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Abstract: The Suzuki-Miyaura reaction (SMR), involving the coupling of an organoboron 

reagent and an organic halide or pseudo-halide in the presence of a palladium or nickel 

catalyst and a base, has arguably become one of most utilized tools for the construction of 

a C-C bond. This review intends to be general account of all types of catalytic systems, 

new coupling partners and applications, including the literature between September 2010 

and December 2014. 

Keywords: Suzuki-Miyaura; palladium; nickel; N-heterocyclic carbene; phosphine; 

polymerization 

 

1. Introduction 

Since its discovery in 1979 [1], the Suzuki-Miyaura reaction (SMR) [2–5], involving the coupling 

of an organoboron reagent and an organic halide or pseudo-halide in the presence of a palladium or 

nickel catalyst and a base, has arguably become one of most utilized tools for the construction of a C-C 

bond. The reaction follows an oxidative addition transmetallation reductive elimination catalytic cycle 

that benefits from the use of electron-donating, sterically demanding ligands which promote first and 

last steps [2]. Clear advantages over other palladium-catalyzed cross-coupling reactions [5] include:  

(i) mild reaction conditions; (ii) ready availability of organoboron reagents, which also are inert to water 

and related solvents, as well as oxygen, and generally thermally stable; (iii) tolerant toward various 

functional groups; and (iv) low toxicity of starting materials and by-products [6]. These features have 

allowed researchers to utilize it in a wide variety of applications, from natural product synthesis to the 

development of polymeric materials. Due to its impact in such a variety of fields, Akira Suzuki, 

OPEN ACCESS



Molecules 2015, 20 7529 
 

 

together with Richard F. Heck and Ei-Ichi Negishi, was awarded in September 2010 the Nobel Prize in 

Chemistry “for palladium-catalyzed cross couplings in organic synthesis”. Since then, excellent and 

thorough reviews covering specific aspects of this reaction have been published: a historical account [7], 

and reviews focusing on Ni-catalyzed reactions [8], nanocatalysts [9], preformed Pd catalysts [10], 

sulphur-containing ligands [11,12], and the coupling of polyhalogenated heteroarenes [13]. This 

review intends to be a more general account of all types of catalytic systems, new coupling partners 

and applications, including the literature between September 2010 and December 2014. It is worth 

pointing out that a Scopus search on the topic “Suzuki coupling” lead to more than 3000 articles during 

that period; therefore, only a selection of the most significant developments and applications of the 

SMR are presented in here. In addition and for simplicity, details on the specifics of the reaction 

conditions (base, solvent, temperature) have been omitted unless any of those factors where 

determinant to the outcome, focusing mostly in coupling partners, ligands, metals and products. 

2. Catalytic Systems 

2.1. Homogeneous Systems 

2.1.1. Palladium-Based Systems 

Phosphane-Based Catalytic Systems 

The SMR of non-aromatic coupling partners has been featured in several articles. Louie and  

co-workers devised a protocol for the coupling of heteroaryl boronic acids and vinyl chlorides using 

Pd(OAc)2 and SPhos at 85 °C. Interestingly, any increase or decrease of the temperature led to a lower 

yield of the desired product and an increase of protodeborilation of the boronic acid [14]. Also using 

Pd(OAc)2, Zhang developed a regioselective and stereospecific coupling of allylic carbonates  

with arylboronic acids using racemic BINAP as ligand, without added base and under mild reaction 

conditions [15]. Crudden and co-workers reported on the first regioselective SMR of secondary allylic 

boronic esters with aryl iodides, using Pd(PPh3)4 in the presence of Ag2O, where the regioselectivity 

was dictated by the pattern of olefin substitution [16]. More recently and in collaboration with 

Aggarwal, they reported the first cross-coupling of enantioselective chiral, enantioriched secondary 

allylic boronic esters, allowing to isolate high yields of major regioisomers by using Pd(dba)3, PPh3 

and Ag2O [17]. 

