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Abstract: Differential sensing using synthetic receptors as mimics of the mammalian 

senses of taste and smell is a powerful approach for the analysis of complex mixtures. 

Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based 

sensing array in differentiating and predicting the composition of red wine blends. Fifteen 

blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, 

were used in this investigation. Linear Discriminant Analysis (LDA) showed a clear 

differentiation of blends based on tannin concentration and composition where certain 
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mono varietals like Cabernet Sauvignon seemed to contribute less to the overall characteristics 

of the blend. Partial Least Squares (PLS) Regression and cross validation were used to 

build a predictive model for the responses of the receptors to eleven binary blends and the 

three mono varietals. The optimized model was later used to predict the percentage of each 

mono varietal in an independent test set composted of four tri-blends with a 15% average 

error. A partial least square regression model using the mouth-feel and taste descriptive 

sensory attributes of the wine blends revealed a strong correlation of the receptors to 

perceived astringency, which is indicative of selective binding to polyphenols in wine. 

Keywords: differential sensing; supramolecular sensors; wine; blends; tannins 

 

1. Introduction 

Wine blending was developed as a European winemaking technique many centuries ago. As the 

name suggests, blends are made by mixing different mono-varietal wines in certain ratios. Mono-varietal, 

also called single varietal, wine is made using one grape type. Blending is mainly used to increase the 

complexity of the wine or enhance its aroma, flavor and texture. For example, Cabernet Sauvignon is 

considered one of the world’s greatest grapes, but it can be extremely tannic when young. Blending 

Cabernet Sauvignon with Merlot has been known to attenuate its astringency. Several studies have 

focused on the sensory and chemical properties of wine blends in comparison to their base wines [1–3]. 

However, wine blending also introduced the possibility of mislabeling and fraud. Inferior or less 

costly wines could be blended with higher quality wines at unnoticeable ratios and marketed as a more 

expensive version. This was the case when a French court convicted a wine company, Les Vins 

Georges Duboeuf, of fraud and attempted fraud for combining grapes in Cru Beaujolais vineyards with 

grapes from lesser Beaujolais-Villages vineyards [4]. Another case of fraud involved a failed attempt 

to sell lower-quality local wine as the much more expensive Brunello and Rosso di Montalcino red [5]. 

Therefore, there is a need to develop techniques to discriminate blends for the purpose of improving 

quality control and authentication. In previous studies, wines have been analyzed with chemometric 

techniques, using electronic tongues [6–8], electronic noses [9–12] (to distinguish volatile compounds 

and which involved differential sensing), Infrared (IR) Spectroscopy [13,14], Nuclear Magnetic 

Resonance (NMR) [15,16] and Gas Chromatography (GC-MS) [17]. The electronic tongues and  

noses that were used rely on electrochemical processes involving cross-reactive polymers and various 

material composites. The use of arrays of cross-reactive receptors with chemometric analysis, in any 

context, is commonly referred to as differential sensing. Differential sensing is an emerging powerful 

tool for the analysis of complex mixtures, as it does not require the identification of individual 

components in the mixture [18]. 

As a mimic of the natural sense of taste, we have previously developed a class of multi-component, 

cross reactive supramolecular sensors, and demonstrated their applications in fingerprinting red wines 

based on their composition of polyphenols [19] and organic acids [20]. Our peptide-based sensing 

ensembles are composed of a short histidine-containing peptide, a divalent metal ion and a pH 

colorimetric indicator. Signals from the sensing ensembles are created using the Indicator Displacement 
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Assay (IDA), an analytical assay that was popularized by our group [21]. IDA is based on the 

displacement of the colorimetric indicator by the analyte, causing a color change that can be measured 

spectrophotometrically. Not only were the peptidic receptors able to differentiate red wine varietals, 

they were also shown to discriminate samples of the same wine varietal (Cabernet Sauvignon) that 

were made using grapes from the same vineyard, but harvested at different times of maturation [22]. 

In the present investigation, we demonstrate the application of the peptide-based sensing array to 

differentiate fifteen red wine blends in addition to three base mono varietals (Table 1). The blends are 

mixtures of Cabernet Sauvignon, Cabernet Franc, and Merlot wines. We also describe how responses 

of the sensing array to blends made using two mono varietals are used to build a predictive model to 

quantify the composition of three base wine blends. 

2. Results and Discussion 

2.1. Fingerprinting Red Wine Blends 

We have previously demonstrated the application of a multicomponent, peptide-based sensing array 

to differentiate red wine varietals [19] and Cabernet Sauvignon wines based on harvest time [22]. As 

mimics of the natural sense of taste, each sensing ensemble is composed of a short peptide, a divalent 

metal ion and a colorimetric indicator bound via non-covalent interactions. Displacement of the 

indicator by tannins in wine causes a color change due to the release of the free indicator in solution. 

