Antp and TAT Peptides Incorporating MUC1-H-2Kb Epitope 

Several mouse and human CTL epitopes of MUC1 that can be presented by particular human and 

mouse MHC molecules have been identified [23–26]. The peptide SAPDTRPAP, presented by mouse 

H-2Kb, was used to study the comparative immunogenicity of TAT and Antp-based cytotoxic T cell 

epitopes. An additional advantage of this epitope is that the DTR sequence within the cytotoxic T cell 

epitope contains a linear B-cell epitope and the monoclonal antibody BC2 recognises the DTR sequence 

enabling detection of internalised AntMUC1Kb or TATMUC1Kb peptide without modification. 

The mechanism of cellular uptake of CPP has been an area of great conjecture over recent years [27–29]. 

Cell fixation leads to the artifactual uptake of these peptides, thus, to assess the mechanism of uptake of 

AntpMUC1Kb and TATMUC1Kb by DC, surface and intracellular staining of the antibody BC2 was 

measured by flow cytometry. BMDC pulsed with AntpMUC1Kb or TATMUC1Kb showed surface binding 

of 11% and 51%, respectively, and substantial peptide internalisation of 48% and 90%, respectively 

(Figure 5A). 

To analyse the dose response and kinetics of uptake of AntpMUC1Kb and TATMUC1Kb, BMDC 

prepared in vitro were pulsed with 5, 20, 100 or 200 µM AntpMUC1Kb or TATMUC1Kb peptides for  

60 min. The percent positive cells at the low concentration of 5 µM AntpMUC1Kb or TATMUC1Kb 

was 9% and 13% respectively, reaching 48% and 58% respectively at the high concentration of 200 µM 

(Figure 5B). To address the kinetics of uptake, BMDC were incubated for set times with AntpMUC1Kb 
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or TATMUC1Kb peptides at a fixed concentration (100 µM). Both AntpMUC1Kb and TATMUC1Kb 

displayed similar uptake kinetics with rapid internalisation seen within 5 min which remained constant 

for at least 360 min (Figure 5C). 

 

Figure 5. Uptake of AntpMUC1Kb and TATMUC1Kb peptides by DC in vitro. (A) 

AntpMUC1Kb and TATMUC1Kb staining by BC2 antibody after pulsing at 100 µM for  

60 min with uptake assessed as the difference between surface (dotted line) and intracellular 

(bold line) staining by flow cytometry. Isotype controls are shown as filled grey areas. DC 

were pulsed with AntpMUC1Kb or TATMUC1Kb peptides at either varying concentrations 

(5 to 200 µM) for 60 min (B) or a constant dose of 100 µM for set times between  

5 and 360 min (C). Uptake was determined by flow cytometry as the percent surface staining 

subtracted from the percent intracellular staining (mean ± SEM, for 3 replicates). 

To investigate if internalisation was via an energy dependant pathway, uptake was measured in  

the presence of NaN3/2-deoxyglucose and cytochalasin D. NaN3/2-deoxyglucose (10 mM) depletes 

ATP-dependent mechanisms in the cell and blocks cell membrane activity while Cytochalasin D  

(10 µg/mL) affects the contraction of actin containing microfilaments and blocks phagocytosis. Both 

Cytochalasin D and NaN3/2-deoxyglucose blocked the uptake of both AntpMUC1Kb and TATMUC1Kb 

by DC in vitro (Figure 6), indicating that it is by endocytosis. 
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Figure 6. Uptake of AntpMUC1Kb and TATMUC1Kb by BMDC is via endocytosis. DC 

cultures were pre-treated for 45 min with cytochalasin D (10 µg/mL) or NaN3/2-deoxyglucose 

(10 mM) before adding 100 µg/mL of AntpMUC1Kb or TATMUC1Kb for 60 min. Uptake 

was determined via flow cytometry and expressed as the percent surface staining subtracted 

from the percent intracellular staining (mean ± SEM, for 3 replicates). 

2.5. AntpMUC1Kb and TATMUC1Kb Induce Potent in vivo Cytotoxic T Cell Killing 

The capacity of C57BL/6 mice to generate SAPDTRPAP antigen specific killing in vivo was assessed. 

