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Abstract: In South America, the mesocarp flour of Prosopis species plays a prominent role 

as a food resource in arid areas. The aim of this work was the characterization of the phenolic 

antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were 

collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of 

P. chilensis flour exhibited a total phenolic content ranging between 0.82–2.57 g gallic acid 

equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the 

DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis 

allowed the tentative identification of eight anthocyanins and 13 phenolic compounds 

including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The 
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antioxidant activity and the phenolic composition in the flour suggest that this ancient South 

American resource may have potential as a functional food. 

Keywords: Prosopis chilensis; mesocarp flour; flavonoids; antioxidant; traditional food 

 

1. Introduction 

Worldwide climate change and the long-lasting drought in northern Chile suggest that attention 

should be paid to native species that are adapted to arid environments. In arid and semi-arid lands, pods 

of the trees belonging to genus Prosopis, locally known as “algarrobo” in South America, are relevant 

food sources [1]. They were gathered by all the pre-Columbian human groups, including those living in 

the south of United States of America [2], Amerindians in the Paraguayan Chaco [3,4], Argentina [5], 

and Chile [6,7]. Prosopis pods constitute a food source for humans and animals [8]. Different food 

products are prepared from Prosopis, including flour, sweets, syrup or fermented alcoholic  

beverages [6,8]. After the European conquest and introduction of new crops, “algarrobo” pods were used 

to feed cattle and sometimes used in the local cuisine. The traditional use remained in rural areas and in 

the Chaco phytogeographical region of South America [3,4]. The pod flour is used to prepare a kind of 

bread, known as “patay” in Argentina [9] or is fermented into various alcoholic beverages (“añapa”, 

“aloja” and “chicha”) [10]. 

In northern Chile and Peru, “algarrobo” pods were an important food source in pre-Hispanic times 

and they can be found in archeological sites and in burials [11]. In Chile, the commercialized “algarrobo” 

flour is mainly imported from Peru by small local businessmen. The total production of “algarrobo” 

flour in Peru was estimated in 1422 tons in 2011 [12]. According to Soto and Gysling [13] the cultivated 

area of “algarrobo” trees in Peru comprises 5140 ha, mostly located in the Tarapaca Region (3246 ha), 

close to the border with Chile. Data about “algarrobo” flour production in Chile is not available. The 

Prosopis pods mesocarp flour was investigated for its food applications [14] and has been used to prepare 

cookies and fried chips [10]. The Prosopis flour potential as food was revised by Felker et al. [15] and by 

Cardozo et al. [9]. 

Chilean and Argentinean Prosopis species were investigated for their alkaloid content and 

composition, as well as for some biological activities, including enzyme inhibition, antioxidant effect 

and DNA binding [9,16–18]. The alkaloids isolated so far occur mainly in the leaves (folioles) while the 

pods contained large amounts of the amino acid proline, as should be expected for plants growing in 

soils affected by drought and salinity [19–21]. Prosopis pods were also analysed in a study on the 

proximate composition and bioactivity of food plants consumed by Chilean Amerindians [7]. Despite 

its long tradition of use as food and the potential of local resources for cuisine, there is little information 

on the phenolic compounds that can occur in the Chilean “algarrobo” pods mesocarp flour. The 

Argentinean “algarrobo” pods meal [5,9] as well as the seed flour [22] was investigated. The phenolic 

from “algarrobo” pods syrup was described by Quispe et al. [23]. Phenolics occurring in plant foods, 

grains and flour are dietary constituents that have been shown to present relevant biological activities. 

The pod flour of the Argentinian Prosopis alba and P. nigra contains antioxidant and anti-inflammatory 

agents [5], are not genotoxic and can be considered safe for human consumption [9]. It has been shown 
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that the wheat flour contains antioxidant and antiproliferative phenolics [24] while beans phenolics 

shows antioxidant effects and are inhibitors of the enzymes α-amylase and α-glucosidase [25]. Lentil 

phenolics are not only antioxidant, but also inhibit α-glucosidase and pancreatic lipase [26]. Methanolic 

extracts from raw and processed Kenyan native food ingredients disclosed the antioxidant and 

hypoglycemic potential of their phenolic constituents [27]. In continuation of our studies on native South 

American food resources, we now report the naturally occurring phenolic compounds and antioxidant 

activity of Chilean Prosopis pods mesocarp flour. 