Regarding the use of organoboranes other than the classic boronic acids and esters, Molander 

reported the coupling of potassium 1-(benzyloxy)alkyltrifluoroborates with aryl and heteroaryl 

chlorides [18] potassium Boc-protected aminomethyltrifluoroborates with aryl and heteroaryl 

mesylates [19] and sulfamates [20] and potassium cyclopropyl- and alkoxymethyltrifluoroborates with 

benzyl chlorides [21], using commercially available phosphines like RuPhos or SPhos (Scheme 1, 

Reactions (1)–(4)). Buchwald demonstrated that lithium triisopropyl borate salts can be used in SMR, 

and even devised a one-pot lithiation/borylation/SMR for the coupling of heteroarenes using complex 

1 (Figure 1) as pre-catalyst (Scheme 1, Reaction (5)) [22]. 
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Scheme 1. SMR with new organoborane coupling partners. 

Hong reported on the synthesis of two series of secondary phosphine oxide ligands and the use of 

some of those ligands in combination with Pd(OAc)2 (2 in 2011 and 3 in 2013) for SMR of aryl 

bromides and chlorides with phenylboronic acid [23,24]. 

Chelating phosphines and phosphine-bearing palladacycles are also common in SMR. Karami and 

co-workers prepared ortho-metallated complex 4 for the coupling or aryl bromides and chlorides under 

mild condition [25]. Lang synthesized chiral P,O-ferrocene 5a which, in combination with Pd2(dba)3 

was applied in the coupling of nonactivated aryl bromides with aryl boronic acids at catalyst loadings 

as low as 1 ppm achieving quite high turnover numbers (TONs) of up to 750,000 [26]. Unfortunately, 

no atropselective SMR was observed. More recently, in 2014, two new bulky ferrocene supporting 

ligands 5b and 5c allowed for the synthesis of sterically congested tri-ortho-substituted byaryls under 

mild conditions [27,28]. Kwong and coworkers reported on the synthesis of CM-Phos (6), used in 

combination with Pd(OAc)2 for the coupling of alkenyl tosylates and mesylates [29]. Later, in 

collaboration with So, they prepared a 2nd generation of hemilable P,N-ligands, with 7 affording the 

best yields for the coupling of aryl mesylates in combination with Pd(OAc)2 [30]. Fernández and 

Lassaletta used complex 8, bearing a phosphino hydrazone, for asymmetric SMR leading to the 

formation of enantiomerically enriched biaryls under very mild reaction conditions [31]. 

Some phosphine-based protocols have been specifically devised for the coupling of sterically 

challenging substrates. Kwon reported on the synthesis of ligand 9, used in combination with 

Pd(OAc)2 for the synthesis of tri-ortho-substituted biaryls [32]. Di- and tri-ortho-substituted biaryls 

were prepared by Shaughnessy using trineopentylphosphine (10) [33]. Ligands 11a and 11b were 

designed by Tang and used for the synthesis of tetra-ortho-substituted biaryls by coupling aryl iodides, 

bromides and chlorides with boronic acids in excellent yields [34]. Previously, this group had reported 

on the use of similar ligands 12 in the synthesis of axially chiral byaryls in high yields and 

enantioselectivities, coupling aryl boronic acids with 3-(1-bromo-2-naphthoyl)benzo[d]oxazol-2(3H)-one 

and 1-bromo-2-naphtylphosphonate (Scheme 2) [35]. The same substrate was also the choice of Qiu 
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and co-workers to test ligand 13 [36], and of Suginome and co-workers to test novel helically chiral 

ligands [37]. 
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Figure 1. Phosphane-Pd complexes and phosphane ligands used in SMR. 

