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Abstract: An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through 

an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium 

sulfinates has been developed. Under the optimized reaction conditions, a series of 

trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99%) 

with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic 

methods, the current protocol features mild reaction temperature, high efficiency and easily 

available reagents. 

Keywords: Morita-Baylis-Hillman carbonate; allylic sulfone; trisubstituted alkene; allylic 
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1. Introduction 

Morita-Baylis-Hillman (MBH) adducts and their derivatives are very useful multifunctional 

synthons in organic chemistry [1–5]. Since the pioneering work of Lu and co-workers in 2004, MBH 

carbonates have triggered much interest among chemistry researchers [6]. The most extensively 

studied transformation pattern of this type of MBH derivatives is the allylic substitution with a 

pronucleophile in the presence of a Lewis basic catalyst [7–9]. Based on the substitution position on 

MBH carbonates, the transformations could be divided into the following two styles: substitution at the 

β-position through a SN2'-SN2' cascade or substitution at the β'-position via a single SN2' route 

(Scheme 1). Compared with the former route, which is widely employed in asymmetric synthesis to 

access versatile multifunctional chiral molecules [10–16], the latter route has been often used for the 

preparation of trisubstituted alkenes [17–20]. 
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Scheme 1. Allylic substitution reaction of Morita-Baylis-Hillman (MBH) carbonates. 

Allylic sulfone derivatives are important intermediates in organic synthesis [21–24]. Recent studies 

have revealed that these compounds exhibit remarkable biological activities [25]. The use of MBH 

adducts or their acetates as good starting materials for the trisubstituted allylic sulfones has been 

reported in some instances [26–34]. Although many sulfonyl precursors including sulfinate [26–29],  

p-toluenesulfonylmethylcyanide [30], arenesulfonyl cyanide [31], sulfinyl chloride [32], 

sulfonylhydrazide [33] and sulfinic acid [34] have been employed in this type of allylic sulfonylation, 

sulfinate is undoubtedly a cheap and easily available reagent. However, either a high reaction 

temperature [26,27] (70–80 °C, 6–16 h) or unconventional organic solvent (ionic liquids or 

polyethylene glycol) [28,29], accompanied with tedious work-up procedures, were required to ensure a 

high yield of the desired products. Since MBH carbonates usually exhibit much superior reactivity to 

MBH acetates, we envisaged that they would be more susceptible to the nucleophilic attack by 

sulfinate. Herein, we report a new protocol in which MBH carbonates 1 and sodium sulfinates 2 

undergo a smooth and rapid SN2' pathway to realize the trisubstituted allylic sulfones 3 under mild and 

catalyst-free reaction conditions (Scheme 2). 
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Scheme 2. Allylic sulfonylation of MBH carbonates 1 with sodium sulfinates 2. 
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2. Results and Discussion 

2.1. Optimization Studies 

Preliminary studies were carried out by using MBH carbonate 1a (R = Ph, EWG = CO2Me) and 

sodium benzenesulfinate (2a, Ar = Ph). The screening results are presented in Table 1. Firstly, the 

model reaction was investigated with different solvents at ambient temperature (Table 1, entries 1–6). 

Among the solvents tested, toluene and chloroform gave poor conversion (Table 1, entries 1 and 2), 

and PhCF3 afforded only a trace amount of the final adduct 3a after 72 h (Table 1, entry 3). Although 

1,2-dichloroethane (DCE) and tetrahydrofuran (THF) afforded 3a in high yield (Table 1, entries 4 and 

5), acetonitrile was a superior solvent with regard to both conversion rate and product yield (92%, 

Table 1, entry 6). Next, it was found that when the reaction temperature was raised to 40 °C, nearly full 

conversion could be achieved within a significantly shortened reaction time and the expected product 

was furnished in 96% yield (Table 1, entry 7). Finally, the examination of the reaction with a 

decreased concentration of substrate 1a revealed no influence on product yield, whereas the reaction 

time was prolonged (Table 1, entry 8). 

Table 1. Optimization of reaction conditions using MBH carbonate 1a and sodium 

benzenesulfinate 2a a. 

Entry Solvent T (°C) Time (h) Yield (%) b,c 

1 toluene 25 36 37 
2 CHCl3 25 48 17 
3 PhCF3 25 72 trace 
4 DCE 25 36 82 
5 THF 25 36 87 
6 MeCN 25 36 92 
7 MeCN 40 2 96 d 

8 e MeCN 40 5 96 
a Reaction conditions: Unless otherwise noted, reactions were performed with 1a (0.1 mmol) and sodium 

benzenesulfinate 2a (0.15 mmol) in solvent (1 mL) at indicated temperature; b Isolated yield of two 

inseparable isomers; c Major isomer of 3a was determined to be Z by comparison of its NMR data with the 

one reported in literature [35]; d Z/E = 96:4, determined by 1H-NMR analysis; e 2 mL of solvent was used. 