2. Results and Discussion 

2.1. Prosopis Flour Characterization and Antioxidant Activity 

Six “algarrobo” pods samples were collected from the longitudinal valleys of Huasco, Elqui and 

Copiapó in northern Chile (Figure 1). The morphological variation of the samples is shown in Figure 2. 

The flour yield, phenolic and flavonoid content and antioxidant activity of the flour extracts were 

determined and are summarized in Table 1. The Prosopis flours presented different hues according to 

the colour of the pods. Pods from Elqui valley showed sticky granules producing tacky flours when 

ground. The percent of mesocarp flour yield ranged from 36.7% flour to pod ratio for the deep purple 

Puquio sample, 31.8% for the Elqui valley and 3.3%–17.8% for the beige pods of P. chilensis collected 

in the Huasco valley, respectively. The sample from El Transito, Huasco Valley, presented a very low 

flour to pod ratio (3.3%). With thin pods, this sample is considered inedible by the local  

population [3,4,8].  

 

Figure 1. Map of Chile showing the collection places of Prosopis pods. Copiapo valley: 

Puquio (A); Huasco valley: Alto del Carmen (B), El Transito (C); Pinte (D) and Plaza de 

Pinte (E); Elqui valley (F). 
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Table 1. Percent flour yield from pods, total phenolic (TP) and flavonoid (TF) content in flour weight (FW) and antioxidant activity of phenolic 

enriched methanol flour extract (PEFE) of Chilean Prosopis mesocarp flour. 

Sample Origin 
% Flour 
to Pod 
Ratio 

Flour Color 
TP(g 

GAE/100 g 
FW) 

TF(g QE/100 
g FW) 

% XAD-
Retained PEFE 

DPPH SC50  
(µg 

PEFE/mL) 

FRAP (mMoles 
TE/g PEFE) 

TEAC  
(μM TE/g 

PEFE) 

Copiapó valley         

Puquio 36.7 Light greyish tan 2.54 ± 0.12 n.d. a 4.26 70.51 0.50 ± 0.01 267.5 

Huasco valley         

Alto del Carmen 15.4 Light tan 2.57 ± 0.09 0.38 ± 0.07 0.19 12.07 3.45 ± 0.06 3206.6 

El Tránsito 3.3 Light tan 1.33 ± 0.06 0.25 ± 0.01 1.63 52.85 0.65 ± 0.04 428.6 

Pinte 15.5 Light tan 0.82 ± 0.03 0.17 ± 0.01 0.91 52.97 0.63 ± 0.06 530.5 

Plaza de Pinte 17.8 Light tan 2.11 ± 0.10 0.56 ± 0.10 0.10 23.74 1.21 ± 0.08 Inactive 

Elqui valley         

Elqui valley 31.8 Pale tan 0.89 ± 0.11 0.23 ± 0.03 2.08 >100 0.36 ± 0.01 Inactive 

Quercetin b      7.82 ± 0.30 10.77 ± 0.16 8157.9 

Abbreviations. FW: Fresh flour weight; PEFE: phenolic.enriched MeOH flour extract; TP: total phenolic content; TF: total flavonoid content; Antioxidant activity:  

DPPH (discoloration of the free radical 1,1-diphenyl-2-picrylhydrazyl, SC50 in µg PEFE/mL), FRAP (Ferric Reducing Antioxidant Power, mMol TE/g PEFE),  

TEAC (Trolox-Equivalent Antioxidant Capacity, μM TE/g PEFE) were carried out in triplicate and results are expressed as mean values ± SD. a below quantification level. 
b Quercetin at 30 µg/mL for FRAP assay. 
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(c) (d) 

 
(e) (f) 

 

Figure 2. Chilean Prosopis pods showing morphological variation according to collection 

place. Puquio (a); Alto del Carmen (b), El Transito (c); Pinte (d); Plaza de Pinte (e);  

Elqui valley (f).  

