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Abstract: This paper describes the development of the unified conformational sampling and 

docking tool called Sampler for Multiple Protein-Ligand Entities (S4MPLE). The main 

novelty in S4MPLE is the unified dealing with intra- and intermolecular degrees of freedom 

(DoF). While classically programs are either designed for folding or docking, S4MPLE 

transcends this artificial specialization. It supports folding, docking of a flexible ligand into 

a flexible site and simultaneous docking of several ligands. The trick behind it is the formal 

assimilation of inter-molecular to intra-molecular DoF associated to putative inter-molecular 

contact axes. This is implemented within the genetic operators powering a Lamarckian 

Genetic Algorithm (GA). Further novelty includes differentiable interaction fingerprints to 

control population diversity, and fitting a simple continuum solvent model and favorable 

contact bonus terms to the AMBER/GAFF force field. Novel applications—docking of 

fragment-like compounds, simultaneous docking of multiple ligands, including free 

crystallographic waters—were published elsewhere. This paper discusses: (a) methodology, 

(b) set-up of the force field energy functions and (c) their validation in classical redocking 

tests. More than 80% success in redocking was achieved (RMSD of top-ranked pose < 2.0 Å). 

  

OPEN ACCESS



Molecules 2015, 20 8998 

 

 

Keywords: genetic algorithms; conformational sampling; docking; interaction fingerprints; 

force field fitting 

 

1. Introduction 

Knowledge of the experimental structure of a target enables the use of structure-based drug  

design [1–3] (SBDD) methods. The key foundation of SBDD is computational prediction of geometries 

of interacting molecules, and their associated energy levels—in other words, conformational sampling 

(CS) [4–6]. This term covers everything from protein/peptide folding simulations to organic ligand 

conformer generation, to docking—albeit the latter is classically considered as a stand-alone chapter in 

SBDD. Docking [7–10] can be defined as the prediction of ligand-target complex structures at the atomic 

scale—CS of a super-molecular complex, in other words. There are three main docking simulations 

types, depending on considered degrees of freedom (DoF): 

• rigid docking (target and ligand are considered rigid) 

• semi-flexible docking (flexible ligand and rigid target) 

• flexible docking (flexible ligand and partly flexible target) 

Rigid docking programs are very fast but often inaccurate, since the required bioactive conformation 

of the ligand is rarely known. The program FRED [11] behaves as a fully rigid tool during the sampling 

step, but it uses a pool of conformers for each ligand. Most other tools explicitly sample ligand 

conformations during the docking process. Simultaneously, the search engine explores the different 

positions of the ligand within the rigid binding site, using translational and rotational degrees of freedom 

of the ligand. FlexX [12], Glide [13], DOCK [14] and Surflex [15] are widely used software of the  

semi-flexible category. Still, the hypothesis of a rigid target is often penalizing, since ligand binding often 

implies structural rearrangements of the target site, ranging from side chain to whole loop/subdomain 

displacements. There are different ways to include target flexibility. The most intuitive approach is to 

use an ensemble of different conformations of the receptor, and to perform semi-flexible docking on 

each target structure. Various conformations of the binding site obtained by X-ray or snapshots from 

molecular dynamics simulation can be used to create the collection of inputs. An alternative way is to 

generate a single united protein model, as in the FlexE strategy [16], from an ensemble of superimposed 

structures. In this model, the non-conserved regions are treated as alternative locations. Eventually, 

programs like Autodock [17,18] and Gold [19,20] may explicitly sample target DoF local flexibility, from 

rearranging polar hydrogens to sidechain rotations. Programs like RosettaLigand [21], FlipDock [22], 

FITTED [23–25] and IFD [26] allow for both backbone and sidechain flexibility. The real challenge 

remains to develop algorithms able to screen a database with flexibility in order to simulate 

conformational changes of the binding site (a phenomenon known as ‘induced fit’). 

1.1. Sampling Strategies 

In practice, a both exhaustive and time-effective exploration of the degrees of freedom of the whole 

receptor-ligand-solvent system is not possible. Molecular dynamics-based approaches [4,27,28] have a 
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low propensity to bypass energy barriers, and are very slow to move the ligand into the constraining 

active site. However, they have a real physical basis, and are very useful during local optimization stages 

in order to find the closest local minima. Alternatively, popular stochastic heuristics such as Monte Carlo 

and evolutionary-based strategies are very general, so they can be adapted for many purposes, among 

them docking. Monte Carlo (MC) strategies [29] consist in several cycles of random modifications of a 

system coupled with a thermal bath, so that the acceptance probability of a random step is dictated by 

the Metropolis criterion (the Boltzmann term of the associated energy variation) at a given temperature. 

Evolutionary/Genetic Algorithms (EA/GA) [10,30–32] rely on simulations of Darwinian evolution: 

‘individuals’ or ‘chromosomes’ (vectors encoding points in the problem space to visit—here, 

coordinates of a molecule or of a molecular complex—are more likely to be selected into the next 

generation population if their fitness—here, the conformational stability—is higher. The chromosomes 

of the population undergo random modifications with biological operators such as mutation and  

cross-overs. Several docking tools, based on EA/GA, have been developed, among others GOLD, 

Autodock, FlipDock, EAdock [30,33], LGA [34] and FITTED. Since S4MPLE is GA-driven, the 

technical details thereof will be discussed in the Experimental section. 

1.2. Scoring Functions 

In-depth conformational sampling should, in principle, enumerate enough possible states to allow 

determination of the free energies of various conformers (understood as ensembles of geometries within 

a potential energy well). If so, then the free energy differences between bound and dissociated site-ligand 

states should directly lead to the binding affinity of that protein-ligand pair. In practice, this is not 

possible—both because sampling is never exhaustive enough, but mainly because the energy, function 

of the geometry, is insufficiently accurate. Therefore, most programs use scoring functions—basically 

QSAR equations trying to predict binding free energy as a function of a (typically, the lowest-energy) 

site-ligand pose. Such empirical scoring functions [8,35,36] are a weighted sum of ligand-receptor 

interaction terms. These often include hydrogen bonds, ionic bonds and hydrophobic contributions, 

clashes or even entropic penalties. Weights of each term of this QSAR equation are obtained by a 

regression analysis on a reference set of receptor-ligand complexes with known binding affinities, or 

from relative occurrence likelihoods in experimental structural databases. S4MPLE does so far not 

implement any free-energy scoring function: preferred poses are selected with respect to their force field 

energies only. This paragraph was inserted because S4MPLE will be compared to state-of-art docking 

problems which do use them. 

1.3. Overview of This Article 

S4MPLE has been conceived as a completely general conformational sampling program, specifically 

targeted at complex problems of the size of peptide folding and flexible docking problems. Its specificity 

is the generic approach to sampling, which transcends the traditionally accepted distinction made 

between folding and docking approaches. Full control over the considered and respectively frozen DoF 

allows S4MPLE to be used in either single-molecule sampling (up to small peptide folding), in any of 

the three main docking scenarios cited in the introduction, and beyond (protein loop repositioning in 

protein homology models, docking in presence of mobile protein loops, simultaneous or concurrent 
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docking of several ligands into a same site, etc.). Previous publications concerning prior related 

developments were of technical nature, and considered the deployment strategies of the GA-driven 

conformational sampling algorithm on computer grids. 

Specific difficult sampling and docking problems for which S4MPLE was originally designed were 

already published [37,38] or will be subject of independent publications. This report focuses on technical 

details and eventually outlines some of the classical benchmarking studies—a must when designing and 

validating a new sampling and docking tool. Addressed issues, in relative order of importance, are: 

• The key novelty in S4MPLE: genetic operators supporting the unified handling of both intra- and 

inter-molecular DoF 

• Differentiable interaction fingerprints to monitor conformer diversity—another important  

original development 

• Employed evolutionary strategies, the originality of which draws on the novelty of involved 

operators and diversity control tools 

• The set-up and fitting of the force field (FF) engine used for energy calculations, based on the 

classical AMBER [39,40]/Generalized AMBER (GAFF) [39,41]. The introduction of classical FF 

terms is combined with the introduction of—occasionally innovative, often adapted—additional 

terms: chirality control terms, a continuum solvent model and favorable contact (hydrophobic, H 

bonding) bonus terms. The latter, together with classical customizable FF terms—such as the 

chosen dielectric constant, and a herein introduced repulsive van der Waals coefficient weighing 

term—need fitting. 

• Introduction of the herein used data sets. 