2.2. Synthesis of Trisubstituted Allylic Sulfones 3a–o 

On the basis of the above optimized reaction parameters (0.1 mmol of MBH carbonate 1a and  

0.15 mmol of sodium benzenesulfinate (2a) to perform the reaction in 1 mL of MeCN at 40 °C), this 

protocol was then extended to other MBH carbonates or sulfinates to investigate the scope and 

limitation of the method. As shown in Table 2, MBH carbonates 1 could generally be converted within 

2 h and corresponding products 3 were obtained in good to excellent yields (71%–99%) with good to 

high selectivity (Z/E from 79:21 to >99:1) (Table 2, entries 1–15). Different substituents on the phenyl 

group were first explored. The results showed that the electronic nature or position of substituents had 

minimal influence on reaction efficiency in terms of reaction rate and product yield in general  

(78%–98%, Table 2, entries 1–9). Besides, 1-naphthyl group-substituted MBH carbonate 1j was a 
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suitable substrate, albeit with lower yield (71%, Table 2, entry 10). Meanwhile, two heteroaromatic 

substrates 1k and 1l also showed high reactivity, providing 3k and 3l in high yields (85% and 96%, 

Table 2, entries 11 and 12). It is worth mentioning that the MBH carbonate 1m, which was prepared 

from an aliphatic aldehyde, could participate in this reaction to produce the desired product 3m in high 

yield (91%, Table 2, entry 13). In addition, MBH carbonate 1n, which was derived from acrylonitrile, 

could also be transformed in excellent yield under the catalyst-free reaction conditions (99%, Table 2, 

entry 14). To our delight, sodium p-toluenesulfinate 2b (Ar = p-MeC6H4) was well tolerated and the 

desired product 3o was provided in 95% yield (Table 2, entry 15). 

Table 2. Substrate scope for allylic sulfonylation of MBH carbonates 1 with sodium 

sulfinates 2 a. 

Entry R EWG Ar Yield (%) b Z/E c,d 

1 Ph (1a) CO2Me Ph 96 (3a) 96:4 
2 o-ClC6H4 (1b) CO2Me Ph 88 (3b) 95:5 
3 p-ClC6H4 (1c) CO2Me Ph 96 (3c) 85:15 
4 p-NO2C6H4 (1d) CO2Me Ph 83 (3d) 79:21 
5 m-BrC6H4 (1e) CO2Me Ph 93 (3e) 94:6 
6 p-MeOC6H4 (1f) CO2Me Ph 78 (3f) 88:12 

7 
 (1g) 

CO2Me Ph 98 (3g) 90:10 

8 m-MeC6H4 (1h) CO2Me Ph 96 (3h) 88:12 
9 p-MeC6H4 (1i) CO2Me Ph 92 (3i) 96:4 

10 1-naphthyl (1j) CO2Me Ph 71 (3j) 96:4 
11 2-furyl (1k) CO2Me Ph 85 (3k) >99:1 
12 2-thienyl (1l) CO2Me Ph 96 (3l) 81:19 
13 n-propyl (1m) CO2Me Ph 91 (3m) 82:18 
14 Ph (1n) CN Ph 99 (3n) <1:99 
15 Ph (1a) CO2Me p-MeC6H4 95 (3o) 84:16 

a Reaction conditions: Unless otherwise noted, reactions were performed with MBH carbonate 1 (0.1 mmol) and 

sodium sulfinate 2 (0.15 mmol) in MeCN (1 mL) at 40 °C for 2 h; b Isolated yield of two inseparable isomers; 
c Olefin geometry was assigned by analogy with that of 3a; d Z/E ratio was determined by 1H-NMR analysis. 

3. Experimental Section 

3.1. General Information 

TLC was performed on glass-backed silica plates. Flash column chromatography was performed using 

silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. UV light was used to visualize 

products. 1H-NMR spectra were recorded at 400 MHz, and 13C-NMR spectra were recorded at 100 MHz 

(Avance 400, Bruker, Faellanden, Switzerland). Tetramethylsilane was used as the internal standard. 