Zwitterionic phosphine palladium complex 14, prepared by Lee and coworkers in 2014, has shown 

high efficiency in the Suzuki-Miyaura reaction of sterically hindered substrates at room temperature, 

coupling ortho- and di-ortho-substituted aryl chlorides, heterocyclic and anthracenyl rings and even 

performed double arylations in good yields [38]. 
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Scheme 2. Synthesis of axially chiral biaryls. 

N-heterocyclic Carbene (NHC)-Based Systems 

Regarding the development of protocols specifically devised for the coupling of sterically 

challenging substrates, Dorta reported in 2011 the synthesis of complex 15 (Figure 2), which could 

perform room-temperature Suzuki-Miyaura synthesis of tetra-ortho-substituted biaryls.[39] Later, in 

2012, Cazin and Nolan reported the synthesis of (IPr*)Pd(cinnamyl)Cl] 16, also featuring a bulky 

NHC, that performed similar couplings using a lower catalyst loading when compared to Dorta’s [40]. 

The same year, Tu described the synthesis of complex 17, which allowed for the synthesis of  

tetra-ortho-substituted biaryls in excellent yields, albeit at higher temperature (80 °C) [41]. Another 

complex of the same family, [(SIPr)Pd(cinnamyl)Cl] 18, was applied by Minakata very recently in the 

stereospecific and regioselective cross-coupling of 2-arylaziridines with arylboronic acids to obtain 

configurationally defined arylphenethylamine derivatives [42]. 

Yuan and Huynh prepared a series of dinuclear and tetranuclear Pd(II) complexes of a  

thiolato-functionalized NHC [43]. Complex 19 was used as catalyst in SMR of aryl bromides using 

catalyst loadings as low as 0.0025 mol %. Navarro and co-workers reported the synthesis of 

(NHC)PdCl2(TEA) and (NHC)PdCl2(DEA) (TEA = triethylamine, DEA = diethylamine) complexes  

20 [44,45]. While the TEA-bearing complex exhibited high activity for the coupling of aryl chlorides 

at room temperature, the DEA-bearing complex required higher reaction temperature (80–90 °C) to 

match that activity. The authors concluded that while TEA-bearing complex activated faster, leading to 

the catalytically active species (NHC)-Pd(0), DEA-bearing complexes are more stable due to an rare 

intramolecular H-bonding between a chlorine and DEA. 

Rajabi and Thiel used complex 21 for the cross-coupling of both activated and deactivated aryl 

chlorides with phenyl, naphtyl and thiopheneboronic acids at room temperature in aqueous medium [46] 

Hong [47] and Mandal [48] explored the utilization of “abnormal” NHCs (aNHCs) [43] for SMR: [49] 

while Hong made use of ligand 22 in combination with Pd(OAc)2 for the coupling of aryl bromides, 

Mandal used complexes 23 for the coupling of aryl chlorides at room temperature. 

Very similar complexes 24 containing C5-bound 1,2,3-triazolylidene Pd complexes containing a  

3-chloropyridine ligand were independently prepared by Albrecht and Trzeciak [50] and Hong [51] in 

2012, where the only difference is the identity of the R-substituents: Hong’s had 2,6-diipropylphenyl 

groups while Albrecht explored a wide variety of aryl and alkyl substituents. 

Zou and co-workers reported a general protocol for SMR of aryl bromides and chlorides and 

diarylborinic acids and anhydrides catalyzed by an in situ-generated combination Pd/IPr/P(OPh)3 in a 
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1:1:2 ratio [52]. Gao prepared a series of novel bisimidazolium pincer ligands, and 25 was used in 

combination with Pd(OAc)2 for the coupling of aryl bromides using catalyst loadings as low as  

0.005 mol% [53]. 
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Figure 2. (NHC)-Pd complexes and NHC ligands used in SMR. 

More recently, Kühn synthesized a sulfonated water-soluble PEPPSI-Pd-NHC 26 complex with 

good recyclability and performed couplings of aryl chlorides and bromides at room temperature [54]. 