• The fitting protocol of the additional terms. This may count as a conceptual novelty in as far as 

calibration efforts based on published ligand-protein complexes of known affinities were so far 

reserved to derivations of free energy-predicting scoring functions [7,42], not to fine-tune the FF 

engine per se. 

• Eventually, the redocking protocol used to asses S4MPLE proficiency in classical docking 

benchmarks is given, in parallel to the similar protocol running FlexX, for comparison purposes. 

2. Experimental Section 

2.1. S4MPLE 

S4MPLE is a flexible molecular modeling tool, based on a hybrid Genetic Algorithm (GA), 

combining molecular modeling-specific optimization and classical evolutionary sampling strategies. 

Allowing full control of the considered degrees of freedom, S4MPLE is a completely general approach 

to visit the conformational space of arbitrary molecules or molecular complexes. Its focus is on thorough 

geometry sampling, without need to rely on compound class-specific working hypotheses (amino acid 

rotamer libraries, etc.), potentially restraining its applicability domain. As such, it may be equally well 

used for conformational sampling and docking—which is nothing but sampling of a ligand in presence 

of a binding site. The site does however not need to be a protein, which makes S4MPLE useful for 

simulations of arbitrary molecule self-assembly processes. Being conceived in view of large-scale 

deployment on computer grids, the only limitations of its applicability are (a) the studied system size vs. 
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available computational resources, and (b) the availability of force field parameters for the studied 

molecules. S4MPLE is written in object-Pascal, and used in command-line mode. 

2.2. Hybrid Evolutionary Operators 

S4MPLE represents the further development of an evolutionary sampling tool deployed on computer 

grids. This precursor [43] is a classical rigid rotamer approach, where the vector of torsional angle values 

assigned to each considered rotational axis formed the ‘chromosome’ of the problem (completed with 

Euler angles and translation vector values for docking). By contrast, herein considered full flexibility 

requires working with Cartesian coordinates of each atom. Or, the matrix xij, with i being the atom index 

and j = 1–3 the coordinate index (j = 1 means ‘x’, 2 is ‘y’ and 3 is ‘z’) is a poor support for direct 

crossovers and mutations. Single-point mutations make little sense in this context (changing one 

coordinate of one atom at a time would lead to a locally distorted geometry of extremely high energy, 

yet similar to its parent). Plain crossing-over of two sets of Cartesian coordinates is bound to lead to 

physically impossible geometries, because, unlike torsional angle vectors, these are not invariant to  

roto-translation. The key challenge in the development of S4MPLE was the conception of genetic 

operators able to manipulate both intra- and inter-molecular DoF, in order to achieve the desired 

unification of sampling/folding and docking. The first step in this direction was, of course, abandoning 

the above-mentioned torsion-angle-centric approach in favor of full flexibility (all while maintaining a 

central role for torsional angles in the new strategy). These original cross-overs and mutation procedures 

will be introduced in the paragraphs following discussion of prerequisites related to atom flexibility 

status. Next, ‘Lamarckian’ local optimization operators (LO—classical gradient-based optimization-driven), 

are described. Eventually, this section concludes on a brief description of population initialization.  

2.2.1. Atom Flexibility Status 

By default, all atoms are considered flexible. Fixed atoms need to be explicitly listed in an input file. 

S4MPLE may input at most two distinct molecule files in mol2, car or sdf format, one of which may 

contain several species. When several molecules are input (for example, a protein site from mol2 and a 

set of competing ligands from sdf), the ‘site’ is assumed to be the species containing fixed atoms. 

S4MPLE starts by checking for rotatable (singe exocyclic) bonds, in order to break up the molecule into 

fragments, which constitute the ‘operands’ on which the generic operators will apply. By default, a 

minimal size of five atoms is required per fragment. Any single bonds (except amide, by default) 

exocyclic bond divides a molecule into two moieties. The smaller (amongst moieties not containing any 

fixed atoms) will preferentially become the fragment associated to that bond. When both moieties happen 

to contain fixed atoms, there will be no fragment associated to that bond. Therefore, some atoms may be 

not part of any fragment, without being fixed (their geometry may change during gradient optimization, 

for example). Let us refer to these as ‘passive’ moieties.  

A ring system will typically count as a single fragment, and intra-cyclic bonds are not considered as 

recombination points either. This behavior can be changed by formally declaring one of the ring bonds 

as ‘broken’. Using this trick, S4MPLE will specifically ignore a given bond during the fragment list 

build-up, but its harmonic FF contribution is not modified. The consequence is the ability to sample ring 

conformations. Likewise, if a bond within the path connecting two fixed moieties (example: a peptide 
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bond within a loop connecting two fixed helices) is ‘broken’, atoms in that loop lose their passive status, 

and are incorporated in regular fragments. 

Disjoined molecular graphs void of any fixed atoms are considered as stand-alone molecules (e.g., 

ligands). They will be rendered as non-covalently connected fragments, assuming one of the putative 

favorable inter-fragment contacts to play the role of connector instead of the covalent bond—see further on. 

2.2.2. Cross-Over Operators 

In the following, molecule crossover, producing a chromosome child: = CROSS (parent1, parent2), 

shall refer to a generic procedure taking two mating individuals as arguments, and randomly calling one 

of the two recombination operators designed here: fragment recombination, preferentially used  

in 80% of cases, and the alternative uniform torsional crossover. Eventually, it performs a LO  

(gradient relaxation). 

• Fragment recombination randomly picks a pair of complementary molecular fragments (F, f) 

defined at the beginning of the simulation. Such fragments may correspond either to two radicals 

(F containing more atoms than f), covalently connected to each other by a rotatable bond (see 

Figure 1), or a loose ligand f moving freely with respect to the receptor moiety F. In this way, 

folding and docking, the two key applications typically dealt with by different software suites, are 

here unified. The fragment recombination takes place in several stages. First (step a in Figure 1) 

the geometry of F (xij, atom i∈F, coordinate j = 1–3) is taken from the first mate, whereas the 

geometry of f is imported from the second, as f'. Next (step b), f' will be reconnected to F, i.e. the 

imported coordinates (xij, i∈f') are submitted to a roto-translation meant to replace them in a 

chemically meaningful way with respect to F. 

 

Figure 1. Principle of fragment recombination. 

For bound fragments this means restoring valence bond length and angles around the cut bond to 

chemically acceptable values. For loose ones, the role of the chemical bond to be restored is formally 

assigned to a randomly picked hydrophobic contact or hydrogen bond involving one atom from F and 

another from f'.  

By default, S4MPLE would randomly try to realize any of the putative favorable contacts between 

them. Practically, however, when F is a large biomolecule, it will offer very many putative contact 

partners. Unbiased browsing through all these possibilities to suggest possible ligand placements (all 

around the protein surface)—would however represent a huge waste of time. Therefore, a hot_spots file 

enumerating the eligible contact partners of the active site (preferentially at the cleft bottom) is used to 

proactively orient the ligand towards the binding cleft. On the ligand side, all carbons, acceptors and 
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donors count as putative contacts. First, a putative pair of matching contact atoms a∈F and a'∈f' 

(hydrophobe-hydrophobe or acceptor-donor) is selected. Next, for both a and a' S4MPLE tries to find a 

random solvent-accessible point on each of the contact spheres surrounding these atoms at vdW plus 

solvent probe radius (here 1.1 Å, slightly less than the water probe radius of 1.4 Å: slight clashes may 

be tolerated in initial poses). If detection of such an accessible point fails, for either a or a', then the pair 

(a, a') is dropped and the algorithm then tries to pick another—until all the 50 pair picking trials are 

exhausted. Suppose the selected accessible points were P and p' respectively. Partners are then brought 

within contact distance, i.e. the atom a' is placed at P. Next, f' is rotated in order to render vectors a'–p' 

and a–P antiparallel—meaning that f' is being tentatively kept, as much as possible, outside of the 

exclusion volume of F. 

The above-mentioned constraints for rearrangement of f', for both fragment junction types (covalent 

and loose), do not completely define the new geometry of the child structure. In particular, f' is free to 

rotate around the newly formed F–f' bond (or contact axis). This torsional degree of freedom may be 

determined according to two alternative fragment fitting procedures: 

o DockC randomly rotates f' around the F–f' axis, either until a clash-free arrangement is obtained, 

or a maximal number of attempts (50) is reached. 

o DockE pursues random rotations while attempting to minimize the inter-fragment interaction 

energies. It stops and returns the most stable pose found so far if 20 successive attempts failed to 

discover any better one. 

DockE, the more resource-consuming of the two approaches, is randomly called in 30% of cases. 

Eventually, the geometry returned by DockC/DockE is submitted to LO. Note that LO may dramatically 

modify geometry, and therefore the genetic material of parents is not necessarily preserved in the child. 