This color change is monitored spectrophotometrically (Scheme 1). Although the receptors are assembled 

via reversible non-covalent interactions, they cannot be regenerated after completion of the assay. 

There is no drift of sensor components over time. However, all assays are performed in 50% ethanol  

to ensure solubility of tannins, which may evaporate over time and cause a change of the effective 

concentration of the sensing ensemble. This is not observed within the current time frame of the assay. 

 

Scheme 1. Schematic representation of the Indicator Displacement Assay (IDA) used for 

the differentiation of tannins in wine. 

In this paper, we describe a new application for the sensing array to differentiate red wine blends. 

Nine sensing ensembles were used to measure the responses of three base mono varietals: Cabernet 

Sauvignon (S), Cabernet Franc (F) and Merlot (M) in addition to fifteen blends composed of different 

combinations of the base wines. The sensing array is a 3 × 3 combinatorial library of three synthetic 

short peptides: WAHEDEFF (TT2), WEEHEE (RN8), and FHFPHHF (SEL1) and three combinations 

of colorimetric indicators and divalent metal ions. The indicator-metal combinations used in this 

investigation are: Pyrocatechol Violet (PCV)-Cu2+, Chrome Azurol s (CAS)-Cu2+ and Bromopyrogallo 

Red (BPR)-Ni2+. Responses of the array to the wine blends were measured as the color change caused 
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by displacement of the indicator by the wine tannins. After subtraction of the wine absorbance, the 

data was analyzed by Linear Discriminant Analysis (LDA) and the resulting canonical variate plots for 

all seven replicates of each sample are shown in Figure 1. For simplicity, each group of blends is 

shown with the corresponding base wines. As Figure 1A shows, there is a clear clustering pattern for 

the Cabernet Sauvignon/Merlot blends with respect to the base wine and the blending ratio. Primarily 

the first two dimensions explained the variance: F1 and F2, which had values of 60.37% and 32.95%, 

respectively. This indicates differentiation based on total concentration in addition to composition.  

In this case, there is a traceable pattern, as blends with Merlot as the predominant wine; MS91 and 

MS82, were clustered closer to Merlot. This is not the case with Cabernet Sauvignon, which seems to 

be less influential on the characteristics of the blends. Di-blends containing Cabernet Sauvignon as  

the major base wine (MS19 and MS28) tend to cluster closer to the other mono varietal, Merlot. 

Interestingly, this is consistent with the descriptive sensory attributes differentiation patterns for the 

same blends, where blending Cabernet Sauvignon with other varietals seemed to significantly diminish 

the perception of its characteristics [1]. 

 

 

Figure 1. Linear Discriminant Analysis (LDA) score plot of UV-Vis responses of the 

sensing array to the Cabernet Sauvignon/Merlot blends (A), Merlot/Cabernet Franc (B), 

Cabernet Sauvignon/Cabernet Franc (C) and tri-blends (D). The letters represent the base 

wines, while the number represent the percentage of each wine. For example, MS28 is a 

blend of 20% Merlot and 80% Cabernet Sauvignon. 
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A similar trend was observed for the other di-blends made using Cabernet Franc/Merlot (Figure 1B) 

and Cabernet Franc/Cabernet Sauvignon (Figure 1C). In general, the blends tend to cluster farther 

away from the mono varietals. This is indicative of a significant change in polyphenol composition, 

which could be due to oligomerization and cooperative binding of wine tannins to the sensing 

ensembles [23]. 

In the case of tri-blends (Figure 1D), Cabernet Franc appeared to contribute more significantly to 

the properties of blends in comparison to the other two base wines. Blends containing 10% Cabernet 

Franc and equal amounts of the three base wines (SMF811, SMF181 and SMF111) were clustered 

closer to Cabernet Franc than Cabernet Sauvignon and Merlot. It is unclear why the blend made  

of 30% Cabernet Sauvignon, 10% Merlot and 60% Cabernet Franc is distant from the remaining 

blends and from the three base wines. 

2.2. Predicting the Composition of Tri-Varietal Red Wine Blends 

Partial Least Squares (PLS) Regression was used in this investigation to construct a model for 

predicting wine composition. PLSR is a statistical method that searches for latent variables 

(components) that explain as much as possible of the covariance between a set of predictor variables, X, 

and response variables, Y [24]. The sensor data collected on the binary and ternary mixtures have been 

arranged in two matrices to be used for the successive step of model building and validation.  

