
Molecules 2015, 20, 8395-8408; doi:10.3390/molecules20058395 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Synthesis, Antifungal Activity and Structure-Activity 
Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-
pyrazole-4-carboxylic Acid Amides 

Shijie Du 1, Zaimin Tian 2, Dongyan Yang 1, Xiuyun Li 1, Hong Li 1, Changqing Jia 1,  

Chuanliang Che 1, Mian Wang 1 and Zhaohai Qin 1,* 

1 Department of Applied Chemistry, College of Science, China Agricultural University,  

Beijing 100193, China; E-Mails: dsj5216@163.com (S.D.); yangdy@cau.edu.cn (D.Y.); 

lixiuyun0115@163.com (X.L.); lihong129106@163.com (H.L.); cauchangqing@gmail.com (C.J.); 

chechuanliang@cau.edu.cn (C.C.); woookooo@cau.edu.cn (M.W.) 
2 College of Agricultural and Forestry Science and Technology, Hebei North University,  

Zhangjiakou 075131, Hebei, China; E-Mail: nkxtzm@163.com 

* Author to whom correspondence should be addressed; E-Mail: qinzhaohai@263.net;  

Tel./Fax: +86-10-6273-2958. 

Academic Editor: Jean Jacques Vanden Eynde 

Received: 7 April 2015 / Accepted: 5 May 2015 / Published: 8 May 2015 

 

Abstract: A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid 

amides were synthesized and their activities were tested against seven phytopathogenic fungi 

by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent 

activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-

methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the 

seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a 

three-dimensional quantitative structure-activity relationship model for the compounds. In 

molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards 

the hydroxyl of TYR58 and TRP173 on SDH. 
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1. Introduction 

Amide compounds are traditional fungicides. Their common target is mitochondrial respiratory chain 

enzyme complex II (succinate dehydrogenase, SDH) [1]. With the development of boscalid, many 

researchers paid attention to the amide fungicides with a renewed focus on this traditional fungicide 

class. A series of novel highly efficient amide fungicides have been used for crop protection. In 

particular, the 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-acyl group has been the most outstanding 

acyl moiety group in recent years, and a number of excellent commercial fungicides with this group were 

successfully developed, such as: isopyrazam (Syngenta, 2010), sedaxane (Syngenta, 2011), bixafen 

(Bayer, 2011), fluxapyroxad (BASF, 2012) and benzovindiflupyr (Syngenta, 2012) (Figure 1). 

 

Figure 1. Commercial available 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic 

acid amide fungicides. 

In our previous work [2], we designed and synthesized a series of amide compounds based on 

bioisosterism by introducing an N atom instead the C atom in an ortho-aniline. Bioassays showed that 

some target molecules exhibited excellent antifungal activity against Pythium aphanidermatum and 

Rhizoctonia solani. By summarizing the structural characteristics of the recent commercial pyrazole 

amide fungicides and the previous experience in our group, we designed new some molecules according 

to the active fragments mosaic theory and introduced the 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-

carboxylic acyl group into these substituted anilines. Three series of novel amides were thus synthesized 

as shown in Schemes 1–3. Some target molecules exhibited good antifungal activity. We report these 

results in this paper. 

2. Results and Discussion 

2.1. Synthesis of Compounds 

The synthetic route to the target compounds 3a is shown in Scheme 1. The aldehyde in  

2-nitrobenzaldehyde and amine in 2-aminobenzenethiol were condensed to form an imine, then the 

intermediate 1 was obtained via a intramolecular cyclization between the thiol and imine. The nitro group 

of 1 was reduced with hydrazine hydrate to provide the intermediates 2, which were subsequently 

acylated to produce the target amides 3a. 

The synthetic route to the target compounds 6a–6g is shown in Scheme 2. First, the aminopyridine 

was protected as the corresponding benzaldehyde imine, so the formation could be accomplished in situ 

under the cross-coupling conditions. The intermediates 4 were prepared via a Suzuki coupling by 

reacting the imines and phenylboronic acid under palladium catalysis. Intermediates 5 were obtained 

after subsequent cleavage of the imines using HCl. 
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Reagents and conditions: (i) K3[Fe(CN)6], 2-aminobenzenethiol, toluene, reflux, 10 h; (ii) NH2-NH2·H2O, 
Pd-C, CH3OH, reflux, 8 h; (iii) 10, TEA, CH2Cl2, 0 °C, 30 min. 

Scheme 1. Synthetic procedure for target compounds 3a.  

 
Reagents and conditions: (i) phenylboronic acid, benzaldehyde, Pd (PPh3)2Cl2, Na2CO3, toluene,7 h; 
(ii) HCl; (iii) 10, TEA, CH2Cl2, 0 °C, 30 min. 

Scheme 2. Synthetic procedure for target compounds 5a–5g.  

The synthetic route to the target compounds 9a–9n is shown in Scheme 3. The chlorine atom in  

1-chloro-2-nitrobenzene was replaced by an amino group via an aromatic nucleophilic substitution 

reaction, giving the intermediates 7. Then the reduction of the nitro group and the acylation of the amino 

group were performed exactly as presented in Scheme 1. 

 
Reagents and conditions: (i) H-R, HMTA, CuI, Cs2CO3, DMF, 20h; (ii) NH2-NH2·H2O, Pd-C, 
CH3OH, reflux, 8 h; (iii) 10, TEA, CH2Cl2, 0 °C, 30 min. 

Scheme 3. Synthetic procedure for target compounds 9a–9n.  