• Uniform torsional crossovers browse through the list of rotatable bonds, randomly pick one of the 

two parents as “donor” and set the associated torsion angle value in the child geometry equal to 

the one of the donor. This is a usual type of crossing-over operator. LO is then used to tentatively 

relax the atom clashes in the brute geometry associated to the combined list of torsion angle values. 

2.2.3. Mutations 

The Mutation operator child: =MUT (parent) first randomly picks a pair of fragments (F, f), then 

checks whether these are bound or loose fragments. In the first case, a torsional angle associated to the 

inter-fragment bond is forced to change, either randomly or by means of a temporary constraint term in 

the energy function, followed by gradient optimization of geometry on this perturbed energy surface 

(“driven” mutations as reported previously [43]). Otherwise (loose fragment case), mutation is 

performed as a crossover of the molecule with itself. In other words, there is a repositioning of f with 

respect to F, allowing new inter-fragment contacts to be established, and leading to novel geometries. 

2.2.4. ‘Lamarckian’ Local Optimization 

Occasional gradient-based local optimization (a.k.a ‘Lamarckian’ local optimization), during the 

evolutionary sampling procedure, is mandatory for molecules. This is due to the extreme ruggedness of 

the energy function. It is unwise to wait for a very long time until an appropriate mutation alleviates the 
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bad contact, when few steps of gradient-based optimization may instantly solve the problem. All genetic 

operators will include, as a last step, a random number (between 20 and 50) of conjugate gradient  

(CG) relaxation iterations. These procedures will be generically referred to as LO (Local-or  

Lamarckian-Optimization). 

2.2.5. Exhaustive Energy Minimization 

This operator is a succession of various descent methods (SD, CG, BFGS), alternatively applied to 

(a) the actual energy and (b) to a modified energy landscape, with the weight of the bond stretching 

contributions downscaled from the default 1.0 to some random value within (0.0, 0.2). Softened bonds 

allow for a temporarily less rugged potential, allowing gradient-based methods to escape irrelevant local 

minima. Successive minimization cycles are performed, toggling nominal and softened bond terms, until 

convergence. This approach is employed to refine so-far best sampled geometries before output, or at 

post-processing stages. 

2.2.6. Initialization 

Random Initialization (RI) consists in scrambling the current geometry of the molecule object in 

memory by random rotations around torsional axes. Next, each fragment is tentatively rearranged in a 

clash-free manner (DockC). LO completes the procedure. 

2.3. Population Diversity Control: Interaction Fingerprints 

Any population-based heuristics is strongly tributary to a population diversity control mechanism. In 

absence of such, the risk of premature convergence is very important (via accumulation of minor mutants 

of a dominant, local energy minimum). S4MPLE adopts the postulate that two geometries may be 

considered redundant if they share a same set of contacts. This postulate is embodied by novel, fuzzy 

and differentiable Pairwise Interaction Fingerprints (PIF). Unlike classical ligand-protein IF used in 

docking [44–46], PIFs are: 

• general, regrouping both intra- and intermolecular favorable contacts: hydrogen bonds and 

hydrophobic contacts 

• symmetry-compliant, i.e. invariant to swapping of the contact status of topologically equivalent 

atoms: rotation of 180° of a carboxylate group having one of its oxygens acting as acceptor in a 

hydrogen bond will not change the fingerprint, as the hydrogen bond now involves a different, yet 

topologically equivalent oxygen. 

• differentiable, rather than binary: contact status varies smoothly between 0 (absent) and 1 (fully 

established) as the corresponding contact distance scans [dmin, dmax].  

Building this fingerprint, for a given molecular geometry, relies on preliminary atom typing work 

(done at the molecule input stage). This includes, first, detection of hydrophobes (carbons), hydrogen 

bond donors and acceptors. Assignment into the latter two categories is based on the AMBER/GAFF 

force field types: 
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• H-bond donors : H, HO, HW, hn, ho, hw 

• H-bond acceptors : O, O2, OW, OH, OS, NB, NC, NY, o, oh, os, ow, n1, n2, n3, na, nb, nc, nd, 

ne, nf 

Atoms of types others than listed above or amongst the considered classes of hydrophobes (detailed 

in Table 1) are not accounted for in PIFs. Next, ‘symmetry sets’ Sk of topologically equivalent atoms are 

built—let their number be k = 1...NS, while N denotes the total number of atoms. Atoms are topologically 

equivalent if they are of the same element, same partial charge Qi and have identical values of their 

below-given topological indices. These (Ii
1, Ii

2) capture the environment of the atom i in the molecular 

graph (topological distances, i.e. the shortest path-based number of bonds between, i and j, are labeled 

Tij). For generality, atoms from disjoined moieties (i.e. i in ligand, j in the protein) are set to infinity 

(practically, Tij = 999). 

Table 1. Description of the AMBER/GAFF carbon types and their classes. 

Category Force Field Atomic Type Description (from AMBER/GAFF Parameters File)

Polarized 
AMBER C sp2 C carbonyl group 

GAFF c sp2 C carbonyl group 

Aromatic 

AMBER C* sp2 arom. 5 memb.ring w/1 subst. (TRP) 
AMBER CA sp2 C pure aromatic (benzene) 
AMBER CB sp2 aromatic C, 5&6 membered ring junction 
AMBER CC sp2 aromatic C, 5 memb. ring HIS 
AMBER CN sp2 C aromatic 5&6 memb.ring junct.(TRP) 
AMBER CR sp2 arom as CQ but in HIS 
AMBER CV sp2 arom. 5 memb.ring w/1 N and 1 H (HIS) 
AMBER CW sp2 arom. 5 memb.ring w/1 N-H and 1 H (HIS) 

GAFF ca sp2 C in pure aromatic systems 
GAFF cc sp2 carbons in non-pure aromatic systems 
GAFF cd sp2 carbons in non-pure aromatic systems 
GAFF cp Head sp2 carbons connecting rings in bi-phenyls 
GAFF cq Head sp2 carbons connecting rings in bi-phenyls 

Aliphatic 

AMBER CT sp3 aliphatic C 
GAFF c1 sp C 
GAFF c2 sp2 C 
GAFF c3 sp3 C 
GAFF ce Inner sp2 carbons in conjugated systems 
GAFF cf Inner sp2 carbons in conjugated systems 
GAFF cg Inner sp carbons in conjugated systems 
GAFF ch Inner sp carbons in conjugated systems 
GAFF cu sp2 carbons in triangle systems 
GAFF cv sp2 carbons in square systems 
GAFF cx sp3 carbons in triangle systems 
GAFF cy sp3 carbons in square systems 
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Figure 2. Principle of Interaction Fingerprints: each element represents a unique putatively 

favorable interaction, which may be embodied by different topologically equivalent atoms. 

For example, the E26-R54 ionic contact above is ‘on’ (associated PIF element set to 1.0) as 

soon as either of equivalent HZ/R54 are within contact distance of either of OE/E26  

(* meaning ‘either atom’). For all distances between equivalent atoms (dotted lines of a same 

color) the corresponding contact strength are calculated and eventually averaged according 

to Equation (7). This biased average (favoring strong contact contributions) is reported in 

the associated PIF cell (color matching distance lines). 

Note that these symmetry classes are also employed by S4MPLE to calculate symmetry-compliant 

root-mean-square-deviation (RMSD) values of atomic coordinates (not further detailed here—additional 

information available upon request). See the Supplementary Material for the pseudo-code describing the 

symmetry set build-up. Figure 2 exemplifies the mapping of monitored contacts in the fingerprint. 

Note that any member i of a set S is equally distant, in terms of topological distance, from any other 

j∈s. Therefore, the topological distance T between symmetry sets can be defined as: ( , ) 	= ∀ ∈ ∀ ∈  (1)

The contact fingerprint is then built with respect to all pairs of sets (s, S) where either both s and S 

are sets of hydrophobic carbons, or s are acceptors while S are donors. Only pairs of sets with at least 

one free atom, and not topologically too close (i.e. always close in space), are selected: T(s, S) > 5. 