The range of phenolic compounds (TP) in flours was 0.82–2.57 g GAE per 100 g FFW. The higher 

values were from Alto del Carmen (2.75 g GAE/100 g FFW), Puquio (2.54 g GAE/100 g FFW) and 

Plaza de Pinte (2.11 g GAE/100 g FFW). Total flavonoid (TF) content in flour was low (0.17–0.56 g 

QE/100 g flour weight), and no correlation was observed between the TP and TF content. As TP and TF 

of the flour was low, samples were enriched in phenolics for antioxidant activity studies and phenolic 

profiling. The flour samples were extracted with MeOH and phenolics were retained on Amberlite  

XAD-7 to obtain the phenolic-enriched flour extract (PEFE). The highest PEFE was from the Copiapo 

Valley sample (4.26%). Lower PEFE values for the different samples of P. chilensis ranged from 0.10% 

to 2.08% for the Huasco and Elqui Valley samples (Table 1). 

The best antioxidant activity of the PEFE, measured by the DPPH discoloration assay, was found in 

the Huasco Valley samples: Alto del Carmen and Plaza de Pinte (SC50 12.07 and 23.74 µg/mL, 

respectively). The same samples presented the highest activity in the FRAP assay, with values of 3.45 

and 1.21 mM TE/g PEFE, respectively. In addition, the highest TEAC value was observed for the Alto 

del Carmen sample with a 3206.61 µM TE/g PEFE. There was a statistical correlation between the TP 
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content and FRAP (r = 0.565; p < 0.05). Large variation in mesocarp flour yield and phenolic content 

was observed for P. chilensis. The close related species P. alba and P. nigra are common in the Chaco 

zone of South America and occur in the eastern Andean ranges of Argentina. 

In a study by Cardozo et al. [9], TP in ethanolic extracts of P. alba and P. nigra pods flour were 0.18 

and 0.19 g/100 g dry weight (DW), with flavonoids accounting for 0.01 and 0.06 g/100 g DW, 

respectively. When the flour was extracted with water, the TP values increased to 0.40 and  

0.41 g/100 g DW and TF to 0.03 and 0.13 g/100 g DW for P. alba and P. nigra, respectively. The TP 

(0.82–2.57 g GAE/100 g flour) and TF content (0.17–0.56 g QE/100 flour) of the Chilean Prosopis flour 

samples was higher than that of the Argentinian species.  

In a review on pod mesocarp flour of Prosopis species, Felker et al. [14] refer to free phenolic 

concentrations of 0.18 and 0.41 GAE/100 g DW for P. alba and P. nigra flour, respectively. According 

to the same author, TP for wheat bran ranges between 0.126–0.316 g GAE/100g DW or 0.27–0.35 g 

GAE/100 g DW while white wheat flour contains 0.0044–0.014 g GAE/100g DW [14].  

2.2. HPLC-DAD-MS/MS Analysis 

The composition of PEFE was assessed by HPLC-DAD-MS/MSn. Anthocyanins were detected in the 

positive ion mode, while other phenolic compounds were analyzed in the negative ion mode. The 

representative HPLC-DAD chromatogram of PEFE from the Puquio sample is presented in Figure 3. 

The HPLC-DAD chromatograms of other samples are shown in Figure 4. Extracted ion MS2 spectra of 

compounds 1–21 are presented in Figure 5. The tentative identification of anthocyanins (A) and phenolic 

compounds (B) is presented in Table 2.  

 

Figure 3. HPLC-DAD chromatogram of the phenolic enriched flour extract (PEFE) of 

Puquio showing the anthocyanins occurring in the sample. Detection: 535 nm. Compounds: 1: 

Cyanidin 3-hexoside; 2: Cyanidin 3-hexoside; 3: Peonidin 3-hexoside; 4: Petunidin hexoside; 

5: Cyanidin malonyl hexoside; 6: Peonidin malonyl hexoside; 7: Peonidin 3-hexoside;  

8: Malvidin hexoside. 