The synthetic route to the carboxylic acid chloride 10 is shown in Scheme 4. The carboxylic acid was 

treated with thionyl chloride, then the carboxylic acid chloride was obtained. 
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Reagents and conditions: (i) SOCl2, toluene, DMF, 2 h. 

Scheme 4. Synthetic procedure for carboxylic acid chloride 10.  

2.2. In Vitro Antifungal Activity 

The in vivo antifungal activity results of the title compounds against seven phytopathogenic fungi are 

listed in Table 1.  

Table 1. In vitro antifungal activity of the target compounds against seven phyto-pathogenic 

fungi (50 μg·mL−1). 

No. 
Inhibition Rate (%) 

C.O. R.S. P.I. P.A. F.S. B.B. B.C. 
3a 35.29 37.32 26.77 26.15 24.00 41.48 33.90 
6a 29.41 53.56 22.73 37.67 24.31 67.52 37.07 
6b 83.66 44.73 26.77 61.38 17.24 50.86 69.75 
6c 56.21 31.91 36.87 48.85 22.47 32.11 48.05 
6d 48.37 60.11 8.59 34.51 25.24 88.92 49.27 
6e 69.28 39.60 28.79 77.24 29.85 61.65 63.90 
6f 53.59 38.46 29.80 43.90 27.08 45.17 51.70 
9a 79.74 42.74 51.52 55.28 22.47 53.13 55.12 
9b 84.97 54.13 53.03 73.98 40.31 69.89 97.56 
9c 92.81 92.59 56.06 90.79 39.28 83.24 69.27 
9d 54.90 35.62 30.30 45.26 26.77 48.87 37.56 
9e 56.21 47.29 51.01 42.82 26.16 70.46 79.02 
9f 62.75 95.16 35.86 77.51 26.16 66.20 84.88 
9g 48.37 70.66 47.98 48.78 24.00 60.8 76.58 
9h 25.49 51.28 60.10 27.10 43.39 33.81 37.80 
9i 83.63 45.58 40.91 81.30 22.47 61.37 78.78 
9j 74.51 56.41 51.52 53.66 26.16 79.83 81.46 
9k 78.43 82.62 72.73 62.33 35.39 51.71 68.05 
9l 52.29 88.89 56.06 46.25 41.54 35.52 49.75 

9m 94.12 86.32 51.52 90.24 38.47 84.38 86.10 
9n 84.97 76.07 42.93 65.67 12.01 68.18 55.36 

Boscalid 83.61 91.74 36.36 85.64 31.08 79.55 83.66 

C.O. = Colletotrichum orbiculare; R.S. = Rhizoctonia solani; P.I. = Phytophthora infestans (Mont.) De Bary; 

P.A. = Pythium aphanidermatum; F.S. = Fusarium moniliforme Sheld; B.B. = Botryosphaeria berengeriana; 

B.C. = Botrytis cinerea. 
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The target molecules exhibited different levels of antifungal activity against these fungi. Their 

inhibitory activities to Colletotrichum orbiculare, Rhizoctonia solani, Pythium aphanide- rmatum and 

Botrytis cinerea were higher than against the other three fungi. 

Compound 9h exhibited excellent activity against Fusarium moniliforme Sheld and Rhizoctonia 

solani, but little effect on the others. Among compounds 9a–9n, the compounds with an indazole group 

(9m and 9n) exhibited the highest antifungal activity against the tested fungi. The second group are the 

compounds with open chain tertiary amines (9k and 9l) and the third one are the amides with  

nitrogen-containing aliphatic rings (9a, 9b, etc.). Those compounds with imidazole or triazole rings  

(9d and 9h) exhibited little antifungal activity. The results show the compounds 9c and 9m exhibited 

higher activity against most of the seven fungi than boscalid and the series 3 and series 6 displayed 

poorer activities than the series 9. 

In order to further study the activities of the best target compounds, we chose five compounds for 

precise virulence measurements against the seven fungi. Table 2 shows their EC50 values. As we can see 

from Table 2, compound 9m displayed excellent activity against Colletotrichum orbiculare, Rhizoctonia 

solani, Phytophthora infestans (Mont.) De Bary, Fusarium moniliforme Sheld and Botryosphaeria 

berengeriana with EC50 values of 5.50, 14.40, 75.54, 79.42 and 28.29, respectively. It thus exhibited 

lower EC50 values and a broader spectrum of antifungal activity than the control boscalid. 

Table 2. EC50 values of target compounds against seven fungi (μg·mL−1). 

No. C.O. R.S. P.I. P.A. F.S. B.B. B.C. 

9b 33.99 55.83 80.94 35.35 96.21 29.13 24.87 

9c 21.03 26.92 86.85 31.65 83.52 28.71 32.80 

9f 26.71 16.55 94.24 30.84 86.57 46.29 20.72 

9k 25.94 21.92 39.22 26.12 58.17 49.22 41.35 

9m 5.50 14.40 75.54 21.04 79.42 28.29 30.69 

Boscalid 5.86 15.48 79.80 15.58 86.28 33.39 19.69 

2.3. QSAR Analyses 

The topomer CoMFA model was optimized. A cross-validation q2 value of 0.636 and a  

non-cross-validation r2 value of 0.995 with an optimized component of 6 were obtained, which suggested 

that the model has good predictive ability (q2 > 0.5). The sterically favored and disfavored regions are 

shown in green and yellow. In the electrostatic field, the positively charged favored regions are shown 

in blue, and the negatively charge favored regions are shown in red. 

We chose the molecule 9m with highest activity which makes it is easier to explain the contour map. 