Therefore, the fingerprint dimension NF equals to the total number of set pairs above. The PIF is thus 

defined as a vector of k = 1 – NF real values, in which every element PIFk monitors the contact strength 

associated to a pair (sk, Sk) of symmetry sets fulfilling the above condition. 
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Element PIFk is thus a function of coordinates of a variable number of atoms i∈Sk and j∈sk. Pairwise 

contact intensity Cij for each atom pair (i, j) can be inferred from Equation (5) below. Then, PIFk could 

be chosen to equal the maximal of all possible pairwise Cij. Unfortunately, this would not be a 

differentiable function. Therefore—except for the trivial case when PIFk = 0 because all Cij = 0—the 

self-weighed average of contacts is used to define PIF: = ∑ ∑ ∈∈∑ ∑ ∈∈  (2)

The main application of PIFs is the geometry redundancy check. Used by the default evolutionary 

strategies, this basically amounts to calculating the fingerprint size-relative block distance  ( , ) = ∑ 	−	 /  between two geometries g and G, each encoded by a chromosome 

in the population. This block distance represents a generic fraction of contacts having different status in 

G and g respectively. A user-defined minfpdiff cutoff (typically 0.01 for rigid site docking) is used to 

define geometry redundancy: g and G are redundant if the status of more than 99% of the theoretically 

possible contacts monitored in the PIF is unchanged. 

The degree of originality ω(G) of an individual G is defined as the smallest ( , ) between G and 

any other fitter individual g. In other words, if G and g encode near identical geometries, but geometry 

g is energetically more stable, then G alone will be assigned a low originality score and replaced by the 

diversification strategy. Two distinct routines called ReplaceMostRedundant and 

RandomizeIfRedundant are in charge of population diversification, controlled by minfpdiff. 

ReplaceMostRedundant allows an offspring O with a high degree of originality to potentially 

replace one of the redundant individuals in the population. The eligibility of O as a potential replacement 

increases with its originality: if ω(O)>minfpdiff, the child O is certain to participate, rather than strictly 

compete against its parents. The most redundant member (MR) of the current population is determined 

as follows: 

• first, ωmin = min[ω(M)]—the minimal degree of originality over all members M of the 

population—is found. MR is taken to be the least fit individual among the least original members 

M (those with ω(M) ≤ 1.1ωmin). 

• An empirical trade-off between diversification and acceptation of less fit individuals is achieved: 

individual O replaces MR if its excess energy E(O)−E(MR) in kcal/mol is ‘compensated’ by the 

gain in diversity, at user-defined div2E parameter. If E(O)−E(MR) ≤ div2E[ω(O)−ω(MR)] and 

ω(O) > ω(MR), then the individual O replaces MR, and an offspring is accepted in the population 

and coexist with its parents. By default, children only replace their parents. 

RandomizeIfRedundant can be applied to each member of the population, once per generation, after 

mutations, crossovers and replacements. Depending on the degree of originality ω(I) of the current 

individual I, of energy E(I), this will be considered for randomization if rand() < ω(I)/minfpdiff. 

Attempts to randomly generate a new individual M of energy E(M) and originality are made, until 

• M represents an acceptable trade-off between fitness loss vs. originality gain with respect to I: 

E(M) − E(I) < div2E[ω(M) − ω(I)], or 

• the allotted number of attempts (5) is reached. 
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2.4. Evolutionary Strategies 

Several evolutionary strategies were built on the basis of the above operators—three of which are 

described here. They are based on a set of standard procedure calls (described above as genetic 

operators). The pseudo code from Appendix 2 depicts a standard genetic algorithm (SGA), while the 

code from Appendix 3 depicts a simple evolutionary procedure (‘evol’). The term MightReplace stands 

for the standard challenge of the parents by the offspring. If an offspring is not original enough to enter 

the population by replacing a redundant individual (see ReplaceMostRedundant), it may challenge its 

parents on basis of its fitness score alone: if fitter, it will replace its least fit parent. 

Alternatively, an elitist strategy ensures the survival of the fittest individuals in the next generation. 

The considered size of the elite subpopulation is 20% of the entire population. At each generation, the 

population is ranked based on the energy function and the best fitted chromosomes are declared elite, 

and cannot be modified or replaced. The general scheme of the considered Elitist Genetic Algorithm 

(EGA) is the same with that of SGA with the main difference that an elite individual will not be replaced 

by any of the ReplaceMostRedundant or RandomizeIfRedundant procedures.  

2.5. Force Field 

Two force fields are currently implemented in S4MPLE: 

• CVFF (Consistent Valence Force Field) [47], which has been imported from the previous work 

on a torsion-driven sampling tool [43,48] and, 

• AMBER/GAFF, exclusively used in the herein reported results. AMBER [40] is widely used to 

simulate proteins and nucleic acids. Recently, its authors published GAFF, an extension for 

arbitrary organic molecules [41], comparable in accuracy to other force fields such as  

MMFF94 [49] or Tripos FF [50]. 

2.5.1. Continuum Solvent Model and Contact Terms 

In addition to the classical in vacuo force field terms, S4MPLE includes a specific continuum 

solvation model of maximal simplicity, in order to minimize its computational cost. It relies on simple 

functions of inter-atomic distances: 

• A pair-based desolvation term (Equation (3)) [51], function of partial charges Q and distance d 

between two atoms i and j, and scaled by a generic constant (more about this in the force field 

fitting paragraph): = +
 (3)

• A linearly distance-dependent relative dielectric constant (εr) is used in the Coulomb term [52], 

which de facto makes it a function of 1/d2: = 332
 (4)
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• Contact terms (Equation (5)) [51], rewarding favorable interactions such as hydrophobic contacts 

and hydrogen bonds were added to the FF. In this context, hydrophobic contacts refer to close 

carbons in space, and hydrogen bond donors are hydrogens on heteroatoms. Constant κij is a 

function of the nature of the contact, and the types of involved atoms i and j, see parameter fitting 

below. Cij encodes contact strength: full contact Cij = 1 is assumed at dij < dmin. Contact ceases 

completely at dij > dmax, and its strength varies smoothly within the switching range [dmin, dmax]. 

This range is contact type dependent: for hydrophobic contacts, a range of [4.5, 5.5] Ǻ is used. 

For hydrogen bonds, the range is atom pair specific: [(sum of vdW Radii) − 0.5, (sum of vdW 

Radii) + 0.1]: = = 0.5 + 0.5 ∗ −− 	  (5)

Since these terms are not included into the native FF, the additional parameters needed calibration, 

as outlined in the dedicated chapter below. 

2.5.2. Context-Specific Termination Function 

S4MPLE uses pair-specific cut-off values: cutij is determined by backwards scanning the distance 

range, starting from maxcut = 15 Å, towards ever shorter distances, until the calculated pairwise energy 

contribution, all terms confounded, exceeds minPairContrib = 0.01 kcal·mol−1 This typically happens 

within the 10–12 Å range for pairs featuring strong Coulomb contribution, down to ~6 Å for  

vdW-dominated interactions. In order to avoid cut-off artifacts, a termination function  = 1 − 2 +  is employed. Total non-bonded contributions can be written as: = + + +	  (6)

2.5.3. Out-of-Plane and Chiral Constraint Terms 

Random jumps in problem space may lead to distorted geometries, which may relax by chiral center 

inversion. Chiral constraints are defined with respect to the initial configuration of chiral carbons, and 

are strictly equal to zero unless the chiral carbon geometry approaches the planar state required for 

inversion. Because this is a relative term aimed to preserve the initial configuration, the priorities of the 

four substituents (Lowest, low, high, Highest) of the chiral center may be arbitrary—they are taken 

according to the internal atom numbering (see Figure 3).  

 

Figure 3. Calculation of the chirality index used to preserve the configuration of asymmetric carbons. 
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An arbitrary face of the tetrahedron (say l, h, H) is selected, and a chiral direction vector, orthogonal 

to the (l, h, H) plane is defined as × ℎ . Here, the vectors represent relative position vectors of corners 

H and h with respect to l. Eventually, the position vector of the chiral center c with respect to l, , is 

computed, and projection of  along the direction × ℎ  is estimated as the dot product of these 

normed vectors: = ∙ × ℎ / × ℎ  (7)

The chirality penalty is then defined with respect to the original value of p0 calculated in the initial 

geometry. It equals zero if p·p0 > 0 (in other words, the sign has not changed, then there is no chirality 

inversion), but otherwise linearly increases with respect to |p|, with a default chirality violation 

proportionality constant of kchir = 100. 

The same formalism can be used to force planarity around trigonal substituents. In this case, the L 

substituent is missing, and p should ideally equal zero. In the current implementation, no penalty is 

considered if |p| < poop = 0.01, the latter being an empirically chosen threshold. Otherwise, the penalty 

increases like koop(|p| − p0). At this point, a generic koop = 200 is in use for all planar centers, including 

amide nitrogens. 