Splenocytes from naïve mice were prepared, pulsed with SAPDTRPAP peptide and labelled with CFSE 

at high or low concentrations, respectively. Cells were subsequently adoptively transferred into mice pre 

immunised with either 25 µg AntpMUC1Kb or TATMUC1Kb and the percent killing was determined. 

No SAPDTRPAP CTL responses were detected in the spleen of control mice (Figure 7A). In contrast, 

strong in vivo killing was detected when mice were immunised with either AntpMUC1Kb (80% ± 3%) 

or TATMUC1Kb (83% ± 2%), with no difference in efficacy observed (p > 0.05). 

2.6. AntpMUC1Kb and TATMUC1Kb Immunisation Induces Strong SAPDTRPAP T Cell Specific IFN-γ 

To further evaluate the in vivo immune responses, the capacity of AntpMUC1Kb and TATMUC1Kb 

antigens to induce CD8+ T cell responses in vivo was determined using IFN-γ ELISpot analysis. 

C57BL/6 mice were immunised i.d. with 25 µg AntpMUC1 Kb or TATMUC1Kb on days 0, 10 and 17 

and IFN-γ was measured 14 days later. Mice immunised with either AntpMUC1Kb or TATMUC1Kb 

generated equally strong IFN-γ secreting cell responses to the SAPDTRPAP (MUC1 Kb) epitope  

(Figure 7B). 

The capacity of AntpMUC1Kb and TATMUC1Kb antigens to generate antibody responses to MUC1 

was assessed via ELISA. At the time of the ELISpot assay, sera were collected to determine the total 

IgG isotype responses. Mice immunised with AntpMUC1Kb or TATMUC1Kb did not generate antibody 

titres significantly greater than that of control mice (not shown). 
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Figure 7. Cellular immune responses in TATMUC1Kb and AntpMUC1Kb immunised mice, 

measured as in vivo CTL killing and ELISpot assays. (A) C57BL/6 mice were immunised 

i.d. with PBS, 25 µg AntpMUC1Kb or 25 µg TATMUC1Kb and the percent MUC1 

SAPDTRPAP specific lysis was determined eight days after immunisation. Representative 

histograms from 2 mice are shown; (B) IFN-γ responses to AntpMUC1Kb and TATMUC1Kb 

peptides in C57BL/6 mice, injected as above, with the number of IFN-γ secreting cells 

analysed by ELISpot assay. Results are shown as mean spot-forming units (SFU)/5 × 105 

cells ± SEM with 3 replicates. Results are representative of two experiments. 

2.7. Mice Immunised with AntpMUC1Kb and TATMUC1Kb Inhibited MUC1+ Tumour Growth in 

C57BL/6 Mice 

To assess whether AntpMUC1Kb or TATMUC1Kb immunisation confers tumour protection in vivo, 

C57BL/6 mice (n = 8) were injected i.d. with PBS, 25 µg AntpMUC1Kb or 25 µg TATMUC1Kb on days 

0, 10 and 17. Seven days later, mice were challenged s.c. with 2 × 105 B16-MUC1 tumour cells. 

Immunisation of mice with either AntpMUC1Kb or TATMUC1Kb delayed tumour growth (Figure 8). 

On day 28 the average tumour sizes in mice immunised with AntpMUC1Kb or TATMUC1Kb were  

25.9 and 15.9 mm2, respectively, significantly less than 61.5 mm2 in control mice immunised with PBS 

(p < 0.05). In addition 4 of 8 AntpMUC1immunised mice and 3 of 8 TATMUC1 immunised mice were 

tumour free at day 28. 
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Figure 8. Tumour growth is delayed by immunisation. C57BL/6 mice were immunised on 

days 0, 10 and 17 with PBS, 25 µg AntpMUC1Kb or 25 µg TATMUC1Kb then inoculated 

subcutaneously 7 days after final immunisation with 2 × 105 B16-MUC1 melanoma cells 

into the abdomen. Tumour growth was recorded. Data showing the product of individual 

perpendicular measurements (mm2) and days post tumour inoculation. Number of tumour-free 

mice at day 28 is also shown (n = 8/group, ** p < 0.05). 