The bromoindazole group in compound 9m, with an increasing steric hindrance with its larger 

substituent exhibits stronger bioactivities in the steric field map (Figure 2a). The compound 9h with a 

small triazole group exhibited poor activity. In the electrostatic region, the benzene ring of the indazole 

hovered in the blue blocks (Figure 2b), indicating that electropositivity was beneficial for the antifungal 

activity. Compound 9m has a more electropositive benzene ring which may be attributed to that the N 

atoms in the indazole which decrease the electron density of the benzene ring. 
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Figure 2. Topomer CoMFA contour maps around the amine moiety. (a) steric field around 

the amine moiety of 9m; (b) electrostatic field around the amine moiety of 9m. 

2.4. Molecular Docking 

In an effort to elucidate the possible mechanism of the observed antifungal activity of these 

compounds, molecular docking of compounds 9m to the binding site of SDH (pdb code: 2FBW [3,4]) 

pdb was performed. The three-dimensional schematic diagrams clearly explained the possible optimal 

combination between the ligands and receptor protein (Figure 3). 

 

Figure 3. Surflex-Docking of compound 9m to complex II. (a) Interaction of 9m and amino 

acid residues near the ligands (3D diagram); (b) Connolly surface of complex II with 

compound 9m and boscalid shown as a stick model. 

Compound 9m is bound to the Qp [5] site of SDH. Two hydrogen bonds were formed between the 

carboxyl oxygen of compound 9m and amino acid residues. The hydrogen bonding distance between 

the amino hydrogen of TRP173 and the carboxyl oxygen of 9m was found to be 2.02 Å. Another 

hydrogen bond between the hydroxyl hydrogen of TYR58 and the carboxyl oxygen of 9m was found to 

be 1.91 Å (Figure 3a). The amino acid residues of MET36, SER39, ILE40, AGR43, PRO169, HIS216 

and ILE218 interacted with the ligand, including weak interaction such as wan der Waals interactions 

and polar interactions. The results agreed well with the molecule docking of carboxin [6], boscalid and 

bixafen [7]. 
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The compounds 9m (the light salmon color) and boscalid (the light blue color) were aligned in the 

active pocket (Figure 3b). The total docking scores were 6.59 and 5.26, respectively. The carboxylic 

acid building block moiety appears to be more harmonious than the amide building block. The results of 

this molecular docking study demonstrated the perfect combination between compound 9m and the key 

residues in the binding cavity of SDH [8]. Thus, the stable complex could support the postulation that 

our active compounds may act on the same enzyme target where SDH inhibitors act confirming the 

molecular design of the reported class of antifungal agents. 

3. Experimental Section 

3.1. General Information 

1H (300 MHz) and 13C-NMR (75 MHz) spectra were obtained using an Avance DPX300 spectrometer 

(Bruker, Billerica, MA, USA) in CDCl3 or DMSO-d6 solution with tetramethylsilane as the internal 

standard. Melting points were determined using an X-4 binocular microscope melting point apparatus 

(Beijing Tech Instruments Co., Beijing, China). High resolution mass spectrometry data were obtained 

with an Accurate-Mass-Q-TOF MS 6520 system equipped with an electrospray ionization (ESI) source 

(Agilent, Santa Clara, CA, USA). 

3.2. Synthesis of Compounds 

3.2.1. Synthesis of 2-(2-Nitrophenyl)benzo[d]thiazole (1) 

In a 250 mL flask, 2-aminobenzenethiol (5.7 g, 45.9 mmol), 2-nitrobenzaldehyde (22.6 g, 68.7 mmol), 

and K3[Fe(CN)6] (22.7 g, 6.9 mmol) were dispersed in toluene (100 mL), and the mixture was heated to 

reflux for 10 h [9]. Product 1 was obtained by the filtration of the reaction mixture, concentration of the 

filtrate and recrystallization of the crude product from ethanol. Orange powder; yield: 8.5 g (72.2%); mp 

126–127 °C. 1H-NMR (CDCl3) δ 8.08 (m, 1H), 8.01–7.87 (m, 2H), 7.79 (m, 1H), 7.75–7.59 (m, 2H), 

7.59–7.49 (m, 1H), 7.45 (m, 1H). 

3.2.2. Synthesis of 2-(Benzo[d]thiazol-2-yl)anilines 2 and 8a–8m 

In a 100 mL three-necked flask equipped with a dropping funnel, 2-(2-nitrophenyl)benzo[d]- thiazole 

(1, 3.0 g, 12.5 mmol) and ethanol (50 mL) were mixed and heated to reflux. Palladized charcoal (0.1 g, 

5%) was added, then 80% hydrazine hydrate solution (10 mL) was added from a dropping funnel during 

30 min [10,11]. The heating was continued for 8 h and then the mixture cooled. The solid was filtered 

off and the filtrate was concentrated to give a crude product that was recrystallized from ethyl acetate 

and petroleum ether solution (1:5) to afford compound 2 as a yellow powder (yield: 3.76 g, 85%); mp 

130–131 °C. 1H-NMR (CDCl3) δ 7.97 (dd, J = 8.1, 0.6 Hz, 1H), 7.92–7.82 (m, 1H), 7.71 (dd, J = 7.9, 

1.1 Hz, 1H), 7.53–7.41 (m, 1H), 7.39–7.31 (m, 1H), 7.25–7.16 (m, 1H), 6.84–6.68 (m, 2H), 6.40 (s, 2H). 

Compounds 8a–8m were similarly prepared from 7a–7m. 
  