Zhang prepared a chiral bis-NHC palladium catalyst 27 for asymmetric Suzuki-Miyaura couplings of 
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aryl bromides and chlorides in good yields, observing a strong steric effect of the aromatic substituents 

on the enantiocontrol of the reaction [55]. 

Other Ligands and Ligandless Systems 

A wide variety of other ligands have been used for SMR. In 2010, Lin and co-workers synthesized 

chiral complex 28 (Figure 3) and used it, in combination with an extra amount of ligand, for catalytic 

asymmetric SMR leading to the formation of axially chiral biaryls at room temperature, in excellent 

yields and good enantioselectivities [56]. Schiff bases have been used as ligands by Singh [57] (29) 

and Das [58] (30). While Singh’s was only tested for the coupling of aryl bromides, the latter allowed 

for the coupling of activated and unactivated aryl chlorides. 

Nitrogen ligands are also very common. In 2011 Jin and Lee synthesized a series of  

β-diketiminato-phosphine-Pd complexes, being complex 31 the most active for the coupling of  

mono- and polychlorinated arenes in excellent yields [59]. Boutureira and Davis reported on a general 

method for the synthesis of 2-arylglycals by coupling 2-iodoglycals with arylboronic acids in aqueous 

media (Reaction (8), Scheme 3), using L2Pd(OAc)2 as catalyst (L = 32) [60]. In 2012, Yang and Song 

synthesized complexes 33 and used them as catalysts for the coupling of aryl bromides and phenyl 

chloride with phenyl- and 1-naphthylboronic acid [61]. The same year, Ramesh reported the synthesis 

of complex 34 for the coupling of deactivated aryl bromides and bromopyridines [62]. More recently, 

Shin and Liu used complex 35 as catalyst for the coupling of a variety of bromides at mild 

temperatures (rt—60 °C) [63]. 
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Figure 3. Complexes and ligands used in SMR. 

In this period, a series of articles have stressed the advantages and simplicity of ligandless systems, 

being Pd(OAc)2 the catalyst of choice in many cases. For instance, Schmidt used this salt for the 

coupling of phenoldiazonium salts with potassium trifluoroborates at room temperature [64], while Lu 

carried out SMR of N'-tosylarylhydrazines (Reactions (9), (10), Scheme 3) [65]. In addition, Liu 
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described the synthesis synthesis of heteroaryl-substututed triphenylamine derivatives by coupling 

heteroaryl halides with 4-(diphenylamino)phenylboronic acid [66]. 

 

Scheme 3. SMR of 2-iodoglycals, phenoldiazonium salts and N'-tosylarylhydrazines. 

2.1.2. Nickel-Based Systems 

Although Pd-catalyzed protocols have been by far the most investigated, the first example of  

Ni-catalyzed SMR was reported almost two decades ago by Percec and co-workers [67]. An increasingly 

growing interest in the use of Ni catalysts has led to important developments in this area [8]. 

The most significant feature is the variety of protocols that have been developed to couple other 

electrophiles than the classic aryl iodides, bromides or chlorides (Scheme 4). Phenols [68,69], 

carbamates and sulfamates [70,71], fluorides [72], phosphates [73] and heteroaryl ethers [74] have 

been successfully coupled with organoboron reagents with excellent results. In addition, Hartwig 

reported on the coupling of heteroaryl boronic acids with heteroaryl halides using low loadings of 

(dppf)Ni(cinnamyl)Cl under very mild reaction conditions [75]. 

 

Scheme 4. Ni-catalyzed SMR using phosphine ligands. 