Chemical shifts are reported in ppm downfield from the solvent signal (CDCl3, δ = 7.27 ppm) for  
1H-NMR and relative to the central CDCl3 resonance (δ = 77.0 ppm) for 13C-NMR spectroscopy. 

Coupling constants are given in Hz. ESI-HRMS was recorded on a Waters SYNAPT G2 (Milford, MA, 

USA). In experiments requiring dry solvents, DCE, chloroform and toluene were distilled from CaH2. 

PhCF3 was stored over 4 Å molecular sieves. THF was dried over sodium metal. Acetonitrile was 
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dried over P2O5. All other chemicals were used without purification as commercially available. MBH 

carbonates were prepared by the reported procedure [36]. 

3.2. General Procedure for Preparation of Trisubstituted Allylic Sulfones 3a–o 

MBH carbonate 1 (0.1 mmol) and sodium sulfinate 2 (0.15 mmol) were mixed in MeCN (1 mL) and 

heated at 40 °C for 2 h. Then, the reaction mixture was concentrated under reduced pressure and the 

residue was diluted with toluene and purified by flash column chromatography on silica gel (petroleum 

ether/EtOAc) to afford the desired product 3a–o. Products 3a [33], 3d [26], 3f [26], 3k [26], 3l [27], 

3n [33] and 3o [26] are known compounds. 

(Z)-Methyl 3-phenyl-2-[(phenylsulfonyl)methyl]acrylate (3a). Colourless liquid; 96% yield; Z/E = 96:4; 
1H-NMR: δ = 7.95 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.63–7.59 (m, 1H), 7.52–7.47 (m, 4H), 7.39–7.37 

(m, 3H), 4.49 (s, 2H), 3.60 (s, 3H) ppm; 13C-NMR: δ = 167.0, 146.6, 139.6, 133.9, 133.8, 129.9, 129.4, 

129.2, 129.0, 128.7, 121.1, 55.3, 52.5 ppm; ESI-HRMS: calcd. For C17H16O4S+Na 339.0667,  

found 339.0661. 

(Z)-Methyl 3-(2-chlorophenyl)-2-[(phenylsulfonyl)methyl]acrylate (3b). Colourless liquid; 88% yield; 

Z/E = 95:5; 1H-NMR: δ = 7.94 (m, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.55–7.53 (m, 2H), 7.43–7.40 (m, 

2H), 7.30–7.27 (m, 1H), 7.23–7.21 (m, 2H), 4.31 (s, 2H), 3.55 (s, 3H) ppm; 13C-NMR: δ = 165.5, 

142.4, 138.5, 133.3, 133.0, 131.5, 129.9, 129.2, 129.0, 128.3, 128.1, 127.7, 126.3, 122.3, 54.2, 51.8 

ppm; ESI-HRMS: calcd. For C17H15ClO4S+Na 373.0277, found 373.0273. 

(Z)-Methyl 3-(4-chlorophenyl)-2-[(phenylsulfonyl)methyl]acrylate (3c). Colourless liquid; 96% yield; 

Z/E = 85:15; 1H-NMR: δ = 7.89 (s, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.64–7.61 (m, 1H), 7.53–7.49 (m, 2H), 

7.46 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.44 (s, 2H), 3.57 (s, 3H) ppm; 13C-NMR: δ = 165.6, 

144.0, 138.3, 134.9, 132.9, 131.1, 129.6, 128.1, 127.5, 120.4, 54.1, 51.5 ppm; ESI-HRMS: calcd. For 

C17H15ClO4S+H 351.0458, found 351.0459. 

(Z)-Methyl 3-(4-nitrophenyl)-2-[(phenylsulfonyl)methyl]acrylate (3d). Pale yellow solid; 83% yield; 

Z/E = 79:21; 1H-NMR: δ = 8.24 (d, J = 8.0 Hz, 2H), 7.98 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.69–7.64 (m, 

3H), 7.55–7.52 (m, 2H), 4.40 (s, 2H), 3.63 (s, 3H) ppm; 13C-NMR: δ = 165.0, 142.5, 139.0, 133.1, 

128.8, 128.2, 127.7, 127.5, 123.2, 122.9, 122.4, 53.9, 51.7 ppm; ESI-HRMS: calcd. For 

C17H15NO6S+Na 384.0518, found 384.0518. 