Molecules 2015, 20 8402 

 

 

3.2.3. General Procedure for the Preparation of 2-Aryl-3-aminopyridines 5a–5g 

In a 250 mL flask, 2-chloropyridin-3-amine (5 g, 38.9 mmol), p-tolylboronic acid (5.5 g, 46.7 mmol), 

benzaldehyde (4.12 g, 38.9 mmol) and toluene (80 mL) were stirred at room temperature for 10 min, 

and trans-dichloro(triphenylphosphine) palladium [5] (0.136 g, 0.21 mmol) was added. The mixture was 

stirred for 15 min, and a solution of Na2CO3 (5.0 g, 46.7mmol) in water (80 mL) was added. The mixture 

was heated to reflux for 7 h. The suspension was filtered when the mixture was cooled to room 

temperature, and the layers were allowed to separate. The organic layer was treated with 3 N HCl (60 mL). 

The organic layer containing the benzaldehyde was discarded and the pH adjusted to 12 with 50% 

aqueous NaOH [12]. After extraction with ethyl acetate (3×60 mL) the organic layer was concentrated 

to an oil. Pure 2-(p-tolyl)pyridin-3-amine (5f) was obtained as a brown paste by column chromatography 

(EtOAc-PE = 4:1) purification. Yield: 5.20 g (72%); 1H-NMR (CDCl3) δ 8.01 (dd, J = 7.4, 1.5 Hz, 1H), 

7.98 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 7.5 Hz, 2H), 6.94 (t, J = 7.5 Hz, 1H), 6.82 (dd, J = 7.5, 1.4 Hz, 1H), 

3.79 (s, 2H), 2.34 (s, 3H). 

3.2.4. General Procedures for the Preparation of 2-Substituted Aminoanilines 3a, 6a–6g and 9a–9n 

These reactions were performed as described in [13] and [14]. 

N-(2-(Benzo[d]thiazol-2-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (3a). 

White crystals; yield 70%; mp 212–214 °C; 1H-NMR (CDCl3) δ 12.76 (s, 1H, NH), 8.94–8.69 (m, 1H, 

Ar-H), 8.08 (s, 1H, pyrazole-H), 7.93 (d, J = 7.8 Hz, 1H, Ar-H), 7.88–7.76 (m, 2H, Ar-H), 7.59–7.49 

(m, 1H, Ar-H), 7.50–7.40 (m, 2H, Ar-H), 7.32 (t, 1H, CF2H), 7.19–7.06 (m, 1H, Ar-H), 4.09  

(s, 3H, CH3). 13C-NMR (CDCl3) δ 160.03, 152.40, 137.72, 133.19, 132.02, 130.93, 129.71, 126.60, 

125.75, 123.19, 121.62, 121.34, 120.63, 109.22, 39.67. HRMS (ESI), m/z calcd for C19H14F2N4OS 

(M+H)+ 385.0929, found 385.0930. 

3-(Difluoromethyl)-1-methyl-N-(2-(4-(trifluoromethyl)phenyl)pyridin-3-yl)-1H-pyrazole-4-carboxamide 

(6a). White powder; yield 77%; mp 170–172 °C; 1H-NMR (CDCl3) δ 8.81 (dd, J = 8.2, 1.7 Hz, 1H, 

pyridine-H), 8.54 (s, 1H, NH), 8.15 (dd, J = 4.7, 1.7 Hz, 1H, pyridine-H), 8.05 (s, 1H, pyrazole-H),  

7.86–7.76 (m, 1H, Ar-H), 7.39–7.25 (m, 3H, Ar-H), 7.07–7.02 (m, 1H, pyridine-H), 6.83 (t, 1H, CF2H), 

3.96 (s, 3H). 13C-NMR (CDCl3) δ 159.43, 143.88, 140.22, 138.47, 135.58, 131.93, 129.36, 123.11, 

122.92, 122.15, 116.20, 111.26, 60.16, 39.47, 13.98. HRMS (ESI), m/z calcd for C18H13F5N4O (M+H)+ 

397.1082, found 397.1083. 

3-(Difluoromethyl)-1-methyl-N-(2-(3-(trifluoromethyl)phenyl)pyridin-3-yl)-1H-pyrazole-4-carboxamide 

(6b): White crystals; yield 68%; mp 152–154 °C; 1H-NMR (CDCl3) δ 8.52 (dd, J = 8.3, 1.3 Hz, 1H, 

pyridine-H), 8.44 (dd, J = 4.7, 1.4 Hz, 1H, pyridine-H), 8.13–7.92 (s, 1H, NH), 7.84 (s, 1H, pyrazole-H) 

7.82 (d, 1H, Ar-H), 7.63 (ddd, J = 29.9, 19.5, 11.0 Hz, 3H, Ar-H), 7.32 (dd, J = 8.3, 4.7 Hz, 1H, pyridine-H), 

6.71 (t, 1H, CF2H), 3.86 (s, 3H, CH3). 13C-NMR (CDCl3) δ 159.57, 149.00, 145.57, 137.96, 135.06, 

132.19, 131.65, 130.81, 129.30, 125.61, 125.55, 125.52, 125.45, 125.40, 123.12, 115.90, 110.85, 39.31. 