A handful of examples of (NHC)-Ni(II) systems have been reported. Although oftentimes their 

activity in SMR is not particularly extraordinary, they are worth mentioning to account for and 

promote the research in this subarea. In 2010, Tu and co-workers reported on the use of complex 36 
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(Figure 4) in combination with PPh3 for the coupling or aryl bromides, chlorides, tosylates and 

mesylates with phenyl boronic acid in good to excellent yields [76]. Radius and co-workers reported 

on interesting studies on the activation of aryl chlorides and bromides through oxidative addition to 

(NHC)2Ni(0) species [77,78]. More recently, Chetcuti and Ritleng reported on the synthesis of 

(NHC)Ni(Cp)X complexes 37 and 38 for the coupling of bromo- and chloroarenes [79]. While 

complex 39 could perform some couplings in low to moderate yields, immobilized complexes 40 

displayed a much lower activity. 
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Figure 4. (NHC)nNi(II) complexes used as catalysts in SMR. 

In 2012, Roglans and Pörschke reported on the use of a series of nickel (0) complexes of 

polyunsaturated azamacrocyclic ligands (39 and related structures, Figure 5) for the SMR of 

arylboronic acids and aryl halides [80]. The same year, Fu and co-workers reported the use of 

carbamates, sulphonamides and sulfones as directing groups in Ni-catalyzed SMR, achieving the 

asymmetric coupling of unactivated alkyl electrophiles at room temperature (Scheme 5) [81]. The 

catalyst was formed in situ by combining either ligand 40 or ligand 41 and NiBr2·diglyme. Later, the 

same group reported on the use of ligand 42 in a similar system for the coupling of unactivated tertiary 

alkyl electrophiles [82]. 
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Figure 5. Ni(0) complex and ligands used in Ni-catalyzed SMR. 

 

Scheme 5. Ni-catalyzed asymmetric coupling of unactivated alkyl electrophiles. 
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2.1.3. Iron-Based Systems 

Recently, iron has entered the SMR arena. In 2012, Hu and co-workers performed theoretical and 

experimental studies on the mechanism and regioselectivity of iron-catalyzed direct SMR of pyridine 

and phenylboronic acid [83]. The authors found that the overall reaction includes three steps, 

somewhat similar to the regular SMR catalytic cycle: C-H activation, transmetalation, and reductive 

elimination. The same year, Nakamura and co-workers reported on iron-catalyzed SMR of alkyl 

bromides with in situ-prepared magnesium tetraalkylborates under very mild reaction conditions [84] 

and the stereospecific coupling of alkenylboronates and alkyl halides [85]. 

2.2. Heterogeneous Systems 

Heterogeneous catalysts generally offer the advantage of simple separation and recovery, allowing 

in many cases for high level of recyclability. With this goal in mind, Yang and co-workers synthesized 

an NHC-functionalized mesoporous ethane-silica material and a subsequent series of Pd-bearing 

derivatives, finding that material 43 (Figure 6) could catalyze very challenging couplings involving 

deactivated and sterically demanding aryl chlorides under relatively mild conditions [86]. Zhang and 

co-workers prepared NHC-containing, triptycene-based main-chain organometallic polymer 44, which 

could be used as a recyclable catalysts for SMR of aryl halides and phenylboronic acid [87]. Silica-

supported Pd-phosphine complex 45 was prepared by Wang and used for SMR of aryl iodides, 

bromides and activated chlorides at room temperature [88]. Very recently, Ma and co-workers 

synthesized immobilized complex 46, which was used as catalyst for the coupling of aryl iodides and 

bromides with phenyl- and 4-methylphenylboronic acid under air atmosphere [89]. 

Palladium nanoparticles are common in heterogeneous systems and several examples were reported 

in this period. For instance, Martins and co-workers reported the use of a palladium colloidal solution 

stabilized with polyvinylpyrrolidone for microwave-assisted SMR of aryl iodides and bromides [90]. 