The visible spectra of compounds 1–3, 5–7, as detected in the DAD, show maxima in the 516–520 nm 

range, in agreement with anthocyanidins bearing a substituent at the 3-position [28,29]. According to 

Ververidis et al. [30] 3-glycosylation of the anthocyanidins confers stability to the pigments, being the 

most common substitution pattern for this group of compounds. MS/MS experiments show loss of 162 

atomic mass units (amu) for compounds 1–8, leading to a m/z ion at 287 amu for compounds 1, 2 and 5, 

m/z 301 for 3, 6 and 7, m/z 317 for 4 and 331 for 8. This is consistent with the occurrence of cyanidin, 

peonidin, petunidin and malvidin hexosides in the sample. The main compound was cyanidin 3-hexoside. 
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A malonoyl unit was detected in compounds 5 and 6, assigned as cyanidin malonyl hexoside and 

peonidin malonyl hexoside, respectively.  

These anthocyanins have not been previously reported from Prosopis chilensis and are responsible, 

at least in part, of the dark purple colour of the pods. Compounds 9 and 11 presented the same pseudo 

molecular ion at 463 amu and loss of a hexose, leading to the ion at m/z 301. The elution time and UV 

spectrum of 11 is in agreement with a phenolic compound, consistent with ellagic acid. Both compounds 

differ in the identity of the hexose and were tentatively identified as ellagic acid hexosides. The 

compound 10 showed in the MS/MS spectrum the loss of a hexoside, leading to the aglycone at m/z 209, 

in agreement with hydroxyferulic acid hexoside [31]. 

 

Figure 4. HPLC-DAD chromatogram of the Amberlite-retained fraction from the methanolic 

extract from “algarrobo” mesocarp flour. a: Puquio; b: Alto del Carmen; c: El Transito; d: 

Pinte; e: Plaza de Pinte; f: Elqui valley. Detection: UV, 254 nm. Compounds: 9: Ellagic acid 

(EA) hexoside; 10: Hydroxyferuloyl hexoside; 11: EA hexoside; 12: Vicenin II/Isomer;  

13: Vicenin II/Isomer; 14: Schaftoside/isoschaftoside; 15: Quercetin (Q) dihexoside; 16:  

Q-hexosidepentoside; 17: Q-methyl ether rhamnoside hexoside; 18: Q-rutinoside; 19: 

Isovitexin; 20: Q-rhamnoside-hexoside; 21: Q-methyl ether rhamnoside hexoside.  

The UV spectra of compounds 15–18, 20 and 21 show maxima in the range 349–354 nm, in agreement 

with the Band I of flavonol substituted at the 3-O-position. MS/MS analysis showed the loss of two 162 

amu fragments (hexose) for compounds 15 and one hexose and a pentose for 16.  
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Figure 5. Extracted ion MS2 spectra of compounds 1–21 tentatively identified in the 

phenolic-enriched flour extract of Chilean Prosopis pods. 

Consecutive losses of rhamnose and hexose or rutinoside were observed for 17, 18, 20 and 21, leading 

to aglycones with m/z 301 or 315, in agreement with quercetin (15, 16, 18 and 20) and quercetin methyl 

ether (17 and 21). The compounds were identified as quercetin glycosides 15, 16, 18 and 20 and quercetin 
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methyl ether glycosides 17 and 21. Flavone C-glycosides show characteristic UV maxima around 330 nm 

(Band 1) and losses of 120 amu in the MS/MS spectra [32]. Compounds 12–14 and 19 presented UV 

and mass spectra in agreement with this group of compounds and were assigned as vicenin II isomers 

(12 and 13), schaftoside or isoschaftoside (14) and isovitexin (19). The C-glycosyl flavones schaftoside, 

isoschaftoside and vicenin II were recently identified as constituents of Prosopis pods syrup [23]. 

Table 2. Tentative identification of anthocyanins and phenolics in phenolic-enriched 

Prosopis pod mesocarp flour extracts by HPLC-DAD-ESI-MS data. Anthocyanins (A) were 

detected in Puquio sample. Phenolics different than anthocyanins (B) were found in all 

phenolic-enriched pod mesocarp flour extracts. 