HRMS (ESI), m/z calcd for C18H13F5N4O (M+H)+ 397.1082, found 397.1080. 
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3-(Difluoromethyl)-N-(2-(4-methoxyphenyl)pyridin-3-yl)-1-methyl-1H-pyrazole-4-carboxamide (6c): 

White crystals; yield 75%; mp 188–190 °C; 1H-NMR (CDCl3) δ 8.45 (dd, J = 8.3, 1.4 Hz, 1H, pyridine-H), 

8.34 (dd, J = 4.7, 1.5 Hz, 1H, pyridine-H), 8.10 (s, 1H, NH), 7.73 (s, 1H, pyrazole-H), 7.51–7.40 (m, 

2H, Ar-H), 7.21 (dd, J = 8.3, 4.7 Hz, 1H, pyridine-H), 6.99–6.89 (m, 2H, Ar-H), 6.86 6.71 (t, 1H,CF2H), 

3.82 (s, 3H, CH3)3.80 (s, 3H, CH3). 13C-NMR (CDCl3) δ 159.96, 159.60, 149.98, 145.18, 133.98, 131.36, 

130.00, 129.37, 122.10, 114.19, 110.45, 55.16, 39.37. HRMS (ESI), m/z calcd for C18H16F2N2O2 (M+H)+ 

359.1314, found 359.1315. 

N-(2-(4-(tert-Butyl)phenyl)pyridin-3-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (6d): 

White crystals; yield 73%; mp 178–180 °C; 1H-NMR (CDCl3) δ 8.59 (dd, J = 8.3, 1.4 Hz, 1H, pyridine-H), 

8.39 (dd, J = 4.7, 1.5 Hz, 1H, pyridine-H), 8.03 (s, 1H, NH), 7.75 (s, 1H, pyrazole-H), 7.58–7.35 (m, 

4H, Ar-H), 7.26 (dd, J = 8.2, 4.8 Hz, 1H, pyridine-H), 6.74 (t, 1H, CF2H), 3.87 (s, 3H, CH3), 1.34 (s, 

9H, CH3). 13C-NMR (CDCl3) δ 159.51, 151.94, 150.11, 145.05, 134.29, 134.00, 131.60, 129.44, 128.30, 

125.78, 122.32, 116.45, 110.43, 39.38, 34.54, 31.04. HRMS (ESI), m/z calcd for C21H22F2N4O (M+H)+ 

385.1834, found 385.1835. 

3-(Difluoromethyl)-1-methyl-N-(2-(p-tolyl)pyridin-3-yl)-1H-pyrazole-4-carboxamide (6e): Yellow 

crystals; yield 75%; mp 168–170 °C; 1H-NMR (CDCl3) δ 8.55 (dd, J = 8.3, 1.4 Hz, 1H, pyridine-H), 

8.39 (dd, J = 4.7, 1.4 Hz, 1H, pyridine-H), 8.05 (s, 1H, NH), 7.75 (s, 1H, pyrazole-H), 7.41 (d, J = 8.0 Hz, 

2H, Ar-H), 7.26 (d, 2H, Ar-H), 7.25 (dd, J = 8.2, 4.8 Hz, 1H, pyridine-H) 6.80(t, 1H, CF2H), 3.89 (s, 

3H, CH3), 2.39 (s, 3H, CH3). 13C-NMR (CDCl3) δ 159.58, 150.16, 145.13, 138.71, 134.09, 133.96, 

131.46, 129.78, 129.44, 128.49, 122.28, 116.36, 110.42, 39.37, 21.10. HRMS (ESI), m/z calcd for 

C18H16F2N4O (M+H)+ 343.1365, found 343.1365. 

3-(Difluoromethyl)-N-(2-(3,5-dimethylphenyl)pyridin-3-yl)-1-methyl-1H-pyrazole-4-carboxamide (6f): 

White crystals; yield 71%; mp 198–200 °C; 1H-NMR (CDCl3) δ 8.55 (dd, J = 8.3, 1.3 Hz, 1H, pyridine-H), 

8.34 (dd, J = 4.7, 1.4 Hz, 1H, pyridine-H), 8.08 (s, 1H, NH), 7.72 (s, 1H, pyrazole-H), 7.33–7.16 (m, 

1H, pyridine-H), 7.06 (d, J = 14.9 Hz, 3H, Ar-H), 6.79 (t, 1H, CF2H), 3.84 (s, 3H, CH3), 2.30 (s, 6H, 

CH3). 13C-NMR (CDCl3) δ 159.57, 150.40, 144.93, 143.63, 138.39, 136.84, 133.99, 131.49, 130.35, 

129.64, 126.25, 122.27, 116.31, 110.39, 39.31, 21.02. HRMS (ESI), m/z calcd for C19H18F2N4O (M+H)+ 

357.1521, found 357.1521. 

3-(Difluoromethyl)-1-methyl-N-(2-morpholinophenyl)-1H-pyrazole-4-carboxamide (9a). Brown 

powder; yield 70%; mp 174–176 °C; 1H-NMR (CDCl3) δ 9.28 (s, 1H, NH), 8.43 (dd, J = 8.1, 1.5 Hz, 

1H, Ar-H), 7.97 (s, 1H, pyrazole-H), 7.36–7.10 (m, 3H, Ar-H), 7.09–6.74 (t, 1H, CF2H), 3.95 (s, 3H, 

CH3), 3.90–3.77 (m, 4H, CH2), 3.02–2.72 (m, 4H, CH2). 13C-NMR (CDCl3) δ 159.19, 141.47, 134.83, 

133.78, 125.66, 124.05, 121.11, 120.21, 117.39, 111.18, 66.89, 52.68, 39.39. HRMS (ESI), m/z calcd 

for C16H18F2N4O2 (M+H)+ 337.1471, found 337.1469. 