2.5.4. Potential Energy Surface: Avoiding Singularities 

In Molecular Dynamics simulations, singularities of the energy terms in 1/dn at zero inter-atomic are 

off bounds, because the simulations comply with the energy conservation principle. This is not the case 

with more aggressive problem space sampling heuristics, such as genetic algorithms. Therefore, in order 

to avoid systematic checking for zero distances, the non-bonded squares of distances is implicitly 

augmented by a small increment d2offset = 0.01. This has no impact on the precision of these relatively 

long-range interactions but effectively prevents division by zero errors. 

2.6. Datasets 

2.6.1. Astex/CCDC Clean Subset 

Herein, a further subset of the so-called ‘clean’ Astex/CCDC subset [53], containing 191 complexes 

has been considered (see Supplementary Material) according to several additional filters: 

• No covalently bound ligand 

• No complexes where the symmetry-related units are mandatory to explain the binding mode (as 

seems to be the case, among other, for 1ETA or 3CLA—check performed using the “symexpˮ 

command in Pymol [54]). 

2.6.2. Astex Diverse Set 

This [55] is a compilation of reliable and diverse complexes for the modeler community. The 85 

selected PDB [56] complexes concern targets of agro/pharmaceutical interest. The X-ray complexes 

possess high resolution, and feature no clashes. A particular attention has been given to the quality of 

the electron density around the ligand, not including complexes with high nominal resolution but a lack 

of density for the ligand. Unlike in the previous set, all the ligands are drug-like. 
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2.7. Force Field Parameter Tuning Protocol 

The calibration of the additional force-field terms outlined below started from a reasonable initial 

estimation thereof, obtained by trial and error in previous peptide folding experiments [57,58]. The 

tunable parameters are: 

• epsilon: proportionality constant of the distance-dependent relative dielectric constant  

εr = epsilon × d. 

• repulsive_factor (default 1.0): the weight of the an der Waals repulsive term. Therefore, = 	 _ × ⁄ −	 ⁄ , where Aij and Bij represent the 

AMBER/GAFF vdW pairwise interaction coefficients.  

• vicinal_weight: for vicinal (three bonds apart) pairs i, j, the entire vdW term EvdWij is scaled down 

by vicinal_weight, a trick already employed in the original AMBER. 

• desolv_factor : the value to be assigned to the desolvation parameter σ from Equation (3), for all 

the pairs i, j except the special cases outlined below: 

• minq_to_desolv: the minimal charge threshold for the desolvation term (i.e. if max(|Qi|, |Qj|) < 

minq_to_desolv then = 0). 

• desolv_scale_ion and desolv_scale_hb: the value of scaling factors for some specific desolvation 

terms (pairs involving ion or hydrogen-bonds). These extra parameters were required in order to 

achieve successful docking predictions—a preliminary attempt to fit a set of parameters including 

only desolv_factor to control desolvation failed (results not shown).  

• hbond_bonus: the common value for all κij in Equation (5) corresponding to hydrogen  

bond interactions. 

• Hydrophobic constants Kc for each hydrophobic carbon class (see Table 1), introduced in order  

to define hydrophobic contact constants κij in Equation (5) as the average of constants of the 

involved carbons. 

Therefore, three different force field setups can be defined (Table 2). The first, termed ‘Core’ FF, 

simply represents the default vacuum AMBER/GAFF terms. The second, ‘Preliminary’ FF assumes 

above-mentioned estimates for the parameters of the additional terms, with a single weight (Kpolarized = 

Karom = Kaliph = 0.1) for all carbons types, and no scaling of the desolvation term (desolv_scale_ion = 

desolv_scale_hb = 1.0).  

Table 2. Considered FF parameter schemes. 

Parameter Core FF Preliminary FF Fit FF 
epsilon 2 4 4 

desolv_factor 0.0 0.1 0.1 
minq_to_desolv 0 0.125 0.125 

hbond_bonus 0 2 2 
repulsive_factor 1.00 0.75 0.75 
vicinal_weight 0.5 0.033 0.033 

desolv_scale_ion – 1.0 0.1 
desolv_scale_hb – 1.0 0.1 

Kpolarized 0.0 0.1 0.01 
Karom 0.0 0.1 0.15 
Kaliph 0.0 0.1 0.15 
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Eventually, the ‘Fit’ FF is the result of a two-stage fine tuning of some of these parameters, as  

detailed below: 

• First, tuning of the desolvation parameters (desolv_scale_ion and desolv_scale_hb), based on the 

observations that the Preliminary set-up leads to both (a) bad coordination between ligand and 

metal ion for several metallo-protein complexes (e.g., mono-dentate coordination preferred to  

bi-dentate coordination for the acid group in 1CBX), and (b) distorted hydrogen bonds for 

complexes involving sugars. Thus, the idea to specifically rescale desolvation term of the  

above-cited classes of interactions by means of weights, fixed by trial-and-error docking simulations 

of concerned protein-ligand complexes. 

 

Figure 4. Strategy used in the force field parameter tuning protocol. ‘Decoy poses’ are  

non-native-like, to be distinguished from the native-like by a proper choice of FF parameters. 

These three parameters were subjected to a systematic scan. Within the scanned parameter 

space volume, the representative subset of possible FF configurations includes: Core FF, 

Preliminary FF setups, setups at the extremes (corners) and at the center of the scanned 

parameter ‘cube’. This representative subset is used to generate docking poses (one  

400-generation run per FF configuration, per complex). 
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• Last, a systematic scan of hydrophobicity parameters associated to considered classes of carbons 

was performed. The 33 carbon force field types were regrouped into 3 different hydrophobicity 

classes: aliphatic, aromatic and polarized, each being attributed a hydrophobicity constant Kc (see 

Table 1). A total of 10 discrete values (0; 0.010; 0.025; 0.050; 0.075; 0.100; 0.150; 0.200; 0.250; 

0.300) are considered as possible Kc choices, allowing for 1000 combinations to scan. The scan was 

bound to highlight a triplet which systematically ranks, for a large majority of Astex/CCDC-clean 

complexes, native-like poses as lowest-energy states, out of large and decoy-rich sets of poses. 

Pose sets were generated by S4MPLE, in iteratively repeated runs employing various FF 

parameterization schemes (see Figure 4). In practice and for each complex, the pool of poses is 

rescored using the fitted parameters and one of the 1000 combinations. The top-ranked pose is saved 

for each complex and all tested combinations, thus it is possible to extract triplets which most 

frequently favor the expected binding mode. Validation of the herein obtained Fit FF configuration 

was done by docking of Astex Diverse ligands, and assessment of redocking success. 

2.8. Redocking Protocol Using S4MPLE 

The preparation of the ligands consists of several steps: 

• computing partial charges (Gasteiger type) using ChemAxon libraries [59] 

• adding GAFF atomic types using the Antechamber tool [39,60] 

• using the Parmchk tool [39,41] to check whether there are missing parameters (e.g., bonds, angles 

or torsions). In that case, Parmchk computes the missing parameters using empirical rules, and 

these new parameters are added to their respective force field parameters files 

• generating a single conformer using ChemAxon libraries (avoiding to start from the expected 

solution, when the docking accuracy may be artificially enhanced) 

Binding sites were prepared using MOE and its Protonate3D protocol [61]. Partial charges and atom 

types are assigned from the specific AMBER topology file during the initialization of the program. As 

mentioned before, S4MPLE does not request any formal definition of the binding pocket. Local protein 

subdomains, including only residues with at least one atom at 10 Å or less with respect to known 

ligand(s), are used for docking. These are cut out of the PDB structures, after the hydrogen assignment 

step in MOE. Usual redocking protocols often use a value of 6.5 Å [36,62,63]. Here, larger binding 

domains are employed, in order to maintain compatibility with the classical FF cut-off magnitudes  

(9–12 Å). S4MPLE relies on a list of protein atoms to be preferentially used to anchor the ligand, by 

randomly positioning it such as to establish favorable contacts with these listed hot spots. Hot spots were 

automatically picked, by detecting the putative hydrophobic contact and hydrogen bonding centers in 

the close neighborhood of the binding subdomain center (no biased choice of protein groups involved in 

actually observed contacts). Explicit removal of remote protein moieties is however a potential source 

of artifacts, given the otherwise unrestricted ligand mobility: this may be pushed out of the site, and led 

to form favorable fake contacts with—in practice—inaccessible protein atoms. Therefore, ligand poses 

having their geometric centers at more than 8 Å away from the center of the binding subdomain are 

systematically discarded in order to facilitate a posteriori analysis of results. 
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Co-factors (prepared/parameterized like ligands, but maintaining their experimental geometry) and 

ions are included in the binding site, and all waters are removed. During the redocking benchmarks, all 

binding site atoms are considered as fixed. 