A: Anthocyanins in Prosopis pods meal (Puquio sample), detection at 535 nm. 

Compound Rt (min) UV λmax (nm) [M]+ (m/z) MS/MS (m/z) Tentative Identification 

1 6.2 516, 425 sh, 279, 224 449 287 Cyanidin 3-hexoside 
2 8.3 516, 425 sh, 279, 224 449 287 Cyanidin 3-hexoside 
3 11.1 517, 321 sh, 278, 225 463 301,286,258 Peonidin 3-hexoside 
4 13.1 - 479 420,317 Petunidin hexoside 
5 14.6 517, 307sh, 285, 228 535 287 Cyanidin malonyl hexoside
6 18.2 517, 320 sh, 279, 228 549 505,301 Peonidin malonyl hexoside 
7 20.8 520, 319 sh, 270, 229 463 301,286,258 Peonidin 3-hexoside 
8 24.1 - 493 331,315,270 Malvidin hexoside 

B: Phenolics in phenolic-enriched Prosopis pod mesocarp flour extracts, detection at 254 nm. 

Compoun
d 

Rt (min) UV λmax (nm) 
M
W 

[M-H] ‾ and 
Fragment 

Ions 

Tentative Identification 

9 4.8 - 464 463, 301 Ellagic acid hexoside 

10 5.8–6.1 289, 228 372 371, 209, 163 Hydroxyferulic acid hexoside 

11 6.8 278 464 463, 301 Ellagic acid hexoside 

12 15.4 334, 270 594 593, 473 Vicenin II/Isomer 

13 16.7 334, 271 594 593, 473 Vicenin II/Isomer 

14 20.0 333, 270 564 
563, 503, 473, 

443, 383 
Schaftoside/isoschaftoside 

15 20.1 352, 262 626 625, 300 Q-dihexoside 

16 22.5 352, 267 sh, 256 596 595, 463, 301 Q-hexosidepentoside 

17 24.4 354, 268 sh, 254 624 623, 315 Q-methyl ether rhamnoside hexoside 

18 24.9 355, 297sh, 267sh, 254 610 609, 301 Q-rutinoside (rhamnoside hexoside) 

19 26.8–27.3 - 432 431, 311 Isovitexin 

20 28.3 352, 265 sh, 254 610 609, 301 Q-rhamnoside-hexoside 

21 28.6 349, 267 sh, 253 624 623, 419, 315 Q-methyl ether rhamnoside hexoside 

HPLC-DAD-MS/MS analysis of the PEFE allowed the tentative identification of eight anthocyanins, 

two ellagic acid glycosides, six flavonol O-glycosides, four flavone C-glycosides and a hydroxyferulic 

acid hexoside. Anthocyanins were detected only in the sample from the Copiapo Valley (Puquio). The 

compounds were cyanidin, peonidin, petunidin and malvidin derivatives, suggesting similarity with  
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P. nigra [5]. Anthocyanins have been identified in several crops, including black beans [33], black rice [34], 

and purple corn [35]. The anthocyanins delphinidin 3-glucoside, petunidin 3-glucoside and malvidin  

3-glucoside were reported for black bean [33] and cyanidin-3-O-sambubioside, the 3-O-glucosides of 

delphinidin, cyanidin, pelargonidin and peonidin were described from the immature purple pods of  

yard-long beans [36]. Despite their widespread distribution in Nature, anthocyanins have not been 

reported from South American Prosopis pods until a recent study on P. alba and P. nigra mesocarp  

flour [5]. In the present work, anthocyanins were identified in the Prosopis sample collected in Puquio. 

