Next Article in Journal
Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1)
Previous Article in Journal
Synthesis, In-Vitro Antibacterial, Antifungal, and Molecular Modeling of Potent Anti-Microbial Agents with a Combined Pyrazole and Thiophene Pharmacophore
Article Menu

Export Article

Open AccessArticle
Molecules 2015, 20(5), 8730-8741; doi:10.3390/molecules20058730

Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology

College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 362-763, Korea
*
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 17 March 2015 / Accepted: 11 May 2015 / Published: 14 May 2015
(This article belongs to the Section Natural Products)
View Full-Text   |   Download PDF [976 KB, uploaded 14 May 2015]   |  

Abstract

Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae) have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation. View Full-Text
Keywords: Morus alba; melanogenesis; optimization; tyrosinase; melanin; phenolic content Morus alba; melanogenesis; optimization; tyrosinase; melanin; phenolic content
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Jeong, J.Y.; Liu, Q.; Kim, S.B.; Jo, Y.H.; Mo, E.J.; Yang, H.H.; Song, D.H.; Hwang, B.Y.; Lee, M.K. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology. Molecules 2015, 20, 8730-8741.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top