(Z)-Methyl 3-(3-bromophenyl)-2-[(phenylsulfonyl)methyl]acrylate (3e). Pale yellow solid; 93% yield; 

Z/E = 94:6; 1H-NMR: δ = 7.85–7.83 (m, 3H), 7.68–7.64 (m, 1H), 7.53–7.42 (m, 5H), 7.28–7.24 (m, 

1H), 4.46 (s, 2H), 3.67 (s, 3H) ppm; 13C-NMR: δ = 166.6, 144.6, 139.1, 135.7, 134.0, 132.6, 131.9, 

130.4, 129.3, 128.7, 127.4, 123.0, 122.7, 55.0, 52.7 ppm; ESI-HRMS: calcd. For C17H15BrO4S+Na 

416.9772, found 416.9772. 

(Z)-Methyl 3-(4-methoxyphenyl)-2-[(phenylsulfonyl)methyl]acrylate (3f). Colourless liquid; 78% yield; 

Z/E = 88:12; 1H-NMR: δ = 7.92 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.62–7.58 (m, 3H), 7.54–7.50 (m, 

2H), 6.93 (d, J = 8.0 Hz, 2H), 4.52 (s, 2H), 3.85 (s, 3H), 3.51 (s, 3H) ppm; 13C-NMR: δ = 167.3, 161.3, 
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146.5, 139.6, 133.8, 131.7, 129.1, 128.7, 126.3, 118.1, 114.4, 55.6, 55.5, 52.3 ppm; ESI-HRMS: calcd. 

For C18H18O5S+Na 369.0773, found 369.0771. 

(Z)-Methyl 3-(3,4-dimethoxyphenyl)-2-[(phenylsulfonyl)methyl]acrylate (3g). Viscous liquid; 98% 

yield; Z/E = 90:10; 1H-NMR: δ = 7.93 (s, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.65–7.62 (m, 1H), 7.55–7.51 

(m, 2H), 7.43 (s, 1H), 7.20–7.17 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H), 4.53 (s, 2H), 3.97 (s, 3H), 3.93 (s, 

3H), 3.50 (s, 3H), ppm; 13C-NMR: δ = 166.1, 149.8, 148.1, 145.8, 138.6, 132.7, 128.0, 127.6, 125.5, 

122.7, 117.2, 111.5, 110.1, 55.3, 55.0, 54.8, 51.2 ppm; ESI-HRMS: calcd. For C19H20O6S+K 415.0618, 

found 415.0618. 

(Z)-Methyl 2-[(phenylsulfonyl)methyl]-3-(m-tolyl)acrylate (3h). Colourless liquid; 96% yield;  

Z/E = 88:12; 1H-NMR: δ = 7.88 (s, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.59–7.54 (m, 1H), 7.47–7.43 (m, 

2H), 7.24–7.20 (m, 2H), 7.16–7.13 (m, 2H), 4.47 (s, 2H), 3.58 (s, 3H), 2.31(s, 3H) ppm; 13C-NMR:  

δ = 165.9, 145.5, 138.3, 137.4, 132.6, 129.5, 128.8, 127.7, 127.5, 125.1, 119.7, 54.1, 51.4, 20.3 ppm; 

ESI-HRMS: calcd. For C18H18O4S+Na 353.0823, found 353.0827. 

(Z)-Methyl 2-[(phenylsulfonyl)methyl]-3-(p-tolyl)acrylate (3i). Colourless liquid; 92% yield;  

Z/E = 96:4; 1H-NMR: δ = 7.93 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.63–7.60 (m, 1H), 7.52–7.48 (m, 2H), 

7.43 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.50 (s, 2H), 3.56 (s, 3H), 2.38 (s, 3H) ppm;  
13C-NMR: δ = 166.0, 145.6, 139.3, 138.5, 132.7, 129.8, 128.5, 128.5, 128.0, 127.6, 118.7, 54.3, 51.3, 

20.4 ppm; ESI-HRMS: calcd. For C18H18O4S+Na 353.0823, found 353.0820. 

(Z)-Methyl 3-(naphthalen-2-yl)-2-[(phenylsulfonyl)methyl]acrylate (3j). Colourless liquid; 71% yield; 

Z/E = 96:4; 1H-NMR: δ = 8.35 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.62–7.59 (m, 3H), 7.46–7.33 (m, 4H), 

7.29–7.26 (m, 1H), 7.21–7.17 (m, 2H), 4.38 (s, 2H), 3.66 (s, 3H) ppm; 13C-NMR: δ = 166.7, 144.6, 

139.2, 133.4, 133.3, 131.0, 130.7, 129.8, 128.9, 128.6, 128.1, 126.7, 126.4, 126.4, 125.3, 124.3, 123.5, 

55.1, 52.6 ppm; ESI-HRMS: calcd. For C21H18O4S+Na 389.0823, found 389.0825. 