This place was a natural corridor that allowed crossing the Andes from the Copiapo Valley to the 

Argentinian provinces of Catamarca, La Rioja and Tucuman through the Paso San Francisco. As this 

was also a pre-Columbian route to cross the Andes and there is no previous records of P. nigra in Chile, 

we cannot rule out three possibilities: (i) that the distribution range of the species included part of the 

western Andean valleys; (ii) that the species was introduced in Chile by migrants or, (iii) that the sample 

is a high anthocyanin variety of P. chilensis. The pods as well as the starch from P. chilensis and  

P. flexuosa are frequently found in archeological remains in the dry valleys of Catamarca, Argentina [11].  

Main constituents in the PEFE were flavonoids. Different patterns of phenolic compounds other than 

anthocyanins were observed in the chromatograms of the samples (Figure 4). Similar constituents are 

present in the Puquio and Elqui samples with the C-glycosylflavones 12, 13 and 14 as the main 

compounds. In the Pinte, Plaza de Pinte and Alto del Carmen flours (Figure 4), the C-glycoside 14 occurs 

with the quercetin glycoside 15, but in different ratios. The Plaza de Pinte sample showed a more 

complex composition, with additional quercetin glycosides. The sample from El Transito presented a 

higher proportion of 18 and the flavonol glycoside 21. Quercetin glycosides and flavone C-glycosides 

are observed in the PEFE. The chemistry and morphology of the Prosopis sample from the Copiapo 

valley suggest a species different than P. chilensis.  

The lactone 5,6-dihydro-6-propyl-2H-pyran-2-one was identified as the major volatile from Prosopis 

flour [37].The alkaloids phenethylamine and tryptamine were isolated from P. chilensis pods [6]. In the 

present work, only phenolics were identified in the PEFE. The phenolics from the pods mesocarp meal 

were compared with those identified in the traditional syrup “algarrobina” [23]. Common constituents 

were flavone C-glycosides such as vicenin II or isomer, schaftoside/ isoschaftoside and quercetin 

glycosides, suggesting a common trend in the phenolic compounds composition of Prosopis pods-derived 

products. The total flavonoid C-glycosides from Abrus mollis extract, containing mainly vicenin-II, 

isoschaftoside and schaftoside was shown to display strong anti-inflammatory and hepatoprotective 

effect in mice [38]. The C-glycoside mixture also presented antioxidant and protective effect on 

lipopolysaccharide-induced lipotoxicity in mice [39]. The same compounds occur in the phenolic-enriched 

fraction of the Prosopis flour. Vicenin-II shows anti-glycation activity [40] and is active against prostate 

cancer cells [41]. The structural features of flavonoids associated with antioxidant effect are known [42]. 

Tsuchiya [43] reported the structural relationship between flavonoids and cell-mimetic membranes and 

its relation with antioxidant and anti-proliferative effect on cells. However, increasing evidence indicates 

that the in vivo bioactive flavonoids are not necessarily the naturally occurring compounds [44].  

The O-flavonoid glycosides are hydrolyzed and the aglycones are transformed into glucuronides,  

O-methylated derivatives and sulphates and are further degraded by the gut microflora [44]. 

The phenolics identified in the flour are compounds with known antioxidant properties and display 

also other biological effects that might have a positive impact in the health of consumers. More research 
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work should be undertaken to fully disclose the potential of this ancient South American resource as 

functional food. 

3. Experimental Section  

3.1. Chemicals 

Folin-Ciocalteau phenol reagent, 2,4,6-tri(2-pyridyl)1,3,5-triazine (TPTZ) sodium acetate,  

1,1-diphenyl-2-picrylhydrazyl radical (DPPH), quercetin, gallic acid and AlCl3 were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) 

diammonium salt, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), potassium 

persulfate, sodium carbonate, FeCl3·6H2O, HPLC-grade methanol, acetonitrile and formic acid were 

purchased from Merck (Darmstadt, Germany). Ultrapure water was obtained using a BarnstedEasyPure 

water filter (Thermo Scientific, Marietta, OH, USA). 

3.2. Plant Material and Sample Preparation 

Algarrobo pods were collected in the Copiapo, Huasco and Elqui valleys in February 2013 (Figure 1). 