The redocking simulations consisted in 10-fold runs of Astex Diverse Set complexes. Each run took 

500 generations of 50 individuals using the ‘evol’ strategy, mutation probability of 1/10, crossing-over 

probability 1/10, and minfpdiff = 0.01. The number of generations has been set up on the basis of 

preliminary redocking runs involving both small and large ligands. Sampling success (ability to save a 

native-like pose using the RMSD metric) has been monitored in function of the number of generations 

(see Figure 5) and seen to reach a plateau around 400. Thus, the default number of generations has been 

set up to a slightly larger value (500). After actual docking, so-far visited poses are subjected to a filtering 

step, involving selection of a non-redundant poses and further optimization (using the exhaustive energy 

minimization strategy) of the best poses (potential energy within +30 kcal·mol−1 with respect to sampled 

top conformer). 

Success rate (percentage of poses at given RMSD) is then reported as the average of success rates of 

each independent run. In other words, the 10 independent simulations are monitored independently: if, 

for a same ligand, six out of 10 succeeded and four failed, six successes and four failures will be counted. 

The final success average equals to the sum of successes/(10× number of benchmarked complexes). 

 

Figure 5. Ability to sample X-ray binding modes (irrespective of their ranking in terms of 

energy), in function of the number of generations at different RMSD thresholds (Astex 

Diverse Set).  

2.9. Redocking Protocol Using FlexX 

For direct benchmarking purposes, the program LeadIT (version 2.0.2), developed by BioSolveIT 

including the docking tool FlexX [12] was used. Protein site files prepared by MOE lead however to 

unexpectedly bad results in FlexX simulations (results not shown). In particular, the broad definition of 

the site seemed to prevent FlexX from efficiently discovering native poses, as no docking constraints 

were imposed. Therefore, a FlexX-specific site preparation protocol was adopted. Hydrogens were now 

added with LeadIT, but occasional protein protonation states diverging from the MOE predictions used 

with S4MPLE were manually restored to the latter. FlexX binding sites included all complete residues 
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with at least one atom within a distance of up to 6.5 Å with respect to the reference ligand. Default values 

for all options relative to ligand preparation were used, except for auto-assignment of protonation states 

(kept as in S4MPLE runs). Pharmacophoric restraints were disabled for metals. Default FlexX docking 

options were used. 

3. Results and Discussion 

3.1. Force Field Fitting 

3.1.1. Tuning of Desolvation Contributions 

The Preliminary FF configuration was problematic in modeling of some complexes featuring strong 

polar interactions, where the Core FF successfully converged toward the expected solution. Bad 

coordination between ligand and metal ion for several metallo-protein complexes (e.g., mono-dentate 

coordination preferred to bi-dentate coordination for the acid group of the ligand in 1CBX complex), 

and low quality hydrogen bonds (e.g., bad D-H.A angle values of ~120° in hydrogen bonds) in 

complexes involving sugars (1ABE, 1ABF) were examples of such failures. Obviously, the desolvation 

term at preliminary setup (=0.1) had been too high, cancelling out the benefic electrostatic terms at very 

low distance (hydrogen-bond case). Besides, dielectric solvent models are notoriously challenged by 

heavily charged ions, known to cause dielectric saturation phenomena [64]. The two additional scaling 

constants desolv_scale_ion and desolv_scale_hb—for pairs including a metal cation and for hydrogen 

bonding partners (specifically for the polar H/acceptor pair)—were allowed to scan the range from 1 to 

0, and a consensus optimum emerged at values of 0.1 (data not shown). Scaling down, by a factor 10, 

desolvation contributions of metal ions restored the expected bi-dentate coordination in 1CBX. The same 

holds for hydrogen bonds: scaling down the desolvation term of hydrogen-bond pairs improved 

predicted geometries. Note that acceptor-acceptor or polar H-polar H desolvation terms are not being 

scaled down. 

3.1.2. Optimizing Hydrophobic Contact Strengths 

Over the 1,000 combinations (Kpolarized, Karom, Kaliph) of hydrophobic factors, the best result at training 

stage was to obtain 154 correct (top-ranked pose at RMSD < 2.0 Å) out of 191 Astex/CCDC complexes 

(80.6% success rate). This top result was independently achieved with 11 different combinations. All 

except one coherently come from a same zone of the combination space: negligible weights for polarized 

carbons (Kpolarized ≈ 0), contrasting with high aromatic and hydrophobic weights (Karom ≈ Kaliph ≈ 0.15). 

The outlier (0.2, 0.15, 0.15) is atypical because it considers polarized carbons as the most  

hydrophobic—also, the 154 complexes being well-scored by it significantly differ from the consensual 

ones retrieved at all other, physically more meaningful, setups.  

Note that the scanned KC range properly encompasses the optimal range: at extremes (0, 0, 0) and 

(0.3, 0.3, 0.3) success rates plummeted to 145 and 142/191 respectively. The absolute worst combination 

(0.2, 0.1, 0.3) only leads to 138 well-predicted complexes. Eventually, the kept combination in Fit FF 

was taken at the core of the region: taking the median over listed values for each parameter in Table 3 

highlights the selected triplet (0.01, 0.15, 0.15). This is also amongst the best ones with respect to the 
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stricter success criterion RMSD ≤ 1.5 Å (74% success rate). Table 2 lists all parameters and their values 

in the Fit FF setup. 

Table 3. Triplets of weights which lead to the best rescoring results (the selected triplet is 

shown in bold). 

Number of Successfully 
Predicted Complexes 

Weights (K) 

Kpolarized Karom Kaliph 

154/191 

0.000 0.075 0.150 

0.000 0.100 0.150 

0.000 0.150 0.150 

0.000 0.150 0.200 

0.000 0.200 0.200 

0.010 0.075 0.150 

0.010 0.100 0.150 

0.010 0.150 0.150 

0.010 0.200 0.200 

0.025 0.150 0.150 

0.200 0.150 0.150 

3.2. Redocking-Astex Diverse Set 

Both Core and Fit FF setups are challenged to dock validation set complexes (Astex Diverse Set [55]). 

The Fit FF obtained an excellent 85% success rate at RMSD < 2.0 Å for the top ranked pose (average 

over 10-fold independent runs). The results of redocking simulations are summarized in both Table 4 

and Figure 6. This accuracy is equivalent to those of state of art docking tools [34,55,65–67]. The lower 

success rate of RosettaLigand may be due to therein considered protein flexibility. 

Table 4. Docking performance of several tools on the Astex Diverse Set (* Result from 

herein described benchmarking calculations, ** Statistics from closest protocols with respect 

to those presented here). With S4MPLE, Saved poses include the top 30 non-redundant (at 

minfpdiff = 0.01) most stable geometries. 

Docking Tools (Scoring) 
Success Rate (%) 
Top Ranked-Pose 

Success Rate (%) 
Saved Poses 

S4MPLE (Core FF)  76 93 
S4MPLE (Fit FF)  85 96 

FlexX * 71 91 
GOLD (Goldscore) ** [19] 75–81 Unavailable 

Plants (ChemPLP) [65] 87 
97 

Plants (PLP) [65] 84 
LGA (LargeAll) [34] 63 Unavailable 

RosettaLig [66] 58 92 
SKATE [67] 87 98 
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Figure 6. Docking performances on the Astex Diverse Set for both Core FF and Fit FF. 

FF tuning clearly matters: there is a significant increase in accuracy of the Fit FF (85%) with respect 

to the standard vacuum AMBER/GAFF Core (76%) FF. Another important point is the ability to 

maintain good accuracy at more stringent RMSD thresholds. Thus, for Fit FF, success rate goes down 

by only 7% at 1.5 Å (78%) and 16% at 1.0 Å (69%) with respect to the usual 2.0 Å threshold. The ability 

of S4MPLE to almost systematically retrieve a pose close to the experimental one within the top 30 

poses is shown too (see Table 4). Global failure cases, and differences between both force field setups 

are discussed below in more detail. For clarity reasons, only complexes where Core FF and Fit FF-driven 

docking runs had different success status are shown. In these cases, there is at least one native-like pose 

(in complexes with systematic errors, the overlay of the native pose and two different ‘wrong’ poses is 

too crowded to be readable). 

3.2.1. Insights on Failure Cases 

Three different main scenarios may describe docking failures: 

1. All-atom RMSD is high, albeit the top-ranked pose is chemically meaningful, reproducing all the 

key ligand-site contacts. This may happen: 

(a) if the ligand includes a moiety dangling out in the solvent, or 

(b) the ligand is ‘pseudo-symmetric’, in the sense that it features chemically similar groups which 

could, in principle, compete for a same binding spot. 