(Z)-Methyl 3-(furan-2-yl)-2-[(phenylsulfonyl)methyl]acrylate (3k). Semi-solid; 85% yield; Z/E > 99:1; 
1H-NMR: δ = 7.84 (s, 1H), 7.83–7.82 (m, 1H), 7.53–7.50 (m, 2H), 7.44–7.39 (m, 3H), 6.67 (d,  

J = 4.0 Hz, 1H), 6.40 (m, 1H), 4.79 (s, 2H), 3.59 (s, 3H) ppm;13C-NMR: δ = 166.9, 150.0, 145.8, 139.4, 

133.6, 130.7, 128.7, 128.7, 119.1, 115.5, 112.3, 55.5, 52.4 ppm; ESI-HRMS: calcd. For C15H14O5S+H 

307.0640, found 307.0649. 

(Z)-Methyl 2-[(phenylsulfonyl)methyl]-3-(thiophen-2-yl)acrylate (3l). Light brown liquid; 96% yield; 

Z/E = 81:19; 1H-NMR: δ = 8.03 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.60–7.56 (m, 1H), 7.53–7.46 (m, 

5H), 7.08–7.06 (m, 1H), 4.61 (s, 2H), 3.50 (s, 3H) ppm; 13C-NMR: δ = 165.7, 138.4, 137.3, 135.7, 

133.2, 132.8, 129.9, 128.0, 127.6, 126.8, 115.1, 55.0, 51.3 ppm; ESI-HRMS: calcd. For C15H14O4S2+H 

323.0412, found 323.0417. 

(Z)-Methyl 2-[(phenylsulfonyl)methyl]hex-2-enoate (3m). viscous liquid; 91% yield; Z/E = 82:18;  
1H-NMR: δ = 7.86–7.81 (m, 2H), 7.64–7.61 (m, 1H), 7.54–7.51 (m, 2H), 7.12 (t, J = 8.0 Hz, 1H), 4.24 

(s, 2H), 3.48 (s, 3H), 2.20–2.14 (m, 2H), 1.49–1.40 (m, 2H), 0.91 (t, J = 8.0 Hz, 3H) ppm; 13C-NMR:  
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δ = 166.2, 151.9, 139.0, 133.9, 129.2, 128.9, 120.8, 54.2, 52.1, 31.6, 21.7, 14.0 ppm; ESI-HRMS: 

calcd. For C14H18O4S+Na 305.0823, found 305.0829. 

(E)-3-Phenyl-2-[(phenylsulfonyl)methyl]acrylonitrile (3n). Colourless liquid; 99% yield; Z/E < 1:99; 
1H-NMR: δ = 7.94–7.92 (m, 2H), 7.74–7.68 (m, 3H), 7.63–7.59 (m, 2H), 7.47–7.41 (m, 3H), 7.09 (s, 

1H), 4.05 (s, 2H) ppm; 13C-NMR: δ = 151.9, 137.6, 134.7, 132.5, 131.7, 129.6, 129.3, 129.1, 128.8, 

117.1, 98.0, 61.4 ppm; ESI-HRMS: calcd. For C16H13NO2S+Na 306.0565, found 306.0566. 

(Z)-Methyl 3-phenyl-2-(tosylmethyl)acrylate (3o). Colourless liquid; 95% yield; Z/E = 84:16;  
1H-NMR: δ = 7.93 (s, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.47 (m, 2H), 7.37 (m, 3H), 7.27 (d, J = 8.0 Hz, 

2H), 4.48 (s, 2H), 3.62 (s, 3H), 2.42 (s, 3H) ppm; 13C-NMR: δ = 167.1, 146.3, 144.8, 136.3, 133.8, 

129.7, 129.3, 128.8, 128.6, 121.2, 55.2, 52.5, 21.7 ppm; ESI-HRMS: calcd. For C18H18O4S+Na 

353.0823, found 353.0827. 

4. Conclusions 

In summary, we have established a method for the allylic sulfonylation of MBH carbonates with 

sodium sulfinates under catalyst-free reaction conditions. A series of functionalized trisubstituted 

allylic sulfones were rapidly generated in good to excellent yields (71%–99%) with good to high 

selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol 

features mild reaction temperature (40 °C), high efficiency (full conversion within 2 h) and easily 

available reagents. Thus, it should provide an efficient and facile access to the trisubstituted allylic 

sulfones. Further studies on expanding the substrate scope and chemical transformations of the 

trisubstituted allylic sulfones are currently underway. 
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