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Abstract: An easy and efficient procedure for the synthesis of 4-indolylquinoline derivatives is
described. This process involves two steps, the first of which is the Michael addition of indole
to nitrochalcones promoted by sulfamic acid under solvent free conditions and the second step is a
reductive cyclization of the indolylnitrochalcone intermediates to 4-indolylquinoline derivatives by
Fe/HCl in ethanol. In both steps, the reactions are clean and the yields of products are high.
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1. Introduction

Indole and quinoline are two important class of structural scaffolds that are found in a vast
number of natural products and pharmaceutically active compounds [1–6]. Compounds containing
both indole and quinoline rings are called as indolylquinolines and are known to exhibit a wide
variety of biological activities, including antibiotic, antimicrobial and antifungal activities [7–12].
Although different kinds of indolylquinoline derivatives are known in the literature, three types of
indolylquinoline derivatives such as 2-indolylquinoline, 3-indolylquinoline, and 4-indolylquinoline
are frequently found in many bioactive compounds. For example, 2-indolylquinoline [13,14]
exhibit antistaphylococcal activities, 3-indolylquinolines [15–18] inhibit the activity of PDGF-RTK,
4-indolylquinolines [19–22] have been known for potential treatments for allergic rhinitis, asthma
and other inflammatory diseases (Figure 1) [13,14].
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Figure 1. Bioactive indolylquinolines derivatives. 

  

 

Figure 1. Bioactive indolylquinolines derivatives.
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A vast number of protocols are available for the synthesis of 2-indolylquinoline and
3-indolyl-quinoline derivatives [15–18], however, methods which describe the synthesis of
4-indolylquinoline derivatives are limited [19–22]. Marinelli and coworkers described a one-pot
synthesis of 4-indolyl-quinoline derivatives from β-(2-aminophenyl)-α,β-ynones [23]. Recently, we
reported a method for accessing 4-indolylquinoline derivatives through an inverse electron-demand
aza-Diels-Alder reaction [24]. Some of these reported procedures required functionalized quinoline
derivatives such as haloquinolines or indolylboronic acid derivatives and a few methods are
associated with the use of expensive metal catalysts and starting materials. Hence, a simple and
handy method for the synthesis of 4-indolylquinoline derivatives from easily available starting
materials is desirable.

For the past decade, we have been working on the use of reductive cyclization reactions [25–32]
to generate a wide variety of nitrogen heterocycles, including indolylquinoline derivatives,
3,31-biindoles, quinoline derivatives, 2H-1,4-benzoxazin-3-(4H)-ones, carbazolone derivatives,
2,3-disubstituted indole derivatives, acridinones and phenathridine derivatives by using Fe/AcOH
as a reagent [33–36]. In continuation to our interest on reductive cyclization reactions, we proposed to
synthesize 4-indolylquinoline derivatives in two steps starting from 2-nitrochalcone derivatives and
indoles. The proposed strategy for the synthesis of 4-indolyl quinoline derivatives is shown in the
Scheme 1. This strategy involves two steps: a Michael addition of indole to 2-nitrochalcone followed
by the reductive cyclization.
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Scheme 1. The proposed strategy for the synthesis of 4-indolyl quinoline derivatives. 

2. Results and Discussion 

To execute our strategy, we need to synthesize the Michael adducts of indoles and various 
2-nitrochalcone derivatives. Although, several procedures describe the Michael addition reactions 
of indoles to chalcones [37–42], to our knowledge there is no procedure available for the Michael 
addition of 2-nitrochalcone with indole derivatives. On the other hand, we have reported Michael 
addition reactions of various 2-nitroalkenes and indoles using sulfamic acid as a catalyst under 
solvent free conditions to obtain the corresponding indolylnitroalkane derivatives in good to excellent 
yields [30]. We wished to adopt similar conditions to synthesize our starting materials, thus we 
tested the reaction of indole, 2-nitrochalcone, and sulfamic acid at the temperature of 90 °C under 
solvent free conditions. To our delight, the reaction was complete in 4 h and provided the corresponding 
3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivative was obtained in good yield 
(Table 1, Entry 1). 

Encouraged by this result, we applied these reaction conditions to synthesize various substituted 
indolylnitrochalcones. The reactions of indole with nitrochalcone derivatives with halogen group  
(F, Cl and Br) containing 2-nitrobenzalehydes and acetophenone proceeded quickly and afforded the 
desired products in good to excellent yields (Table1, Entries 2–4). On the other hand, the reactions of 
indole with nitrochalcone derivatives derived from 2-nitrobenzaldehyde and ortho halogen group 
(Cl or Br) substituted acetophenones took place smoothly to provide the corresponding Michael 
adducts in quantitative yields. 
  