In situation (a), the PDB structure of the dangling ligand moiety is likely an over-interpretation of 

electron density data—or an artifact where crystal packing constrains this otherwise moving moiety. In 

case (b), say a chlorophenyl-(symmetric linker)-tolyl, the ligand may probably allow for two distinct, 

comparably populated binding modes (with Cl-Phe and Me-Phe switching binding pockets), whereas 

electron density fitting would most likely highlight only one of those. Note that S4MPLE fingerprint 

(PIF) similarity would, unlike RMSD scores, not consider cases 1.a as docking failures. Indeed, 
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calculated fingerprint would be approximately the same as the native fingerprint, whatever happens to 

the dangling moiety. Scenario 1.b is a real challenge, and can only be evidenced by visual inspection. 

2. Neither the top-ranked pose, nor any other of sampled poses, match the native one. This may be 

due to: 

(a) insufficient sampling, 

(b) inappropriate definition of the binding site (in redocking, this includes ignoring key waters 

mediating ligand-site interactions), or 

(c) a highly unrealistic force field setup, causing native-like structures to be of high energy, thus 

effectively preventing them from being sampled and saved. 

3. The top-ranked pose differs from the native, but the latter is being sampled and listed among less 

stable ones. This may be: 

(a) imputable to the force field setup, counting as a failure to identify the expected binding mode as 

the absolute energy minimum, or 

(b) an inappropriate definition of the binding site (like in 2(b)—however, of more limited impact on 

results since the expected binding mode has been saved), or 

(c) an entropic effect: minima deeper than the native one exist, as predicted by the FF, but are narrow 

and therefore not significantly populated at room temperature. 

It is not clear at this point how the narrowness of a minimum impacts on its probability to be visited 

by an EA. According to common sense, hypothesis (c) is unlikely: if such narrow minima exist, their 

discovery by the algorithm should be an expectedly rare stochastic event. EA sampling cannot furnish 

positive proof for a 3(c) scenario, so this explanation should be invoked with great caution. 

This being said, convergence towards the native structure as so-far lowest energy pose is not an 

absolute warranty of success—the FF energy landscape may nevertheless feature deeper fake minima, 

which were not visited, given the limited sampling effort per individual redocking run. However, the 

native structure is, at least, an attractor in problem space—an important local minimum, if not the 

absolute one. 

There are some general failures to converge towards low-RMSD poses, irrespectively of the FF setup: 

1G9V, 1GM8, 1GPK, 1HP0, 1HVY, 1JJE, 1MEH, 1TZ8, 1XM6, 1YGC and 2BR1. These will be 

detailed below, and assigned to the scenarios mentioned above: 

• 1G9V, 1GM8 & 1HVY ligands have limited direct contacts with the binding site: most of the 

ligand/site hydrogen bonds are bridged with waters. Worse, these ligands feature solvated 

carboxylate groups, not directly interacting with the target. In 1HVY, the dihydroquinazoline 

moiety from drug Tomudex is perfectly docked, whereas the two loose carboxylates are, in 

absence of crystallographic waters, attracted towards neighboring basic residues. Therefore, direct 

site-ligand contacts are all well predicted—this fits scenario (1(a)). Same holds for 1GM8, the 

hydrophobic phenylacetamide moiety is correctly positioned, unlike the anionic -lactam moiety. 

1G9V, however, is totally dependent on specific water-mediated interactions, therefore 

classifying as failure 3(b) (the correct pose is being sampled, but not top ranked). 

• 2BR1 & 1XM6 are further examples of (3(b)) complexes where water-mediated interactions play 

an important role. By contrast to the examples above, these water-mediated contacts occur deeply 
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within the binding site. In the top-ranked pose of 2BR1, the ligand is bound head-to-tail, in burying 

the methoxyphenyl moiety into a deep pocket filled with water in the X-ray structure. In 1XM6, 

the location of the propoxyphenyl group is perfect but the oxazolidone moiety is erroneously 

predicted to directly interact with a Zn2+ ion (in the experimental structure, a water molecule 

occupies this area). 

• 1GPK & 1MEH are classical FF failure cases (3(a)), native conformations being sampled but not 

top-ranked. The best poses favor an ionic bond instead of two hydrogen bonds, observed in the 

PDB file, showing that fine tuning of ionic/polar interactions and desolvation penalty is not 

perfect. In 1GPK the top-ranked pose is inverted, but nevertheless fulfills expected hydrophobic 

contacts with the site. In 1MEH, the solvent-exposed carboxylate unsurprisingly prefers the 

neighborhood of R414, instead of the crystallographic hydrogen bonds to S262. This has a very 

limited impact on the correctly predicted pose of the buried aromatic moiety. 

• 1HP0 is an interesting case, where a non-native conformer with flipped deazaadenine group is 

nevertheless almost correctly docked—fulfilling all of the experimentally observed contacts. The 

ligand adopts a correct binding mode around the calcium ion, and reproduces the stacking 

interactions of the flipped aromatic moiety. Non-bonded energies are similar, thus the preference 

for the native conformer should have been played out in terms of intra-ligand strain contributions. 

This is not happening (the native conformer is visited, but ranked slightly less well). At this point, 

it is difficult to formally rank this as a force field failure 3(a), rather than a genuine multiple 

binding mode example 1.b. 1JJE is in a similar situation, featuring a pseudo-symmetric ligand, 

derivative of 2,3-dibenzylsuccinic acid in which one of the Phe groups ports a -O-CH2-O- bridge 

(benzodioxole). The latter makes, however, no additional strong contact to the protein, whereas 

the central, succinyl moiety coordinating both Zn2+ ions is perfectly predicted. It seems that the 

benzodioxole group may be equally well accommodated on each side of the binding site. Docking 

does not favor the one expected. It is not clear, however, whether the experimentally observed 

electron density is witness of a single binding mode, or whether it is a statistical expression of a 

slight preference among two almost equally populated modes. The head-to-tail binding of this 

pseudo-symmetric ligand results in an impressive RMSD of 8 Å. 

• In 1TZ8, the native PDB pose surprisingly exhibits several slight ligand-site clashes (e.g., distance 

L17_CD1-Ligand_C = 3.0 Å). Expectedly, even the Fit FF with slightly downscaled repulsive 

vdW terms, leads to a wrong top-ranked pose—albeit it enumerates the native one. It should be 

noted that this complex is often reported as a failure [66,67]. Furthermore, authors of the Astex 

compilation dataset reported this complex as borderline in term of quality of the ligand’s 

electronic density [55]. Hence, this case should be most likely classified as 3(b) rather than a FF 

problem (3(a)). 

• 1YGC: the most solvent-exposed moiety (arylsulphonamide) adopts a wrong alternative 

conformation (direct hydrogen-bond with the C58 backbone instead of two water-mediated 

hydrogen bonds with Y94 and T98), whereas the rest of this large ligand is properly docked. 

Most of these cases are often described as common failures in other docking papers [55,66,67]. 

However, all had the native pose visited by S4MPLE, albeit not top-ranked. Yet, only few amongst the 

above cases are obviously due to FF errors. 
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For some other complexes (1KZK, 1MZC, 1UML, 1R58, 1Y6B and 2BM2), the native pose was not 

systematically visited during each of the 10 runs. However, once found, the native poses turned out to 

be top-ranked. Since these ligands are large compounds and the best energy over all runs is close to the 

X-ray binding mode, these failures are the result of a lack of sampling. Hence, these complexes 

occasionally exemplify the 2(a) scenario: 500 evolutionary generations at population size of 50 may not 

guarantee convergence (albeit the 10-fold repeated runs are eventually sufficient). This fact is not 

surprising for heuristics-based algorithms. 

3.2.2. FF-Based Scoring: Core vs. Fit 

As previously described, a real improvement is observed using the Fit FF. There are eight complexes 

for which the fitted scheme converged towards the expected solution, while the Core FF failed, vs. only 

one exemplifying the opposite situation. 

 

Figure 7. X-ray and top-ranked poses obtained using Fit FF and Core FF from the 9 PDB 

complexes discussed in the chapter §0 (Core vs. Fit). Native poses are shown in green, 

whereas Fit FF poses and Core FF are displayed in blue and purple respectively.  

Hydrogen-bonds are shown as black dotted line and ions are represented as spheres. 
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Table 5. RMSD of top-ranked poses for Core FF and Fit FF from complexes discussed in 

the dedicated chapter (Core vs. Fit). 