The samples were classified as Prosopis chilensis by Dr. Patricio Peñailillo and voucher specimen were 

deposited at the Herbario de la Universidad de Talca. The collection places were as follows: Copiapo 

Valley: road to Paso San Francisco, near Puquio (27°08′55′′S, 69°52′24′′W); Huasco Valley: Alto del 

Carmen (28°44′50′′S, 70°29′57′′W), El Transito (28°51′04′′S, 70°18′33′′W); road to Pinte (28°57′47′′S, 

70°16′54′′W) and Plaza de Pinte (28°58′45′′S, 70°16′55′′W); Elqui Valley: 30°06′39′′S, 70°29′58′′W. 

Samples were transported to the lab and kept at room temperature, according to the traditional storage 

indications. The air-dried pods were processed in a grinder to separate the seeds from the mesocarp flour. 

The traditional flour preparation was followed, using a mortar and pestle. The flour was sieved and 

weighed to establish the pod/mesocarp flour ratio. Pods flour was extracted with MeOH under sonication 

(2 × 3 min each time), in 1:10 flour to MeOH w/v ratio. The MeOH solution was filtered and taken to 

dryness under reduced pressure to afford the crude MeOH extract. The extracts were dissolved in water, 

filtered and adsorbed into Amberlite XAD-7, pre-treated as described in Jiménez-Aspee et al. [45]. 

Phenolic compounds were desorbed from the resin using MeOH and MeOH:H2O 7:3 (v/v) and the 

combined extracts of each sample were taken to dryness and lyophilized. The phenolic-enriched flour 

extracts (PEFE) were concentrated under reduced pressure and lyophilized for its analysis. 

3.3. Total Phenolic (TP) and Total Flavonoid (TF) Contents  

The total phenolic (TP) and total flavonoid (TF) content was determined in the flour MeOH extract 

as described by Jiménez-Aspee et al. [45], with slight modifications. Stock solutions (2 mg/mL) were 

prepared in MeOH:H2O (1:1). For TP, the Folin-Ciocalteu method was followed. The results are 

expressed as g gallic acid equivalents (GAE)/100 g fresh flour weight (FFW). For TF, the AlCl3 

methodology was used. TF was expressed as g quercetin equivalents (QE)/100 g FFW. Absorbance of 

each solution were measured by spectrophotometer (Thermo Spectronic Helios Alfa, Cambridge, UK) 

at 725 and 510 nm, respectively, after 15 min of incubation at room temperature. 
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3.4. Antioxidant Activity 

The antioxidant activity of the samples was determined by three assays, as described [45,46]. PEFEs 

were dissolved in 50% v/v aqueous methanol at a final concentration of 300 μg/mL. Stock solutions were 

filtered and kept in the dark, and all analyses were performed on the same day. 

DPPH discoloration assay was carried out with final concentrations of 100, 33 and 11 μg/mL. The 

DPPH solution was freshly prepared in methanol (20 mg/L) and mixed with the extract at the above 

given concentrations. Absorbance was measured at 517 nm in a universal microplate reader (Biotek 

Instruments Inc., ELx 800, Winooski, VT, USA). SC50 values (μg/mL), corresponding to the amount of 

extract that scavenges the radical concentration by 50%, were calculated using the OriginPro 8.0 

software (OriginLab Corporation, Northampton, MA, USA).  

For the ferric reducing antioxidant power (FRAP) assay, a 300 μg/mL extract aliquot was mixed with 

warm FRAP solution and left to stand in the dark for 30 min. Absorbance was read at 593 nm using a 

spectrophotometer (Thermo Spectronic Helios Alfa) Results are expressed as mMoles Trolox 

equivalents (TE)/g extract. 

The Trolox-equivalent antioxidant capacity (TEAC) determinations were carried out by mixing 

ABTS•+ with fresh standard (1 mM Trolox) or extract (100, 150, 200, 250 and 300 µg/mL). Absorbances 

were read at 734 nm after 6 min of room temperature incubation using a spectrophotometer (Thermo 

Spectronic Helios Alfa). Results are expressed as μM Trolox equivalents/g extract. 