3. Discussion 

Peptide and protein based vaccines based solely on CTL epitopes have limited efficacy, as APC are 

not efficient in the uptake and processing of exogenous antigens via the MHC class I pathway [1–3]. 

Thus, novel methods to enhance antigen delivery into APC are required. CPPs are of special interest  

in vaccine design due to their capacity to facilitate the delivery of therapeutic substances into cellular 

compartments [28–30]. Thus CPP provide an effective means to facilitate intracellular delivery of antigens 

to APC and induction of a CTL response [18]. The ability of tumour antigens or their T cell epitopes 

when linked to CPP to enhance immunogenicity has been established. Kim et al. were the first to 

demonstrate that immunisation with DCs pulsed with TAT peptide conjugated OVA induced antigen 

specific CTLs in vivo, whereas DC pulsed with full length OVA protein failed to promote antigen 

specific cytotoxicity [31]. Several studies characterised the potent immunogenicity of conjugates of  

TAT or Antp CPP with proteins or peptides or recombinant proteins with a CPP linked in tandem. 

Intraperitoneal immunisation with a synthetic peptide incorporating Antp and OVA CD8 epitope was 

shown to generate potent CTL responses and protective immunity in vivo against the growth of the OVA 

expressing tumour cell line E.G7-OVA [14]. Additionally i.d. immunisation was shown to be as 

effective, with mice generating potent CD8+ specific IFN-γ responses to immunisation with AntpSIIN 

alone or AntpSIIN pulsed DC, and protection against the growth of OVA expressing tumours. Moreover, 

similar IFN-γ responses were observed following a single immunization [15]. Recently we demonstrated 

the immunogenicity and tumour protection of mice immunised with covalent conjugates of Antp with 

OVA and synthetic peptides of Antp linked in tandem to OVA CD8, CD4 and CD8/CD4 epitopes [16]. 

There is a large amount of data suggesting that various CPP function differently and are influenced 

by the cargo being delivered or the cell type. This study compared the immunogenicity of synthetic 
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peptides incorporating either the H-2Kb CTL epitope from the model antigen OVA SIINFEKL or the 

MUC1Kb SAPDTRPAP epitope linked in tandem to the TAT peptide or to Antp. When linked to the 

TAT peptide, SIINFEKL (TATSIIN) failed to be processed and presented to T cells either in vitro or  

in vivo (Figures 1–3). In contrast, the synthetic peptide of Antp linked to SIINFEKL (AntpSIIN) 

generated a strong in vivo immune response (Figure 3). Synthetic peptides of MUC1Kb SAPDTRPAP 

epitope with either TAT or Antp were both rapidly and efficiently internalised by DC in an ATP dependant 

pathway via macropinocytosis or phagocytosis (Figures 5 and 6). Furthermore, mice immunised with 

either AntpMUC1Kb or TATMUC1Kb peptides generated strong MUC1-specific IFN-γ responses and 

inhibited the growth of B16-MUC1 tumours (Figures 7 and 8). 

It was interesting that the TATSIIN peptide, sequence RKKRRQRRRSIINFEKL without a linker 

between TAT and SIINFEKL, was not processed and presented by DC to T cells in vitro or in vivo, 

whilst TATMUC1Kb, AntpSIIN and AntpMUC1Kb were effective. Studies that have assessed TAT to 

facilitate the delivery of the SIINFEKL epitope have incorporated a sequence to facilitate epitope 

cleavage. Lu and colleagues utilized the 9-mer TAT (RKKRRQRRR) peptide and furin sensitive 

(RVKR) or furin insensitive (VRVV) linkers to multiple CTL epitopes [32]. Furin is a type I membrane 

protein localised predominantly in the Golgi complex, but also found at the plasma membrane and within 

endosomes. Furin plays a role in the endoproteolytic processing of proteins within the Golgi and furin 

cleavage is known to be required for endosome escape by several bacterial toxins, including Anthrax toxin 

and Pseudomonas exotoxin A. It was observed that TAT peptides with furin sensitive linkers sensitised 

target cells for CTL lysis whereas furin insensitive linkers failed to prime a response [32]. To demonstrate 

that presentation was inefficient or absent for TATSIIN, we synthesised a peptide incorporating a linker 

consisting of amino acids preceding the SIINFEKL epitope from the native OVA sequence. This novel 

peptide was efficiently processed by DC and presented to the B3Z OVA-specific T cell hybridoma 

(Figure 4A). Trypsin digestion of TATSIIN and TATXSIIN released the SIINFEKL epitope which was 

functional in stimulating B3Z cells(Figure 4B) indicating that correct processing of peptide would have 

resulted in proper presentation. In addition this experiment indicates that inability of TATSIIN to 

activate SIINFEKL-specific T cells is not due to instability of the peptide. 