3-(Difluoromethyl)-1-methyl-N-(2-(piperidin-1-yl)phenyl)-1H-pyrazole-4-carboxamide (9b): Orange 

powder; yield 72%; mp 88–90 °C; 1H-NMR (CDCl3) δ 9.08 (s, 1H, NH), 8.28 (dd, J = 7.9, 1.6 Hz, 1H,  

Ar-H), 7.81 (s, 1H, pyrazole-H), 7.13–6.89 (m, 3H, Ar-H), 6.85 (t, 1H, CF2H), 3.82 (s, 3H, CH3),  

2.77–2.52 (m, 4H, CH2), 1.69–1.53 (m, 4H, CH2), 1.47 (d, J = 4.7 Hz, 2H, CH2). 13C-NMR (CDCl3) δ 
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159.22, 133.42, 133.10, 124.94, 123.82, 120.71, 119.70, 110.41, 60.15, 53.83, 39.46, 26.38, 23.80, 

13.98. HRMS (ESI), m/z calcd for C17H20F2N2O (M+H)+ 335.1678, found 335.1677. 

N-(2-(1H-Indazol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9c): White 

crystals; yield 69%; mp 150–152 °C; 1H-NMR (CDCl3) δ 9.74 (s, 1H, NH), 8.50 (dd, J = 8.3, 1.3 Hz, 

1H, Ar-H), 8.32 (d, J = 0.7 Hz, 1H, Ar-H), 7.81 (d, J = 8.1 Hz, 1H, Ar-H), 7.67 (s, 1H, pyrazole-H), 

7.62–7.48 (m, 2H, Ar-H), 7.48–7.36 (m, 2H, Ar-H), 7.35–7.20 (m, 2H, Ar-H), 7.21 (t, 1H, CF2H), 3.89 

(s, 3H, CH3). 13C-NMR (CDCl3) δ 159.24, 139.84, 135.75, 132.28, 131.55, 128.61, 128.11, 127.82, 

124.32, 124.25, 124.22, 123.36, 122.03, 121.16, 116.90, 110.53, 109.57, 39.47. HRMS (ESI), m/z calcd 

for C19H15F2N5O (M+H)+ 368.1317, found 368.1323. 

N-(2-(1H-Pyrazol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9d): White 

crystals; yield 67%; mp 152–154 °C; 1H-NMR (CDCl3) δ 10.98 (s, 1H, NH), 8.76–8.29 (m, 1H, Ar-H), 

7.84 (dd, J = 5.7, 2.1 Hz, 2H, pyrazole-H), 7.76 (s, 1H, pyrazole-H), 7.39–7.29 (m, 2H, Ar-H), 7.28 (t, 

1H, CF2H), 7.14 (d, 1H, Ar-H), 6.47 (m, 1H, pyrazole-H), 3.96 (s, 3H, CH3). 13C-NMR (CDCl3) δ 

159.36, 140.81, 130.97, 130.95, 130.14, 128.59, 127.72, 124.00, 122.66, 121.89, 109.36, 107.17, 39.57. 

HRMS (ESI), m/z calcd for C15H13F2N5O (M+H)+ 318.1161, found 318.1161. 

3-(Difluoromethyl)-N-(2-(2,6-dimethylmorpholino)phenyl)-1-methyl-1H-pyrazole-4-carboxamide (9e): 

White crystals; yield 72%; mp 182–184 °C; 1H-NMR (CDCl3) δ 9.25 (s, 1H, NH), 8.53–8.31 (m, 1H, 

Ar-H), 7.92 (s, 1H, pyrazole-H), 7.21–7.01 (m, 3H, Ar-H), 6.88 (t, 1H, CF2H), 3.90 (s, 3H, CH3), 3.83 

(dd, J = 13.8, 6.9 Hz, 2H, CH2), 2.75 (d, J = 10.9 Hz, 2H, CH2), 2.46 (t, J = 10.8 Hz, 2H, CH2), 1.16 (d, 

J = 6.3 Hz, 6H, CH3). 13C-NMR (CDCl3) δ 159.18, 141.14, 134.34, 133.80, 125.54, 123.96, 121.18, 

119.98, 117.31, 110.97, 71.68, 58.27, 39.35, 18.81. HRMS (ESI), m/z calcd for C18H12F2N4O2 (M+H)+ 

365.1784, found 365.1789. 

3-(Difluoromethyl)-1-methyl-N-(2-(pyrrolidin-1-yl)phenyl)-1H-pyrazole-4-carboxamide (9f): White 

powder; yield 75%; mp 134–136 °C; 1H-NMR (300 MHz, CDCl3) δ 9.03 (s, 1H,NH), 8.17 (t, J = 10.4 Hz, 

1H, Ar-H), 7.92 (s, 1H, pyrazole-H), 7.22–6.93 (m, 3H), 7.10 (t, 1H, CF2H), 3.87 (s, 3H, CH3), 3.00 (d, 

J = 5.6 Hz, 4H, CH2), 1.96 (d, J = 34.0 Hz, 4H, CH2). 13C-NMR (CDCl3) δ 159.38, 141.31, 134.38, 

124.55, 123.24, 121.49, 119.40, 117.20, 114.00, 110.89, 107.79, 52.28, 39.28, 24.32. HRMS (ESI), m/z 

calcd for C16H18F2N4O (M+H)+ 321.1521, found 321.1525. 

N-(2-(1H-Pyrrol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9g): Light 

yellow powder; yield 79%; mp 146–148 °C; 1H-NMR (CDCl3) δ 8.37 (dd, J = 8.3, 1.3 Hz, 1H, Ar-H), 

7.57 (s, 1H, NH), 7.55(s, 1H, pyrazole-H), 7.44–7.35 (m, 1H, Ar-H), 7.30 (dt, J = 8.6, 4.3 Hz, 1H, Ar-H), 

7.19 (dt, J = 7.7, 1.2 Hz, 1H, Ar-H), 6.98 (t, 1H, CF2H), 6.82 (t, J = 2.1 Hz, 2H, pyrrole-H), 6.41 (t,  

J = 2.1 Hz, 2H, pyrrole-H), 3.86 (s, 3H, CH3). 13C-NMR (CDCl3) δ 159.27, 133.39, 132.51, 131.09, 

128.55, 126.79, 124.39, 122.05, 121.76, 116.44, 110.23, 109.93, 39.46. HRMS (ESI), m/z calcd for 

C16H14F2N4O (M+H)+ 317.1208, found 317.1209. 