 

Scheme 1. The proposed strategy for the synthesis of 4-indolyl quinoline derivatives.

2. Results and Discussion

To execute our strategy, we need to synthesize the Michael adducts of indoles and various
2-nitrochalcone derivatives. Although, several procedures describe the Michael addition reactions
of indoles to chalcones [37–42], to our knowledge there is no procedure available for the Michael
addition of 2-nitrochalcone with indole derivatives. On the other hand, we have reported Michael
addition reactions of various 2-nitroalkenes and indoles using sulfamic acid as a catalyst under
solvent free conditions to obtain the corresponding indolylnitroalkane derivatives in good to excellent
yields [30]. We wished to adopt similar conditions to synthesize our starting materials, thus
we tested the reaction of indole, 2-nitrochalcone, and sulfamic acid at the temperature of 90 ˝C
under solvent free conditions. To our delight, the reaction was complete in 4 h and provided the
corresponding 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivative was obtained in
good yield (Table 1, Entry 1).

Encouraged by this result, we applied these reaction conditions to synthesize various substituted
indolylnitrochalcones. The reactions of indole with nitrochalcone derivatives with halogen group (F,
Cl and Br) containing 2-nitrobenzalehydes and acetophenone proceeded quickly and afforded the
desired products in good to excellent yields (Table 1, Entries 2–4). On the other hand, the reactions of
indole with nitrochalcone derivatives derived from 2-nitrobenzaldehyde and ortho halogen group (Cl
or Br) substituted acetophenones took place smoothly to provide the corresponding Michael adducts
in quantitative yields.
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Table 1. Michael addition of various 2-nitrochalcones and indole.
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Table 1. Michael addition of various 2-nitrochalcones and indole. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 

O

NO21a  
2a O

NH

NO23a

4.0 83 

2 
O

NO2
1b

F

 
2a O

NH

NO2

F

3b

0.5 76 

3 
O

NO2

Cl

1c  
2a O

NH

NO2

Cl

3c

1.0 89 

4 
O

NO2

Br

1d  
2a O

NH

NO2

Br

3d

2.5 99 

5 

O

NO2

Cl

1e  
2a 2.5 99 

6 

O

NO2

Br

1f  
2a 2.5 99 

7 

O

NO2

1g  
2a O

NH

NO2 3g

2.0 99 

8 

O

NO2 O
1h  

2a O

NH

NO2 O3h

2.5 99 

9 

O

NO2
O

O

1i  
2a O

NH

NO2
O

O

3i

2.5 93 

10 

O

NO2

1j  
2a 

O

NH

NO2 3j

3 98 

11 

O

NO2

S

1k  
2a 

O

NH

NO2

S

3k

10 93 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 
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a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
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a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
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a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % of
sulfamic acid; b Isolated yields.
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted
indoles (Table 2).

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles.
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F
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2 1a

H
N

Cl  
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NH
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H
N

Br  
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H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 

 
O

NO2

H
N sulfamic acid

O

NO2R1 R2

NH

neat, 90 oC

3
1a 2a

Entry a Nitrochalcone Indole Product Time (h) Yield % b

1

Molecules 2015, 20, page–page 

4 

Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
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adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 

 
O

NO2

H
N sulfamic acid

O

NO2R1 R2

NH

neat, 90 oC

3
1a 2a

2b

Molecules 2015, 20, page–page 

4 

Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 

 
O

NO2

H
N sulfamic acid

O

NO2R1 R2

NH

neat, 90 oC

3
1a 2a

2d

Molecules 2015, 20, page–page 

4 

Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o

MeO

1.0 99 

5 
1a

H
N

 
2f O

NH

NO2 3p

1.0 90 

6 
1a

N

 
2g O

N

NO2 3q

1.0 97 

7 1a

H
N

 
2h 

O

NH

NO2 3r

2.0 70 

8 1a

H
N

Ph 
2i O

NH

NO2
3s

Ph

72 65 

a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 
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Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
indoles (Table 2). 

Table 2. Michael addition of 2-nitrochalcone (1a) and various indoles. 