In particular, the results of the analysis of the three binary mixtures (98 measures, corresponding  

to 7 replicates of 14 samples coming from Cabernet Sauvignon/Merlot, Cabernet Sauvignon/Cabernet 

Franc or Merlot/Cabernet Franc blends) have been used as the calibration set, while the 49 measurements 

of the ternary mixtures (7 replicates for 7 samples) have constituted the test set, to be used for the 

validation of the predictive model. In order to build a reliable model prior to the chemometric analysis, 

the 7 measurements for each sample have been averaged and only the mean profiles were used in the 

successive stages. Since 27 variables have been measured on each blend (the outcomes of the nine 

sensors at three different wavelength), the predictor matrices Xtrain and Xtest for the calibration and 

validation sets had dimensions 14 × 27 and 7 × 27, respectively. The percentages of the three 

investigated wine varieties in the blends constituted the response matrices Ytrain and Ytest, which had 

dimensions 14 × 3 and 7 × 3, respectively. Indeed, from a modeling standpoint and for the sake of an 

easier interpretation of the results, the possibility of building a single PLS2 regression model relating 

the sensor data to the amount of the three investigated wines was preferred over the possibility of modeling 

each of the responses individually through a PLS1 approach. The difference between the so-called 

PLS1 and PLS2 approaches lies on the fact that the former considers a single response—meaning, in 

the present case, that an individual model should have been fitted to predict the amount of each 

varietal—while the latter accounts for the possibility of modeling altogether all the Y variables. 

As anticipated, the training data Xtrain and Ytrain were used to build the calibration model, whose 

optimal complexity was selected as the one leading to the lowest Root Mean Square Error (RMSE) in  

a 7-fold cross-validation procedure. Auto-scaling was used to preprocess the X-block, while the  

Y-block was only mean centered; eventually, three components were selected for the optimal model, 

whose characteristic figures of merit are reported in Table 1. 
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Table 1. Model performances in calibration and cross-validation. 

 
C. Sauvignon Merlot C. Franc 

Calibration CV 2 Calibration CV 2 Calibration CV 2 

RMSE 1 0.10 0.16 0.065 0.14 0.067 0.15 
Bias 0.000 −0.007 0.000 0.003 0.000 −0.004 

1 RMSE: Root mean square error; 2 CV: cross-validation. 

Successively, the optimal model was used to analyze the validation samples in order to have  

a more unbiased estimate of its predictive performances than one that could be obtained based on the 

cross-validation results. Indeed, since cross-validation is used to select the optimal value of model 

parameters (in this case, the complexity of the PLS model), which are chosen as the ones leading to  

the lowest error, then estimating the predictive ability only based on this procedure could lead to 

overoptimistic results. Accordingly, an external test set is often used for this purpose: validation 

samples are then treated as if they were unknown samples and analyzed using the optimal PLS model. 

The predictions obtained for the test samples are then compared to the actual values of the responses in 

order to have a more reliable estimate of the prediction error. The results of the model predictions  

on the validation samples (tri-blends) are summarized in Table 2 and are graphically represented in 

Figure 2. As shown in Figure 2, the optimized PLS model allowed predicting the percentage of wine 

varietals in the blends with very good accuracy. 

Table 2. Model performances in predicting the percentage of wine varietals in tri-blends. 

 C. Sauvignon Merlot C. Franc 

RMSEP 1 0.18 0.15 0.16 
Bias −0.02 −0.01 0.03 
1 RMSEP: Root mean square error of prediction. 

 

Figure 2. Performance of the Partial Least Squares Regression (PLSR) model using the  

di-blends as the training set (●) in predicting the percentage of Cabernet Sauvignon (A), 

Merlot (B) and Cabernet Franc (C) in the tri-blend test set (■). The calculated RMSEP for 

the model was 0.18, 0.15 and 0.16 for C. Sauvignon, Merlot and C. Franc, respectively. 

Interpretation of the PLS model in terms of the significant variables, i.e., identification of which 

sensing array responses are most affected by the presence of each wine varietal, can be done by 
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inspecting the loadings biplot reported in Figure 3. For example, the presence of Merlot triggered 

responses of the sensors BNT 560, BNS 560 and BNR 560, which correspond to the BPR/Ni2+ 

combination bound to the peptides TT2, SEL1 and RN8, respectively, measured at 560 nm. Cabernet 

Sauvignon produces higher signals in response to the sensors PCS 430 and PCS 444, which correspond 

to the PCV/Cu2+/SEL1 measured at 430 nm and 444 nm, respectively. 