N-(2-(1H-1,2,3-Triazol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9h): 

Light yellow powder; yield 62%; mp 188–190 °C; 1H-NMR (DMSO-d6) δ 10.49 (s, 1H, NH), 8.34 (s, 
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1H, pyrazole-H), 8.17 (m, 2H, Ar-H), 8.11–8.01 (m, 1H, triazole-H), 7.88 (m, 1H, triazole-H), 7.43 (dd, 

2H, Ar-H), 7.26 (t, 1H, CF2H), 3.98 (s, 3H, CH3). 13C-NMR (DMSO-d6) δ 159.88, 145.18, 136.31, 

132.99, 131.29, 129.99, 128.78, 125.62, 125.34, 123.70, 116.30, 109.89, 39.73. HRMS (ESI), m/z calcd 

for C14H12F2N6O (M+H)+ 319.1113, found 319.1112. 

3-(Difluoromethyl)-1-methyl-N-(2-(4-methylpiperidin-1-yl)phenyl)-1H-pyrazole-4-carboxamide (9i): 

White crystals; yield 76%; mp 137–139 °C; 1H-NMR (CDCl3) δ 9.17 (s, 1H, NH), 8.37 (dd, J = 7.9, 1.5 

Hz, 1H, Ar-H), 7.87 (s, 1H, pyrazole-H), 7.31–6.84 (m, 3H, Ar-H), 7.08 (t, 1H, CF2H), 3.91 (s, 3H, 

CH3), 3.01–2.80 (m, 2H, CH2), 2.66 (dd, J = 16.6, 6.6 Hz, 2H, CH2), 1.72 (d, J = 12.3 Hz, 2H, CH2), 

1.49 (dd, J = 10.6, 6.2 Hz, 1H, CH), 1.33 (tdd, J = 19.8, 14.1, 5.7 Hz, 2H, CH2), 0.98 (d, J = 6.3 Hz, 3H,CH3).  
13C-NMR (CDCl3) δ 159.22, 143.99, 142.80, 133.41, 133.12, 124.79, 123.80, 120.70, 119.69, 117.46, 

110.45, 53.11, 39.39, 34.74, 30.23, 21.75. HRMS (ESI), m/z calcd for C18H22F2N4O (M+H)+ 349.1834, 

found 349.1838. 

3-(Difluoromethyl)-N-(2-(3,5-dimethylpiperidin-1-yl)phenyl)-1-methyl-1H-pyrazole-4-carboxamide 

(9j): Yellow oily liquid; yield 75%; 1H-NMR (CDCl3) δ 9.18 (s, 1H, NH), 8.38 (dd, J = 8.0, 1.5 Hz, 1H, 

Ar-H), 7.81 (s, 1H, pyrazole-H), 7.22–6.94 (m, 3H, Ar-H), 7.10 (t, 1H, CF2H), 3.91 (s, 3H, CH3), 2.91–2.76 

(m, 2H, CH2), 2.30–2.10 (m, 2H, CH2), 1.94–1.71 (m, 2H, CH2), 1.00 (d, J = 6.8 Hz, 1H, CH), 0.86 (d, 

J = 6.4 Hz, 6H, CH3), 0.75–0.59 (m, 1H, CH). 13C-NMR (CDCl3) δ 159.21, 142.42, 133.48, 132.76, 

124.92, 123.77, 120.84, 119.55, 117.46, 110.3, 60.56, 41.68, 39.41, 31.77, 19.14. HRMS (ESI), m/z 

calcd for C19H24F2N2O (M+H)+ 363.1991, found 363.1990. 

N-(2-(Butyl(methyl)amino)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9k): 

Yellow crystals; yield 78%; mp 18–20 °C; 1H-NMR (CDCl3) δ 9.39 (s, 1H, NH), 8.43 (dd, J = 8.0, 1.4 

Hz, 1H, Ar-H), 7.89 (s, 1H, pyrazole-H), 7.36–6.96 (m, 3H, Ar-H), 7.10 (t, 1H, CF2H), 3.90 (s, 3H, 

CH3), 2.98–2.69 (m, 2H, CH2), 2.56 (s, 3H, CH3), 1.37 (dt, J = 14.6, 6.9 Hz, 2H, CH2), 1.23 (dq,  

J = 14.3, 7.1 Hz, 2H, CH2), 0.80 (t, J = 7.2 Hz, 3H, CH3). 13C-NMR (CDCl3) δ 159.14, 141.96, 134.57, 

133.52, 125.06, 123.66, 121.52, 119.38, 117.45, 110.60, 56.39, 43.35, 39.30, 29.51, 20.20, 13.65. HRMS 

(ESI), m/z calcd for C17H22F2N4O (M+H)+ 337.1834, found 337.1837. 