The uptake and intracellular processing pathways of Antp and TAT, when linked to a single CTL 

epitope, has been extensively characterised. Using primary bone marrow-derived mouse DCs, AntpSIIN 

was shown to be endocytosed in an ATP dependent manner with the involvement of negatively charged 

receptors. Further investigation revealed the majority of peptide was taken up via phagocytosis and/or 

macropinocytosis in a caveolae independent manner [15]. Examination of the intracellular pathways 

revealed processing via a proteasome independent pathway through endosomes and lysosomes in a  

TAP-independent process to the ER for presentation by MHC Class I molecules. No trimming by furin 

endopeptidase in the trans-Golgi or by aminopeptidases was required [15]. Likewise TAT linked to  

CTL epitopes by a triple alanine spacer was found to be processed via a TAP independent pathway, 

through the Golgi and ER [33]. Immunofluorescence studies had demonstrated the rapid uptake of 

AntpMUC1Kb, AntpMUC1A2 and AntpMUC1FP peptide and proteins into the cytoplasm of peritoneal 

macrophages, whereas proteins and peptides without the internalising sequence were not efficiently 

taken up [11]. Flow cytometry studies reported here indicated that TAT and Antp promoted similar 

levels of uptake into DC by an ATP dependant process involving phagocytosis and/or micropinocytosis 

(Figures 5 and 6). 
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Mice immunised with either AntpMUC1Kb or TATMUC1Kb peptides generated potent cellular 

responses, measured by in vivo CTL killing and IFN-γ ELISpot assays, however neither AntpMUC1Kb 

nor TATMUC1Kb immunisation induced an antibody response (Figure 7). Investigations of a recombinant 

fusion protein consisting of the 60-amino acid Antennapedia homeodomain fused to an influenza derived 

HLA-Cw3-restricted CTL epitope required either SDS as an adjuvant to prime a CTL response or 

incorporation into liposomes enhanced by the addition of CpG. Likewise, vaccination with a vaccine 

incorporating TAT linked to antigens from OVA required CpG to generate an anti-tumour response [33]. 

However here we report a delayed tumour response after immunisation with either AntpMUC1Kb or 

TATMUC1Kb without the need for an adjuvant (Figure 8). It was previously demonstrated that MUC1Kb 

immunisation alone, without the addition of CPP or other carriers, did not confer protection against a 

tumour challenge [34]. 

In conclusion, this study demonstrated that the TAT protein linked to SIINFEKL, without an 

intermediate linker sequence, failed to be processed and presented to T cells either in vitro or in vivo.  

In contrast, linking Antp to SIINFEKL (AntpSIIN) generated strong immune responses. Fusion of the 

MUC1Kb SAPDTRPAP epitope to either TAT or Antp demonstrated that both are rapidly and efficiently 

internalised by BMDC in an ATP dependant manner. Furthermore, mice immunised with either 

AntpMUC1Kb or TATMUC1Kb generated strong in vivo IFN-γ T cell responses and showed delayed 

B16-MUC1 tumour growth. Most importantly, these studies indicated that TAT and Antp both function 

equivalently for delivery of cytotoxic T cell epitopes to APC, provided a suitable linker is used. 

4. Experimental Section 

4.1. Peptides 

Peptides (Table 1) were synthesized by Genescript Corporation (San Francisco, CA, USA). Molecular 

weights were confirmed by MS and had purities of >98% by HPLC. 

Table 1. Synthetic peptides used in the study. 

Peptide Name Sequence Description 

Antp RQIKIWFQNRRMKWKK 16 amino acid Antennapedia peptide 

TAT RKKRRQRRR 9-mer HIV TAT protein transduction domain 

OVACD8 SIINFEKL ovalbumin H-2Kb CTL epitope 8-mer peptide. 