 

Figure 3. PLSR analysis showing the responses of individual receptors in mono varietals. 

The first three letters of the sensors represent the first letters of the indictor, metal and peptide, 

respectively. The number represents the wavelength at which the measurement was taken. 

For example, BNR 560 represents the ensemble BPR/Ni2+/RN8 measured at 560 nm. 

2.3. Correlation of the Peptide Receptors and Sensory Attributes of Red Wine 

To examine the correlation between the peptide-based sensors and the attributes used to describe the 

sensory effect of wine blending, a PLSR model of the data was performed using results from the 

peptide assay as predictors and the sensory attributes as the predicted variables (responses). The 

correlation between the peptide receptors (in black) and sensory attributes (in red) for the PLS first 

three dimensions is shown in Figure 4: dimension 1 vs. dimension 2 (4A) and dimension 1 vs. 

dimension 3 (4B). As shown in Figure 4, with a few exceptions (like sulfur, floral or fruit), most of the 

sensory attributes lie close to one or more peptide receptors in the biplot, allowing correlating the 

former to the instrumental responses. The receptors largely correlate to perceived astringency 

(astrMF). Figure 4A shows a strong correlation between the receptors CCT 430, CCT 444, CCS 430 

and CCS 444 and perceived astringency. This was also true for the receptors BNR 430, BNR 444 and 

CCS560 (Figure 4B). This is suggestive of selective binding to wine tannins and is consistent with our 

previous findings [22]. However, it remains unclear and to be investigated whether the receptors 

discriminate between the different oligomerization states of flavonoids in wine. Grape seed and skin 

extracts contain a mixture of tannin monomers and small oligos [25], where the degree of polymerization 

is known to influence perceived astringency [26]. All wine samples used in this investigation were 

made using grapes harvested at the University of California-Davis owned vineyard. Since temperature 

is known to influence biosynthesis of polyphenols in grapes [27], future investigations addressing 

climate and seasonal variation are needed. 
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Figure 4. PLSR correlation plot of the predicting variables in black (responses of the 

peptide assay) and the predicted variables in red (wine sensory attributes) on the first three 

dimensions; component 1 vs. component 2 (A) and component 1 vs. component 3 (B). As 

shown, the peptide sensors are mostly correlate to taste and mouth feel sensory attributes of 

red wine and, more specifically, to perceived astringency (astrMF).  

3. Experimental Section 

3.1. General 

The colorimetric indicators Chrome Azurol S (CAS) (65%), Bromopyrogallol Red (BPR) and 

Pyrocatechol Violet (PCV) (purity 100%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Nickel chloride hexahydrate (99.70%), copper (II) sulfate (purity 99.20%) and HEPES buffer were 

purchased from Fisher Scientific (Pittsburgh, PA, USA). All solid phase peptide synthesis materials 

were purchased from Novabiochem (San Diego, CA, USA). Wine blends used in this investigation 

were provided by Heymann’s research group at the University of California-Davis (Davis, CA, USA). 

The blends were made from the base wines; Cabernet Sauvignon (S), Merlot (M) and Cabernet Franc 

(F). Composition of the eighteen blends that were tested is shown in Table 3. The letters stand for the 

respective base wines used to make the blend while the numbers stand for the ratios at which the wines 

were blended. For example, SM91 is a blend made by mixing 90% Cabernet Sauvignon and 10% 

Merlot. Total polyphenol concentrations were determined using the Folin-Ciocalteu method. All 

absorbance measurements were obtained using a Spectra Max Plus 384 plate reader (Molecular Device 

Inc., Sunnyvale, CA, USA). 

Table 3. Composition of the Red wine blends used in this investigation. 

Number Label S M F 

1 S 100%   
2 M  100%  
3 F   100% 
4 SM11 49.6% 50.4%  
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Table 3. Cont. 