N-(2-(Diethylamino)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (9l): White 

powder; yield 79%; mp 85–86 °C; 1H-NMR (CDCl3) δ 9.56 (s, 1H, NH), 8.44 (d, J = 7.9 Hz,  

1H, Ar-H), 7.88 (s, 1H, pyrazole-H), 7.34–6.95 (m, 3H, Ar-H), 7.12 (t, 1H, CF2H) ,3.86 (d, J = 6.5 Hz, 

3H, CH3), 2.89 (q, J = 7.1 Hz, 4H, CH2), 0.87 (t, J = 7.1 Hz, 6H, CH3). 13C-NMR (CDCl3) δ 159.02, 

143.70, 139.05, 136.41, 133.48, 125.36, 123.44, 123.07, 119.03, 117.45, 110.62, 48.98, 39.29, 12.10. 

HRMS (ESI), m/z calcd for C16H20F2N4O (M+H)+ 323.1678, found 323.1677. 

N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide 

(9m): White crystals; yield 74%; mp 90–92 °C; 1H-NMR (CDCl3) δ 9.62 (s, 1H, NH), 8.43  

(t, J = 7.3 Hz, 1H, Ar-H), 8.24(s, 1H, pyrazole-H), 7.89–7.58 (m, 2H, Ar-H), 7.49 (dd, J = 13.1, 4.9 Hz, 

2H, Ar-H), 7.34 (dt, J = 8.9, 6.2 Hz, 2H, Ar-H), 7.20 (t, 1H, CF2H) , 7.27–7.02 (m, 1H, Ar-H), 3.85 (s, 

3H, CH3). 13C-NMR (CDCl3) δ 159.22, 139.76, 135.76, 132.17, 131.46, 128.57, 128.01, 127.82, 124.36, 
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124.21, 123.52, 123.31, 122.02, 121.18, 110.48, 109.59, 39.44. HRMS (ESI), m/z calcd for 

C19H14BrF2N5O (M+H)+ 446.0423, found 446.0423. 

N-(2-(6-Bromo-5-methyl-1H-indazol-1-yl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carbox- 

amide (9n): White crystals; yield 69%; mp 150–152 °C; 1H-NMR (CDCl3) δ 9.88 (s, 1H, NH), 8.63–8.39 

(m, 1H, Ar-H), 8.21 (s, 1H, pyrazole-H), 7.67 (s, 1H, Ar-H), 7.53 (d, J = 7.4 Hz, 1H, Ar-H), 7.52–7.37 

(m, 3H, Ar-H), 7.29–7.20 (m, 2H, Ar-H), 7.09 (t, 1H, CF2H), 3.88 (s, 3H, CH3), 2.45 (s, 3H, CH3). 13C-NMR 

(CDCl3) δ 159.23, 138.47, 135.15, 132.11, 131.67, 131.37, 129.92, 128.69, 127.83, 124.67, 124.14, 

124.00, 123.23, 120.13, 116.93, 110.20, 109.55, 39.44, 21.00. HRMS (ESI), m/z calcd for 

C20H16BrF2N5O (M+H)+ 460.0579, found 460.0573. 

3.3. Bioassays 

The fungi were provided by the Laboratory of Institute of Plant Protection, Chinese Academy of 

Agricultural Sciences (Beijing, China). The fungicidal activity of the target compounds was tested  

in vitro against the seven plant pathogenic fungi using the mycelia growth inhibition method [15]. The 

tested compounds were dissolved in DMSO at a concentration of 10 mg·mL−1. The media containing 

compounds at a concentration of 50 μg·mL−1 were then poured into Petri dishes for initial screening.  

In the precision antifungal test, the 10 mg·mL−1 solution was diluted to 100, 50, 25, 12.5, 6.25, 3.125, 

1.56 μg·mL−1 and the above experiments were repeated three times, the inhibition rates were calculated 

separately. The statistical analyses were performed by SPSS software version 17.0. 

3.4. QSAR Analyses 

Topomer CoMFA (in the SYBYL X 2.0 program) was performed to analysis the relationship between 

structure and activity. Topomer CoMFA is an alignment-independent 3D-QSAR method that combines 

the topomer search method [16] with the conventional CoMFA method. Besides the core of the molecule, 

we split the functional of compound into two R-groups that refer to the R1 (amide moiety) and R2 

(carboxylic acid moiety) groups. In total, 21 compounds obtained from synthesis were used to create a 

data set in which the inhibition rate of all compounds was determined (Table 1) against Colletotrichum 

orbiculare. Three-dimensional structures of the target compounds were built by the Chem3D software 

version 12.0. 

3.5. Molecular Docking 

Docking was performed by Surflex-Dock (in the SYBYL X2.0 program). The ligand structures were 

energetically minimized using MM2 energy minimizations in ChemBio 3D. All bound water and key 

ligands were eliminated from the protein, and the polar hydrogen atoms and the AMBER7 FF99 charges 

were added to the proteins. 

4. Conclusions 

Twenty-one novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides had been 

synthesized by introducing the 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-acyl group in these amide 
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compounds. The bioassays showed that all of them exhibited moderate to remarkable antifungal 

activities against the seven tested fungi. The compounds containing indazole groups displayed stronger 

antifungal activities than the others. By comparing the activities and structures of the compounds 9c and 

9m with the highly antifungal compounds which we found in previous work [2], it could be determined 

that the indazole group plays a significant role in improving the activities of the molecules. We found a 

novel lead compound 9m with higher antifungal activity and broader spectrum than the control boscalid. 

Topomer CoMFA was employed to develop a 3D QSAR model on the antifungal activity of target 

molecules. A molecular docking study showed the mode of action of these structures on SDH. The 

present findings provided a powerful complement to the SDHIs of fungicides, and warrant future 

investigation of the mechanism of action of these analogues. Further studies on biological behavior and 

structural optimization are in progress in our laboratory. 
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