Supplementary Material

Figure S1. Extraction efficiencies of the typical compounds 1-14 by different extract methods (a); different extraction solvents (b); different times the volume of 100% acetonitrile (c); and different extraction time (d).

NO.	t _R (min)	Molecular Formula	Characteristic Skeleton	DAD Spectra	λ _{max} (nm)
6	19.36	$C_{30}H_{46}O_5$		()) Wavelength (cm)	287
14	25.91	$C_{30}H_{44}O_4$		(mil) arrange of the second se	287
20	35.87	C ₃₂ H ₄₆ O ₅		(VV)) organization of the second seco	287
1	11.81	$C_{30}H_{48}O_{6}$		Weterung the second sec	245
2	13.19	C ₃₂ H ₅₀ O ₇	HO HO HO HO HO OAC OH OAC	(NU) Jaurosov	245
3	15.63	C ₃₂ H ₅₀ O ₇		Wavelength (m)	245
5	17.31	C ₃₀ H ₄₆ O ₅		The second secon	245
11	24.33	$C_{32}H_{48}O_6$			245
16	27.75	$C_{30}H_{50}O_5$	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Wevelength (mm)	-

Table S1. Typical DAD spectra from 200 nm to 400 nm for 25 compounds.

Table S1. Cont.

NO.	t _R (min)	Molecular Formula	Characteristic Skeleton	DAD Spectra	λ_{max} (nm)
17	29.07	C ₃₂ H ₅₂ O ₆		To the second se	-
18	33.90	C ₃₂ H ₅₂ O ₆	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Typesting of the second	-
21	38.87	$C_{30}H_{48}O_4$		so (IVU) borrowy a borrowy borrowy borrowy borrowy water wa	-
22	40.71	C ₃₀ H ₄₈ O ₄	HO HO H H H H	so (I)VIII) Sources The second seco	
23	49.06	C ₃₂ H ₅₀ O ₅	HO HO H H H	The second secon	-
9	23.30	$C_{30}H_{46}O_4$		The second secon	-
10	23.37	$C_{30}H_{48}O_5$	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Wavelength (am)	-
15	27.00	C ₃₂ H ₅₀ O ₆	HO HO HO HO HO HO HO HO HO HO HO HO HO H	The second secon	-
24	54.55	C ₃₀ H ₄₈ O ₃		Wavelength (nm)	-

Table S1. Cont.

NO.	t _R (min)	Molecular Formula	Characteristic Skeleton	DAD Spectra	λ _{max} (nm)
25	61.12	C ₃₂ H ₅₀ O ₄		er er frage f	-
4	16.70	C ₃₀ H ₅₀ O ₆	но он он он он он	en generation of the second se	-
8	21.46	C ₃₂ H ₅₂ O ₇	HO OH OH	er () Naver-registration	-
12	24.75	C ₃₀ H ₄₈ O ₅		() more than the second	-
19	34.95	C ₃₂ H ₅₀ O ₆		(Nel) and the second se	-
7	19.72	$C_{30}H_{48}O_5$		The second secon	245
13	25.46	C ₃₀ H ₄₆ O ₄		Wavelength (m)	245

-: maximum UV absorption is below 200 nm.

Table S2. ¹ H- and ¹³ C-NMR data for compound 7 (16-oxo-11-deoxy-alisol A) in CDC.	lз
(δ in ppm, J in Hz).	

D	11-deoxy-alisol A [1]		16-oxo-11-deoxy-alisol A		
Position	δ _H	δc	δн	δc	DEPT
1		31.2		31.74 t	CH ₂
2		34.3		34.53 t	CH_2
3		219.2		219.31 s	С
4		47.1		46.98 s	С
5		48.4		48.05 d	CH
6		20.4		19.97 t	CH_2
7		34.0		33.58 t	CH_2
8		40.7		40.51 s	С
9		44.2		42.71 d	СН
10		36.5		36.22 s	С
11		22.8		22.17 t	CH ₂
12		23.10		24.99 t	CH_2
13		139.5		180.40 s	С
14		57.50		50.44 s	С
15		32.00		45.43 t	CH ₂
16		29.10		209.96 s	С
17		134.2		140.23 s	С
18		23.3		23.35 q	CH ₃
19		23.6		23.67 q	CH ₃
20		28.7		26.98 d	СН
21		20.0	1.23(d,6.56)	19.51 q	CH ₃
22		40.3		40.29 t	CH_2
23	3.80(dd,3.3,9.0)	69.7	3.63(d,10.5)	69.37 d	СН
24	3.03(br s)	77.6	3.02(br s)	77.36 d	СН
25		74.0		73.69 s	С
26		26.4		25.47 q	CH ₃
27		27.5		26.34 q	CH ₃
28		29.5		29.25 q	CH ₃
29		20.5		19.69 q	CH ₃
30		23.8		22.02 q	CH ₃

[1] Nakajima Y, Satoh Y, Ida Y *et al.* Terpenoids of Alisma orientale rhizome and the crude drug alismatis rhizoma. *Phytochemistry* **1994**, *36*, 119–127.

Figure S2. ¹H-NMR of 16-oxo-11-deoxy-alisol A.

S6

Figure S3. ¹H-NMR of 16-oxo-11-deoxy-alisol A—Expansion.

Figure S4.¹³C-NMR of 16-oxo-11-deoxy-alisol A.

Figure S5.¹³C-NMR of 16-oxo-11-deoxy-alisol A—Expansion.

S9

Figure S6.¹³C-NMR DEPT of 16-oxo-11-deoxy-alisol A.

Figure S7. ¹³C-NMR DEPT of 16-oxo-11-deoxy-alisol A—Expansion.