Mallick and co-workers synthesized Pd-poly(amino acetanilide) composite 47, which was used in 

SMR of aryl and heteroaryl bromides with aryl and heteroaryl boronic acids [91]. Magdesieva and 

Vorotyntsev reported a series of polypyrrole-Pd nanocomposites that could be recycled when the 

particles were immobilized in a graphite tissue [92]. Guo and co-workers entrapped Pd nanocrystals in 

solution-dispersible, poly(p-phenyleneethynylene)-based conjugated nanoporous polymer colloids and 

used them as highly active and recyclable catalysts for the coupling of aryl bromides with 

phenylboronic acid [93]. Self-encapsulated Pd(II) catalyst 48 was synthesized via cross-linking of  

1,3-diethynylbenzene with Pd(OAc)2/PPh3, by Dong and Ye and used in cross-coupling reactions [94], 

at ppm to ppb palladium loadings with high recyclability and TONs as high as 3.2 × 106. 

In 2011, Wang and co-workers constructed a two-dimensional layered, imine-based covalent 

organic framework that incorporated Pd(OAc)2 between layers 49. This material was applied to the 

SMR of aryl iodides and bromides with excellent recyclability [95]. Later in 2014, Haag reported  

N-heterocyclic carbene palladium ligands that were supported on glycerol-dendrons 50, with the 

catalytic site at the core position, allowing for cross-coupling reactions to take place with catalyst 

loadings as low as 0.00001 mol % and high TON values [96]. 
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Figure 6. Heterogeneous complexes and ligands for SMR. 

In recent years, the synthesis of Fe3O4-supported catalysts that can be separated from the reaction 

mixture by an external magnet, avoiding laborious separation steps and allowing for an easy reuse, has 

attracted much attention [97]. Yang and Qin synthesized magnetic silica nanoparticles functionalized 

with an NHC by co-condensation of IPr carbene-bridged organosilane and tetraalkoxysilane. After 

coordinating Pd(acac)2, these particles were able to catalyze SMR of several aryl bromides and 

chlorides in isopropanol [98]. 

Yiang and Sun described the excellent activity of Fe3O4 and Pd nanoparticles assembled on 

sulfonated graphene for SMR of aryl bromides and aryl boronic acids [99]. Li and Ma described a 
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method to stabilize Pd(0) on the surface of hollow magnetic mesoporous silica spheres with Fe3O4 

nanoparticles embedded in the mesoporous shell [100], and used this heterogeneous catalyst for the 

coupling of various aryl halides with phenylboronic acid. Luo and co-workers treated magnetic 

nanoparticles 51 with a methanolic solution of Na2Pd2Cl6 under reflux conditions to obtain a catalyst 

that was used for the coupling of aryl bromides and iodides with arylboronic acids in high yields [101]. 

Very recently, Hyeon and co-workers prepared highly recyclable magnetic hollow nanocomposite 

catalysts with a permeable carbon surface, which were tested for SMR of aryl iodides and bromides 

with phenylboronic acid in excellent yields [102]. 

2.3. Reactions in Water 

It is estimated that around 80% of the chemical waste from a reaction mixture corresponds to the 

solvent [103]. From environmental, economic and safety points of view, the use of water as solvent in 

organic reactions is a clear goal, although challenging and in most cases requiring of high reaction 

temperatures. In the case of the SMR, the stability of boronic acids in aqueous media gives it an 

advantage over other cross-coupling reactions to implement water as a solvent. 

2.3.1. Homogeneous Systems 

In 2011, Wang and co-workers reported the synthesis of chelating complex 52 (Figure 7) and its 

application for SMR in air and water at 120 °C, allowing for the coupling of aryl chlorides and 

bromides in excellent yields [104]. Yu and Liu also reported on the coupling of aryl chlorides using an 

in situ generated catalytic system with Pd(OAc)2 and ligand 53, at 100 °C and in the presence of a 

quaternary ammonium salt [105]. The same temperature and Pd salt was needed for Liu’s in situ 

system involving the use of NHC precursor 54 for the coupling of mostly bromides [106]. Well-defined 

NHC-based catalysts for SMR in water were reported by Tu (55) [107], Karimi (56) [108], Wang  