 
Entry a Nitrochalcone Indole Product Time (h) Yield % b 

1 
1a

H
N

F  
2b O

NH

NO2 3l

F

2.0 81 

2 1a

H
N

Cl  
2c O

NH

NO2 3m

Cl

1.5 85 

3 1a

H
N

Br  
2d O

NH

NO2 3n

Br

3.0 89 

4 
1a

H
N

MeO  
2e O

NH

NO2 3o
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a All reactions were carried out by using 1.0 equiv. of 1 and 1.2 equiv. of 2a in the presence of 50 mol % 
of sulfamic acid; b Isolated yields. 

When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the 

 
O

NO2

H
N sulfamic acid

O

NO2R1 R2

NH

neat, 90 oC

3
1a 2a

2.0 70

8

Molecules 2015, 20, page–page 

4 

Next, we investigated the reactions of unsubstituted nitrochalcone and various substituted 
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When nitrochalcone was treated with electron-withdrawing group containing indoles such as 
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael 
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating 
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts 
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired 
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole or 
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When nitrochalcone was treated with electron-withdrawing group containing indoles such as
5-fluoroindole, 5-chloroindole and 5-bromoindole, the reactions produced the corresponding Michael
adducts in good yields. On the other hand, the reactions of nitrochalcone and electron-donating
indoles such as 5-methoxyindole and 6-methylindole provided its corresponding Michael adducts
in excellent yields. Next, the reaction of N-methylindole and 2-nitrochalcone afford the desired
Michael adduct in excellent yield. Further, the reaction of 2-nitrochalcone with 2-phenylindole
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or 2-methylindole afforded the corresponding Michael adducts in moderate yields. Moreover, the
reactions of 2-nitrochalcone with 2-phenylindole or 2-methylindole took longer to go to completion
(Table 2).

After the preparation of various substituted 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenyl-
propan-1-one derivatives, we then focused on the reductive cyclization of these compounds to
4-indolylquinoline derivatives. Initially, we treated 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenyl-
propan-1-one with the standard reductive cyclization agent Fe/AcOH [9] (Table 3, entry 1). Under
these conditions the reaction afforded two compounds. From the 1H- and 13C-NMR spectral data and
mass spectral analysis, it was revealed that the major product was the 4-indolylquinoline derivative
and the minor product was the indole-eliminated 2-phenylquinoline derivative.

Then, we tried Zn as reducing reagent (Table 3, entries 2 and 3), but the results were not
encouraging. As it is reported in the literature [43,44] that Fe/HCl is an efficient reductive cyclizing
agent, next, we used Fe/HCl in EtOH (Table 3, entry 4) for this transformation. To our delight,
the reaction produced the indolylquinoline derivative in excellent yield without any of the minor
product. Further, when the reaction was performed using a mixed solvent such as ethanol and water
(1:1), the reaction afforded an excellent yield of the 4-indolylquinoline derivative (Table 3, entry 5).
However, the reaction time was longer in this case. Furthermore, when the reaction was performed
in methanol it resulted in a decreased yield of the desired product (Table 3, entry 6). From the
optimization results, the reaction condition using Fe/HCl in ethanol at reflux temperature (Table 3,
entry 5) were found to be the best condition for the synthesis of 4-indolylquinoline derivatives from
the corresponding 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivatives (Table 3).

Table 3. Optimization studies for reductive cyclization of 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-
phenylpropan-1-one (3a)

.
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Entry a Reductant Solvent Time (h) Yield of 4a (%) b Yield of 5a (%) b 
1 Fe AcOH 0.5 72 24 
2 Zn AcOH 10 16 21 
3 Zn c THF–H2O d 2.0 0 0 
4 Fe e EtOH 1.0 90 0 
5 Fe e EtOH–H2O f 4.0 88 0 
6 Fe e MeOH 10 57 0 

a 3a (1.0 equiv.), metal (6.0 equiv.), solvent (10 mL); b Isolated yields; c NH4Cl (1.1 equiv.);  
d THF–H2O (2:1); e HCl (1.0 equiv.); f EtOH–H2O (4:1). 

Having the optimized reaction conditions in hand, we then investigated the scope and 
limitations of this protocol. As shown in Table 4, 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan- 
1-one (3a) reacted under optimized reaction conditions to produce the 4-indolyl-quinoline derivatives 
in excellent yield. 

Under the present reaction conditions, the substrates containing electron-withdrawing groups 
(F, Cl and Br) in the nitrochalcone part of 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one 
reacted well and afforded the corresponding 4-indolyl-quinoline derivatives in good yields, while the 
reactions of the substrates possessing electron-donating groups provided the desired 4-indolylquinoline 
derivatives in excellent yields. Moreover, the substrate bearing a naphthalene ring also provided 
the corresponding product in 93% yield under the present reaction conditions. Next, the 3-(1H- 
indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivative containing a thiophene group was 
also reacted under the present reaction conditions to obtain the corresponding indolylquinoline 
derivative in excellent yield (Table 4). 
  