PDB Core FF Fit FF 

1N2J 3.85 1.42 
1NAV 6.26 0.35 
1OQ5 0.92 2.83 
1R58 3.03 0.74 

1UML 7.59 0.66 
1V0P 7.60 0.41 
1W1P 2.94 0.39 
1XOQ 4.04 0.30 
1YVF 6.11 0.89 

The below mentioned cases (see Figure 7 and Table 5) are, unless otherwise noted, representatives of 

the 3.a-type failures (native pose sampled, but not ranked as most stable) with Fit FF (1OQ5) or Core 

FF (all the others): 

• 1OQ5: Fit FF has the second-ranked pose matching the expected binding mode, but the most 

stable one appears clearly non-native whereas Core FF selects the native one. In this Fit FF failure, 

the ligand is rotated around the pyrazole-benzenesulphonamide axis, with the tolyl group 

occupying an alternative sub-pocket. 

• 1N2J: this small ligand (pantoate) makes four direct hydrogen bonds with the binding site. With 

Core FF, the top-ranked pose does not make any of these, but places the carboxylate in the 

hydrophobic area where the two -Me groups are expected. Favorable contact terms (hydrogen-bond 

and hydrophobic enclosure), and desolvation (penalizing the burial of a -COO− in a hydrophobic 

pocket) in Fit FF successfully restore the correct binding mode at the top of the list. 

• 1NAV: the compound is buried and makes several hydrogen bonds with the binding site. Fit FF 

finds the native binding mode with a great precision (RMSD ≈ 0.5 Å), whereas Core FF selects a 

translated pose (several Å away from the experimental binding mode: RMSD ≈ 6 Å) in order to 

create an ionic bond between the carboxylic group of the ligand and the solvent-exposed R266. 

This is another example of overestimated polar contributions in absence of scaled down 

electrostatics and desolvation. 

• 1R58: in that case, both scoring schemes lead to an acceptable solution for buried and metal 

coordination groups of the ligand, but the chlorophenyl moiety is wrongly docked by Core FF, 

which has no particular incentive to flip this group in order to bring in within hydrophobic contact 

range with Y444, as seen in the experimental structure. 

• 1UML: this ligand is located near a Zn2+ ion but does not directly interact with it in the X-ray 

structure. Fit FF leads to a perfect pose, while the Core FF completely misplaces the ligand, in 

order to allow for an interaction with that cation. 

• 1V0P: Fit FF returns a perfect top-ranked solution, in which the carboxylate group of the ligand 

is solvent-exposed and doesn’t make any direct contact with the protein. At the opposite, the Core 

FF favors a pose where the ligand is less buried, allowing the carboxylate group to make several 

fake hydrogen bonds with the binding site. 
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• 1W1P: this complex contains a small cyclic dipeptide (Gly-L/Pro). Although both hydrogen bonds 

with the site are conserved using the Core FF, the RMSD is high because the ligand is flipped 

with respect to the experimental binding mode. This is rather a 1.a scenario, in which ligand 

flipping does not affect observed interaction patterns. Conversely, the Fit FF top-ranked pose 

matches the exact binding mode. 

• 1XOQ: Although two cations are present in the binding site (Zn2+ and Mg2+), the drug 

(roflumilast) does not directly interact with them in the crystal structure. The Core FF forces a 

binding mode where the dichloropyridine group of the ligand is close to the magnesium ion, 

whereas the Fit FF returns the expected binding mode with two hydrogen-bonds with the same 

sidechain (Q369). 

• 1YVF: this case is similar to 1V0P, featuring a solvent-exposed carboxylate, forced by Core FF 

into several non-native interactions with R394. The best pose from the Fit FF reproduces almost 

exactly the experimental binding mode. Generally speaking, Core FF favors less buried ligand 

poses, with fake polar contacts: it overestimates Coulomb terms, ignores desolvation and does not 

reward hydrophobic contacts. 

4. Conclusions 

S4MPLE is a general conformational sampling tool, based on evolutionary algorithms. It was 

designed to support full atom flexibility, and based on a set of powerful general generic operators, 

including an original conformer population diversity control mechanism (differentiable pairwise 

interaction fingerprints). As a consequence, S4MPLE sees no fundamental difference between actual 

sampling of a single molecule, or docking of one—or several—ligand(s) into a target site. This is due to 

the fact that its genetic operators automatically detect the context in which they are called—recombination 

of covalently bound or non-bonded fragments—and seamlessly adapt to it. Potential degrees of freedom 

are automatically detected, but can be controlled by the user: fixing of molecular moieties allows the 

approach to concentrate on relevant DoF, be they intra- or intermolecular. Thus, the theoretical 

applicability range of S4MPLE is broad: from small peptide folding and ligand sampling, to rigid site 

docking, to classical flexible docking (with moving side chains), to extreme flexible docking (allowing 

larger movements of protein loops, backbone included), to multiple ligands docking. Therefore, the fact 

that the herein reported “classical” benchmark tests showed that S4MPLE is neither better nor worse 

than state-of-the-art software is good news—at equal classical docking performances, S4MPLE is better 

in terms of its much larger applicability domain. 

Care was taken to adapt the genetic operators to the specific nature of the energy landscape. Herein 

used ‘driven’ mutations or fragment recombinations are much more likely to produce relevant 

geometries, by contrast to the typical random tinkering with torsional angle values, bound to lead to 

clash-rich, impossible geometries. 

Pairwise monitoring of the status of all putative contacts (including, unlike in classical IF [44,46], 

intra-ligand and—if site flexibility is enabled—intra-site terms) fuzzily represents the molecular 

geometry of the whole system. PIFs are not meant to extract similar binding modes shared by chemically 

different compounds, albeit this information can be easily mined for, by analyzing the populated  

PIF elements. 
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S4MPLE can be employed, in response to the complexity of the considered problem, either as stand-alone 

single CPU process, or as computer-grid deployed, massively parallel simulation (work in progress). 

It was shown that outfitting the AMBER/GAFF force field with very simple desolvation and 

hydrophobic contact terms clearly improved rigid-receptor redocking success scores. At a strict count of 

redocking successes, at a customarily employed criterion of RMSD < 2 Å, within the widely used Astex 

Diverse data set, S4MPLE ranked better or similar to state-of-the-art docking tools. Furthermore, many 

of the cases counting as failures were shown to be situations in which multiple ligand binding modes 

cannot be easily excluded (e.g., almost symmetric ligands). Furthermore, all the non-native top-ranked 

poses correspond (if a sufficient number of generations is allowed) to deeper energy wells compared to 

the level reached when relaxing the native structure in our enhanced AMBER/GAFF force field. These 

failures, when not attributable to ignored water-mediated interactions due to deletion of intervening 

crystallographic waters, outline (expectable) limitations of the FF-based potential energy model. In no 

instance S4MPLE systematically failed to reach the baseline energy level of the relaxed native structures, 

showing that its sampling procedures are powerful, successfully avoiding entrapment in local optima, 

notably using regularly approaches avoiding consanguinity within the population. 

At the moment, S4MPLE is still a prototype under development. The runs were quite time-consuming 

(several hours/single CPU for the average rigid-site redocking simulation), but: 

(a) a plethora of technical but important parameters—such as, for example, stopping criteria of local 

search procedures, etc.—were not yet optimized, being set by default to rather strict values. 

(b) the main goal behind this development is not to add one more rigid-site docking program to an 

already long list. So far, the purpose of this development was to assess in how far experimental 

docking poses can be correctly predicted on the basis of the herein defined energy function (no  

re-ranking based on fitted free energy scoring functions) if unbiased sampling is allowed. 

The use of S4MPLE for classical rigid-site docking could be easily enhanced—for example, by a 

manual, knowledge-based selection of site hot spots, by contrast to the automatic approach used here. 

Also, the availability of smooth, differentiable interaction fingerprints allows for straightforward 

inclusion of problem-specific knowledge (imposing specific contacts to occur on the protein side). 

However, having passed these first classical tests, further work will address problems of larger 

complexity—fragment-like compounds docking, multi-ligand docking and binding site flexibility. 

Supplementary Material 

The following: 

• x86_64 executable of S4MPLE, 

• User guide, 

• various ligand preparation tools and 

• force field parameter distributions 

• spreadsheet with the list of the training set compounds used to calibrate Fit FF, and detailed 

docking results for each of the repeated docking runs are available for download from: 

http://infochim.u-strasbg.fr, DOWNLOADS section (tar.gz). Docked poses are available upon 

request (mol2 format) (http://creativecommons.org/licenses/by/4.0/). 
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