(57) [109] and Godoy and Peris (58) [110]. Karimi reported later on a water-soluble (NHC)-Pd polymer 

similar to 56, in which the N-groups were replaced by triethylene glycol. This polymer showed very 

high activity for the coupling of aryl chlorides, together with excellent recyclability [111]. The same 

year, Eppinger and co-workers used palladacycle 59, under air and at room temperature, for the 

coupling of aryl iodides and bromides with a variety of boronic acids [112]. Very recently, Nechaev 

and co-workers synthesized complex 60, which was used for the coupling of heteroaryl bromides and 

chlorides [113]. The same year Cazin and co-workers reported on the synthesis of a series of mixed 

PR3/NHC Pd complexes 61 that were used in SMR of aryl chlorides using very low catalysts loadings 

and in an aqueous medium (water-isopropanol 9:1) [114]. A self-assembled nano-sized Pd6L8  

(L = 1,3,5-tris(4'-pyrirdyloxadiazol)-2,4,6-triethylbenzene) ball 62 was constructed by Dong for 

Suzuki-Miyaura coupling reactions at catalysts loadings of ppm [115]. The system allowed to tailor 

between a homogeneous or heterogeneous format depending on the solubility in different solvents 

under ambient conditions. 
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Figure 7. Ligands and complexes for homogeneous SMR in water. 

2.3.2. Heterogeneous Systems 

In 2010, Huang and co-workers reported on the use of Pd nanoparticles on a porous ionic 

copolymer of an ionic liquid and divinybenzene for the coupling of aryl bromides and chlorides under 

air and in water, using Pd loadings as low as 10 ppm [116]. 

Hu and co-workers embedded Pd nanoparticles in carbon thin film-lined nanoreactors with good 

results, reproducible even after reusing the catalyst five times [117], while Firouzabadi and Iranpoor 

used agarose hydrogel to contain the Pd [118]. The use of Pd salts seems to allow for milder reaction 

conditions: Ma and Lei prepared a heterogenous biopolymer complex wool-PdCl2 that performed 

couplings of aryl chlorides [119] and Li and co-workers used highly recyclable monodispersed zeolitic 

hollow spheres containing PdCl2(pyridine)2 to couple aryl bromides and iodides in 60% aqueous 

ethanol solutions [120]. Bora [121] and Qiu and Liu have recently shown that the solely use of PdCl2 
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and Pd(OAc)2, respectively, in the presence of an adequate base can couple a variety of aryl bromides 

in water [122]. 

The use of unsupported Pd-NHC complex 63 (Figure 8) was reported by Schmitzer [123]. This 

heterogeneous catalyst was used in low loadings for SMR in a green procedure with very good 

recyclability. Yamada and Uozumi developed a metalloenzyme-inspired polymer catalyst: [124] a  

self-assembled catalyst of poly(imidazole-acrylamide) and palladium species 64 that promoted the 

allylic arylation, alkenylation, and vynilation of allylic esters with aryl/alkenylboronic acids in water 

with catalytic turnover numbers of 20,000–1,250,000. 
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Figure 8. Heterogeneous catalysts for SMR in water. 

A few examples of magnetically recoverable systems which undergo reactions in water appeared in 

2014. An example was reported by Wand and Li in which a mesoporous magnetic organometallic 

catalyst promoted SMR in water with high efficiency using as low as 0.002 mol % of Pd (II) [125]. 

Eight reaction cycles were run without significant decrease in selectivity after which it was recovered 

by an external magnet. 