3.5. HPLC-DAD-MS Analysis 

The extracts were analysed by HPLC coupled to a diode array detector (HPLC-DAD) to set the 

conditions for HPLC-ESI-MS/MS studies. The HPLC system used for DAD analysis was a Shimadzu 

equipment (Shimadzu Corporation, Kyoto, Japan) consisting of a LC-20AT pump, a SPD-M20A UV 

diode array detector, CTO-20AC column oven and a LabSolution software. A MultoHigh 100 RP  

18–5µm (250 × 4.6 mm) column (CS-Chromatographie Service GmbH, Langerwehe, Germany) 

maintained at 25 °C was used. Approximately 5 mg/mL of PEFE was filtered through a 0.45 µm filter 

(Waters, Milford, MA, USA) and injected into HPLC-DAD and HPLC-ESI-MS/MS. The compounds 

were monitored at 254, 330 and 535 nm, and UV spectra from 200 to 600 nm were recorded for peak 

characterization. The HPLC analysis was performed using a linear gradient solvent system as described 

by Quispe et al. [23]. The flow rate was 1 mL/min and the volume of injected sample was 20 µL. 

The mass spectrometer consisted of a HPLC HP1100 (Agilent Technologies Inc., Santa Clara, CA, 

USA) connected through a split to the mass spectrometer Esquire 4000 Ion Trap LC/MS(n) system 

(Bruker Daltonik GmbH, Bremen, Germany). Ionization was performed at 3000 V assisted by nitrogen 

as nebulizing gas at 24 psi and as drying gas at 365 °C and a flow rate of 6 L/min. Negative ions were 

detected using full scan (m/z 20–2200) and normal resolution (scan speed 10300 m/z/s; peak with 0.6 

FWHM/m/z). The trap parameters were set in ion charge control (ICC) using manufacturer default 

parameters, and maximum accumulation time of 200 ms. Collision induced dissociation (CID) was 

performed by collisions with helium background gas present in the trap and automatically controlled 

through Smart Frag option. 
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Additional mass spectrometry measurements were performed using an Agilent Series 1200 LC 

System (Agilent, Ramsey, MN, USA) coupled to a MicroQTOF Q II (Bruker Daltonics, Billerica, MA, 

USA). The HPLC system consisted in a micro vacuum degasser, binary pumps, an autosampler (40 μL 

sample loop), a thermostated column compartment and a diode array detector. The mass spectrometer 

equipped with an electrospray ion source and QTOF analyser, was used in MS and MS/MS mode for 

the structural analysis of phenolics. HPLC analyses were performed on a thermostated (40 °C) 

MultoHigh 100 RP 18–5µm (250 × 4.6 mm) column (5 μm) with a flow rate of 1.0 mL/min using a split 

to the detector. The solvents and ramp were the same as described for the ion trap equipment.  

ESI-MS detection was performed in negative and positive ion mode with mass acquisition between 

100 and 1500 Da. Nitrogen was used as drying and nebulizer gas (7 L/min and 3.5 bar, respectively), 

and 180 °C for drying temperature. For MS/MS experiments, fragmentation was achieved by using Auto 

MS2 option. DAD analyses were carried out in the range between 200 and 700 nm. The identification of 

phenolic compounds in “algarrobo” pods meal was carried out by comparison of the spectral properties 

(UV and ESI-MS and MS/MS) of the compounds with literature data.  

3.6. Statistical Analysis 

Determinations of TP, TF, DPPH and FRAP, were performed in triplicate and results are expressed 

as mean values ± SD. For the TEAC assay, a curve was plotted for each sample and a correlation 

coefficient with 95% confidence limit was established. To assess the relationship between the 

antioxidant activities and the TP and TF content, Pearson’s correlation coefficients were calculated with 

95% confidence. Statistical analysis was carried out using the software SPSS 14.0 for Windows.  

4. Conclusions  

The main compounds in the PEFE were flavonoids. One sample contained cyanidin hexoside and 

other anthocyanins, being this the first report on the occurrence of anthocyanins in Chilean Prosopis 

pods. The phenolic composition and antioxidant properties of the Chilean Prosopis mesocarp flour 

supports its use as a functional food. Additional studies are required to compare the potential of the 

different flour sources in artisanal and commercial food products. A higher number of samples should 

be analyzed to have a better picture on the phenolic composition of Chilean Prosopis mesocarp flour.  
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