OVACD4 ISQAVHAAHAEINEAGR ovalbumin IAb CD4 epitope 16-mer peptide (OVA323-339) 

MUC1Kb SAPDTRPAP Mucin 1 H-2Kb epitope from the VNTR region. 

AntpSIIN RQIKIWFQNRRMKWKKSIINFEKL C-terminal fusion peptide of Antp and OVACD8 

TATSIIN RKKRRQRRRSIINFEKL C-terminal fusion peptide of Tat and OVACD8 

AntpMUC1Kb RQIKIWFQNRRMKWKKSAPDTRPAP C-terminal fusion peptide of Antp and MUC1Kb 

TATMUC1Kb RKKRRQRRRSAPDTRPAP C-terminal fusion peptide of Tat and MUC1Kb 

PEPCD8 LLPDEVSGLEQLESIINFEKL 
Non-internalising control peptide including 13 amino acids N-terminal 

to SIINFEKL in native OVA sequence 

TATXSIIN RKKRRQRRREQLESIINFEKL 
N-terminal fusion peptide of Tat and OVACD8 including 4 aa  

native sequence 
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4.2. Mice 

C57BL/6 and OT-I mice, aged 6–10 weeks, were purchased from the Biological Research facilities 

of the Walter and Eliza Hall Institute (Parkville, Australia). All mice were housed in the facilities at 

Burnet Institute (Heidelberg Campus) or RMIT University. 

4.3. Cytotoxicity of Conjugates 

DC2.4 cells (104) were seeded in a volume of 100 µL complete RPMI media (10% (v/v) heat 

inactivated fetal calf serum, 4 mM L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin sulphate 

and 100 µM β-mercaptoethanol) in a flat bottom 96-well microtitre plate and allowed to adhere overnight 

at 37 °C. Next day media was removed and replaced with 200 µL complete RPMI with peptides at 

specified concentrations. Cells were incubated for 24 h at 37 °C and subsequently 100 µL media was 

removed to determine cytotoxicity with the CytoTox 96 Non-Radioactive Cytotoxicity Assay according 

to manufacturer’s instructions (Promega, Madison, WI, USA). 50 µL/well of reconstituted substrate mix 

was added to the enzymatic assay plate containing samples and incubated for 30 min at RT. 50 µL/well 

of stop solution was added and absorbance read at 490 nm. 

Cytotoxicity was calculated as: 

( )
( )

490

490

  
%Cytoto

 
xicity 100

 
nm

nm

OD experimental LDH release

OD maximum LDH release
= ×  (1)

4.4. Generation of Bone-Marrow Derived Dendritic Cells (BMDC) 

Bone marrow cells from C57BL/6 female mice were collected by flushing the tibias of hind legs and 

treated with ACK lysis buffer (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM Na2EDTA) to lyse erythrocytes. 

Cells were washed and cultured at 5 × 105 cells/mL in 24 well plates with complete RPMI-1640  

medium with 10 ng/mL of recombinant mouse granulocyte macrophage colony-stimulating factor  

(GM-CSF) (BD Pharmingen, San Diego, CA, USA). At day 6, cells were observed to be >80% CD11c+ 

by flow cytometry. 

4.5. Internalisation into BMDC 

Day 6 cultured C57BL/6 BMDC were pulsed with 5, 20, 100 or 200 µM peptides for 1 h at 37 °C in 

serum free media. Due to cell fixation causing artifactual uptake of CPP peptides, all uptake experiments 

were performed by measuring surface and intracellular expression by flow cytometry, with results 

expressed as percent intracellular stain–percent surface stain. For surface staining, DC were washed with 

0.5% w/v BSA/PBS and incubated with the anti-MUC1 monoclonal antibody BC2 (diluted in BSA/PBS) 

for 30 min at 4 °C. Cells were washed and FITC-anti-mouse (Fab’)2 (Chemicon, Melbourne, Australia) 

was added in BSA/PBS for a further 30 min at 4 °C. For intracellular staining, cells were fixed with  

2% paraformaldehyde for 10 min at room temperature, washed and permeabilised with 0.25% v/v 

saponin/PBS for 10 min. Cells were then stained as above in saponin/PBS. Kinetics of uptake was also 

assessed by adding peptides at a fixed concentration for specified times (5 to 360 min) at 37 °C. DC 

were resuspended in PBS and analysed by flow cytometry (BDCanto, BD Biosciences, San Jose, CA, 
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USA). Results are expressed as percent intracellular stain–percent surface stain. Isotype controls were 

used to measure negative control (background) staining. 