Number Label S M F 

5 SM91 90.1% 9.9%  
6 SM82 80.2% 19.8%  
7 SF11 49.4%  50.6% 
8 SF91 90.1%  9.9% 
9 SF82 80.3%  19.7% 

10 MS91 9.9% 90.1%  
11 MS82 19.7% 80.3  
12 MF11  50.7% 49.3% 
13 MF91  90.1% 9.9% 
14 MF82  80.0% 20.0% 
15 SMF111 33.4% 33.2% 33.4% 
16 SMF811 80.0% 10.0% 10.0% 
17 MSF811 10.1% 79.9% 10.1% 
18 Blend 30.4% 14.9% 54.8% 

3.2. Indicator Displacement Assay of Wine Blends 

An array of nine peptide based sensing ensembles was used in this investigation. Each individual 

receptor was composed of a short, metal binding peptide, a divalent metal ion and a colorimetric 

indicator. Three peptides were used in our investigation: RN8 (WEEHEE), TT2 (WAHEDEFF), and 

SEL1 (FHFPHHF). Peptides were synthesized on site as previously described using Prelude solid phase 

peptide synthesizer, Protein Technologies, Inc. (Tucson, AZ, USA) [19]. The binding ratios of the 

ensembles have been previously optimized for discrimination of red wine varietals [19]. Table 4 shows 

the composition of each receptor and the binding ratios used in the assay. All assays were performed in 

96-well plates. The final wine concentration was 1% (v/v) in 50 mM HEPES buffer, pH 7.4. 

Displacement of the indicators by the tannins in wine was monitored at 430, 400, and 560 nm, the λmax 

of the free Chrome Azurol S (CAS), Bromopyrogallol Red (BPR) and Pyrocatechol Violet (PCV), 

respectively. All measurements were taken in seven replicates to ensure reproducibility. 

Table 4. Composition of individual receptors used in this investigation. 

Assembly Code 
Binding Ratio  

(Indicator:M2+:Peptide)
Final Indicator  

Concentration (mM) 

PCV-Cu2+-SEL1 PCS 1:1:1 0.075 
PCV-Cu2+-TT2 PCT 1:1:0.5 0.075 
PCV-Cu2+-RN8 PCR 1:1:0.5 0.075 
CAS-Cu2+-SEL1 CCS 1:1:0.5 0.06 
CAS-Cu2+-TT2 CCT 1:1:0.4 0.06 
CAS-Cu2+-RN8 CCR 1:1:0.4 0.06 
PBR-Ni2+-SEL1 PNS 1:1:0.75 0.018 
PBR-Ni2+-TT2 PNT 1:1:0.4 0.018 
PBR-Ni2+-RN8 PNR 1:1:1 0.018 
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3.3. Statistical Data Analysis 

Linear Discriminant Analysis (LDA) was used for classification of the wine samples. Partial Least 

Squares Regression (PLSR) was used for the correlation of wine sensory attributes to the peptide-based 

receptor responses. Data analysis was done using the software XLSTAT (Addinsoft, NY, USA) and  

R [28]. Absorbance values due to wine without the sensing ensembles were subtracted from the final 

absorbance change before the multivariate data analysis was performed. 

3.4. Prediction of the Tri-Blends Composition 

Calculations and model building were performed using in-house written routines running under 

Matlab environment [29]. Averages of seven replicates for fourteen samples: three mono varietals and 

eleven di-blends were used to construct the predictive model using Partial Least Squares Regression 

(PLSR). The measured absorbance values were used as predictors (independent variables) while the 

percentages of the varietals were the responses (dependent variables). Cross validation was used to 

determine the proper dimensionality (complexity) of the PLSR model. In other words, to determine the 

number of latent variables (LV) that leads to the lowest RSME. Cross validation is performed by 

removing a subset of data and building the model using the remaining points. With each iteration,  

a model is built with varying number of latent variables and an error is calculated for the model. The 

model was then used to predict the responses for the samples in data subset that was removed, which 

were not used for building the model. At the end of the cross validation process, all errors are graphed 

as a function of the number of latent variables and the complexity of the model is determined as the 

number of LV with the lowest error. 

Once optimized, the model was used to test its performance in predicting the responses of a test set. 

In our case, predicting the composition of tri-blends, which were not used in building the model. The 

predictions obtained by the model are then compared to the actual (observed) values of the responses 

to estimate the RMSEP (error of prediction). 

4. Conclusions 

In the present study, we have demonstrated that an array of cross reactive, multicomponent 

receptors composed of a short peptide, a divalent metal ion, and a colorimetric indicator, can successfully 

be used to differentiate red wine blends based on tannin composition. This further emphasizes the 

utility of these sensors in wine analysis, authentication and fraud prevention. Correlation analysis 

showed that the majority of the sensors correlate well with the taste and mouth-feel descriptive sensory 

attributes of red wine, and to perceived astringency, in particular. In addition to qualitative tannin 

analysis, we presented the first quantitative, predictive model for red wine composition. The validated 

model predicted the percentage of three mono varietals in four independent four tri-blends that were 

not used to build the model. The quantitative prediction was calculated with a 15% average RMSEP. 

Our findings set the foundation for developing a multicomponent Electronic Tongue for wine analysis. 
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