3. Applications 

3.1. SMR in Natural Products and Drugs Synthesis 

An account of natural products in which at least one step involved a SMR is depicted in  

Figures 9 [126–138] and 10 [139–150]. For each compound, the corresponding authors, the year and 

the bond constructed using a SMR are showed. It is worth of mention that despite the advances in 

catalyst development in the last 10–15 years, it is rare to find examples in the literature in which the 

catalyst employed for this often crucial step in the synthesis is different than simply Pd(PPh3)4, 

PdCl2(dppf) or Pd(OAc)2 in combination with PPh3 or Ph3As [140,144,149,150]. Regarding the use of 

SMR in drug synthesis only eight examples are shown (Figure 11) [151–155], although this 
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methodology has been used for the synthesis of many libraries of compounds with biological  

activity [156–158]. Some examples have also included SMR for the coupling of amino acids [159] and 

in chemical transformations in living organisms mediated by synthetic metal complexes (Figure 12), 

like an intracellular SMR using a cell penetrating Pd[0]-nanocatalyst [160] and the coupling between a 

modified pore protein with a boronic acid on the surface of E. coli [161]. 
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Figure 9. SMR in natural product synthesis (I). 
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Figure 10. SMR in natural product synthesis (II). 
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Figure 11. SMR in drug synthesis. 
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Figure 12. SMR in living organisms. 

3.2. Polymerizations 

The SMR, often referred in this area as “Suzuki polycondensation” (SPC), is a preferred protocol 

for the synthesis of polyarylenes and related unsaturated polymers [162]. The SPC follows, in most  

cases [163], a step-growth mechanism with conversions per bond formation step up to 99.99%, making 

it very attractive for the synthesis of well-defined polymers with specific optical and electronic properties. 
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Both AA/BB and AB polymerizations are common (AA/BB referring to a diboronate coupled with a 

dihalide, AB referring to a single monomer containing both functionalities), although the first approach 

is favoured due to an easier functionalization of the monomers. Figure 13 depicts a series of polymers 

developed since September 2010.  

S N S S

S

N S

N

C8H17

C8H17

Pri

iPr

Jin and Hyun, 2011

S

C12H25

Hu and Ng, 2010

S

C12H25
Han, 2011

Ge

S
S

R
R

N

N

Kim and Heeney, 2011

N S
N

NN
N

C8H17
C8H17

Ober, 2011

OMe

MeO OMe

MeO

Jasti, 2011

O

O

MeO

MeO

O

O

C6H13
C6H13

Tieke, 2011

S

S

R R

R R

Suh, 2013
R = 2-ethylhexyl

N

N
S

S

C12H25

C8H17

C6H13

O

O

C6H13

C8H17

S

S

C12H25

Janssen, 2012

O
N

N
O

O R

O

O

R

R = 2-decyltetradecyl

Sonar and Dobalapur, 2013

n
n

n

n

n

n n

n

n

C16H33 OH

O

C16H33 OH

OOH

(+)-phthioceramic acid (+)-hydroxyphthioceramic acid
Schneider, 2014

S

R1

R2
R2

S

R1

m n

R1 = n-C6H13

R2 = n-C8H17

n

Geng and Wang, 2014

Ar

C8H17 C8H17
N N

S

n

Huck, 2011

OR

RO

n

R = 2-ethylhexyl

Yokozawa, 2014

X

C8H17 C8H17

n

Te

C12H25

Kang, 2013

n

Turner, 2014

 

Figure 13. Polymers synthesized using SMP. 
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Interestingly, almost all polymers in this list were prepared using Pd(PPh3)4 or Pd(OAc)2 as 

catalysts [164–172], although there are some exceptions [173–178]. Focussing more in the catalyst 

employed and carrying out a catalyst screening for a specific polymerization is gradually becoming 

more and more common [139–150,179–181]. 

4. Closing Remarks 

Almost thirty five years after its discovery, the Suzuki-Miyaura reaction is more present than ever 

in the laboratories of researchers from varied disciplines, including both ends of the spectrum: the 

people that develop new methodology (new catalysts, new coupling partners) and the people that apply 

it in their field (materials, synthesis, etc.). Although there is a clear disconnection between the newest 

catalyst development and its application in other areas, fortunately the use of more active and selective 

catalysts that can couple more challenging substrates, even under milder reaction conditions, is lately 

becoming more common. 
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