4.6. Internalisation Inhibition Studies 

BMDC were pre incubated with and without biochemical inhibitors; 10 mM sodium azide (NaN3) 

(Sigma, Suffolk, UK) and 2-deoxyglucose (2DG) (Sigma) or 10 µg/mL cytochalasin D (Sigma), which 

blocks phagocytosis, for 45 min at 37 °C. Cells were then pulsed with AntpMUC1Kb or TATMUC1Kb 

for 60 min at 20 µg/mL at 37 °C. Uptake of antigen was measured as described in Section 4.5. 

4.7. Stimulation of lacZ-Inducible Ovalbumin-Specific T-cell Hybrid Cells 

The B3Z mouse T-cell hybridoma line contains a gene construct of Escherichia coli lacZ reporter 

gene linked to the nuclear factor of activated T cells. Recognition of the SIINFEKL peptide in the context 

of class I by the T-cell receptor (TCR) results in activation of the enzyme and conversion of a 

chromogenic substrate that can be measured by absorbance spectrophotometry. DC (2 × 105 cells) were 

pulsed with peptides at various concentrations in 96-well microtitre plates (Falcon, BD Biosciences, 

North Ryde, Australia) for 24 h at 37 °C. Cells were then washed and 105 B3Z cells were added for  

18 h at 37 °C. Next day, cells were washed with sterile PBS and incubated with chlorophenol  

red-β-galactoside (Calbiochem, San Diego, CA, USA) (100 µM 2ME, 9 mM MgCl2, 0.125% NP40,  

0.15 mM chlorophenol red-β-galactoside). After 4 h incubation at 37 °C the absorbance was read at  

560 nm to detect chlorophenol red released by β-galactosidase. 

4.8. In vivo Proliferation 

Splenocytes from OT-I mice were isolated and purified as described in section 4.4. Purified OT-I T 

cells were resuspended in 0.1% w/v BSA/PBS and labelled with 5 μM carboxyfluorescein succinimidyl 

ester (CFSE) (Molecular Probes) for 10 min at 37 °C. Labelling was stopped with a 5× volume of ice 

cold complete RPMI and cells were washed extensively in PBS. CFSE labeling was confirmed by flow 

cytometry. 107 CFSE labelled OT-I T cells were then injected intravenously (i.v.) in 200 µL PBS into 

C57BL/6 mice immunised i.d. at the base of the tail 20 h prior. Splenocytes were collected 60 h following 

CFSE injection and stained with APC-conjugated anti-CD3 (BD Pharmingen) for 30 min at 4 °C in 2% 

FCS/PBS. Cells were washed and CFSE dilution was determined by flow cytometry and analysed by 

Weasel curve fitting software (version 2.4, Walter and Eliza Hall Institute). 

4.9. In vivo Cytotoxicity Assay 

Splenocytes from naïve C57BL/6 mice were isolated and resuspended to 107 cells/mL in serum free 

RPMI and divided into 2 populations, pulsed or unpulsed. Pulsed splenocytes were incubated with  

1 µg/mL SIINFEKL or SAPDTRPAP peptide for 1 h at 37 °C. Cells were washed and resuspended in 

0.1% w/v BSA/PBS and pulsed splenocytes were labelled with a high concentration of CFSE (5 µM) 

whereas unpulsed splenocytes were labelled with a concentration of CFSE (0.5 µM) for 10 min at  

37 °C. Labelling was stopped with 5× volumes of ice cold complete RPMI and cells were washed 

extensively in PBS. 
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Peptide-pulsed 5 × 106 CFSEhigh cells and 5 × 106 unpulsed CFSElow cells were mixed and a total of 

107 CFSE labelled cells in 200 µL PBS was injected i.v. into mice immunised 8 days prior or into naïve 

mice. After 20 h, splenocytes were isolated and analysed by flow cytometry. 

Specific lysis was calculated as: 

Specific lysis = 1 − {[ratio CFSElow/CFSEhigh of naïve mice]/[ratio CFSElow/CFSEhigh of 

immunised mice]} × 100 
(2)

4.10. Enzyme-Linked Immunosorbent Spot-Forming Cell Assay (ELISpot) 

To determine the effector immune response, splenocytes from C57BL/6 mice immunised i.d. on days 

0, 10 and 17 were isolated 14 days after final immunisation and assessed by ELISpot for IFN-γ secretion. 

MultiScreen filter plates (Millipore, Billerica, MA, USA) were coated with 70 µL 5 µg/mL anti-mouse 

IFN-γ antibody (AN18) (Mabtech, Stockholm, Sweden) overnight at 4 °C. Plates were washed six times with 

sterile PBS and blocked with 200 µL complete RPMI media for 2 h at 37 °C. Spleen cells (5 × 105/well) 

in 100 µL of complete medium were incubated with 20 µg/mL recall antigens for 18 h in IFN-γ ELISpot. 

Recall antigens were SIINFEKL (OVACD8, OVA257-264), ISQAVHAAHAEINEAGRKG (OVACD4, 

OVA323-339), OVA and SAPDTRPAP (MUC1Kb). Concanavalin A (ConA) (1 µg/mL) or cells alone 

were used as positive and negative controls respectively. Triplicate wells were set up for each condition. 

Cells were discarded after washing (PBS) and 1 µg/mL biotinylated anti-mouse IFN-γ antibody (Mabtech) 

was added for 2 h at RT. The plates were washed with PBS and 1 µg/mL streptavidin-alkaline phosphatase 

(Mabtech) was added at room temperature for 2 h. Spots of activity were detected using a colorimetric 

AP-conjugate substrate kit (Bio-Rad Laboratories, Foster City, CA, USA). Cytokine spots were counted 

with an AID ELISpot Reader system (Autoimmun Diagnostika GmbH, Strassberg, Germany). Data were 

presented as mean spot-forming units (SFU) per 5 × 105 cells ± standard error of the mean (SEM). 

4.11. Antibody ELISA 

Sera were collected from C57BL/6 mice 14 days after final immunisation by orbital bleed. Red blood 

cells were pelleted by centrifugation at 13,000 rpm for 10 min and serum was aspirated and stored at 

−20 °C until use. 

The MUC1 peptide corresponding to a single VNTR repeat of MUC1, Cp13-32  

(C-PAHGVTSAPDTRPAPGSTAP), was coated onto PVC microtiter plates at 10 µg/mL in 0.2M 

NaHCO3 buffer, pH 9.6, and overnight at 4 °C. After washing (0.05% Tween 20/PBS), non-specific 

binding was blocked with 2% BSA/PBS for 1 h at RT. Serial dilutions of sera were added (in 2% 

BSA/PBS) and incubated for a further 2 h at RT. Plates were washed and bound antibody was detected 

using horseradish peroxidase-conjugated sheep anti-mouse IgG (Amersham, UK). Plates were washed 

as described above and HRP-streptavidin was added for 1 h at RT. Responses were detected with TMB 

substrate solution and stopped with 1 M HCl. Absorbance was read at 450 nm. 

4.12. Prophylactic Tumour Protection 

Groups of 8 C57BL/6 mice were injected intradermally (i.d.) at the base of tail with 25 µg of various 

peptides or PBS on days 0, 10 and 17. Seven days following the last immunisation, mice were shaved 
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on the abdominal area and challenged subcutaneously (s.c.) with 2 × 105 MUC1-B16 melanoma cells 

suspended in 100 µL PBS. Expression of MUC1 on MUC1-B16 cells was confirmed by flow cytometry 

prior to challenge. The growth of tumours was monitored by measuring the two perpendicular diameters 

using callipers and the results were expressed as their product. 

4.13. Statistical Analysis 

Assays were set up in triplicate. Mean values were compared using the two-tailed unpaired t-test and 

ANOVA. Two p-value thresholds were used for protection and immunogenicity assays: p < 0.001 to 

indicate a highly significant difference, and p < 0.05 to indicate a significant difference. 
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