Entry a Reductant Solvent Time (h) Yield of 4a (%) b Yield of 5a (%) b

1 Fe AcOH 0.5 72 24
2 Zn AcOH 10 16 21
3 Zn c THF–H2O d 2.0 0 0
4 Fe e EtOH 1.0 90 0
5 Fe e EtOH–H2O f 4.0 88 0
6 Fe e MeOH 10 57 0

a 3a (1.0 equiv.), metal (6.0 equiv.), solvent (10 mL); b Isolated yields; c NH4Cl (1.1 equiv.); d THF–H2O (2:1);
e HCl (1.0 equiv.); f EtOH–H2O (4:1).

Having the optimized reaction conditions in hand, we then investigated the scope and
limitations of this protocol. As shown in Table 4, 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-
1-one (3a) reacted under optimized reaction conditions to produce the 4-indolyl-quinoline derivatives
in excellent yield.

Under the present reaction conditions, the substrates containing electron-withdrawing groups
(F, Cl and Br) in the nitrochalcone part of 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one
reacted well and afforded the corresponding 4-indolyl-quinoline derivatives in good yields,
while the reactions of the substrates possessing electron-donating groups provided the
desired 4-indolylquinoline derivatives in excellent yields. Moreover, the substrate bearing a
naphthalene ring also provided the corresponding product in 93% yield under the present
reaction conditions. Next, the 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivative
containing a thiophene group was also reacted under the present reaction conditions to obtain the
corresponding indolylquinoline derivative in excellent yield (Table 4).
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Table 4. Reductive cyclization of substituted 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one
derivatives derived from various 2-nitrochalcone and indoles.
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Table 4. Reductive cyclization of substituted 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan- 
1-one derivatives derived from various 2-nitrochalcone and indoles. 

 
Entry a Indolylnitrochalcone Product Time (h) Yield (%) b,c 

1 O

NH

NO2 3a  

4.0 83 

2 O

NH

NO2

F

3b

0.5 76 

3 O

NH

NO2

Cl

3c

H
N

NCl
4c

1.0 89 

4 O

NH

NO2

Br

3d

H
N

NBr
4d

2.5 99 

5 
O

NH

NO2

Cl

3e  

H
N

N

4e

Cl

2.5 99 

6 
O

NH

NO2

Br

3f

H
N

N
4f

Br
2.5 99 

7 O

NH

NO2

H
N

N
4g

2.0 99 

8 
O

NH

NO2 O3h

H
N

N
4h

OMe
2.5 99 

9 
O

NH

NO2 O

O

3i

2.5 93 

10 
O

NH

NO2 3j

H
N

N 4j

3 93 

11 
O

NH

NO2

S

3k

H
N

N

4k

S 10 93 

a Condition: 3 (1.0 equiv.), Fe (6.0 equiv.), HCl (1.0 equiv.), EtOH (10 mL); b Isolated yields; c no trace 
of 5 was observed. 
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Next, we investigated the reactions of Michael adducts derived from nitrochalcone and various
indoles. As shown in the Table 5, the 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one
derivatives derived from electron poor indoles (fluoro-, chloro-, and bromoindoles) underwent
a smooth reductive cyclization to afford the desired 4-indolylquinoline derivatives in excellent
yield, whereas, the substrates derived from the electron rich indoles produced the corresponding
indolylquinoline derivatives in slightly lower yields than those of electron poor indoles. It is
notable that the reactions of the substrate obtained from 2-phenyl or 2-methylindole provided the
corresponding 4-indolylquinoline derivative in moderate yield along with a substantial amount of
the indole cleaved product as byproduct. These results show that steric hindrance influences the
elimination of indole to produce the indole-cleaved product (Table 5).

To further examine the influence of steric hindrance, we investigated the reactions of
the 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one substrates containing a methyl group
adjacent to the nitro group as well the substrates derived from 2,5-dimethylindoles. As shown in the
Table 6, steric hindrance adjacent to the nitro group has less influence on the reaction outcome, as the
substrate 3t gave the corresponding indolylquinoline in good yield along with traces of the indole
cleaved product. However, when the substrate 3u derived from 2,5-dimethylindole was treated
under the present reaction conditions, we obtained 66% of indolylquinoline derivative and 30% of
indole-cleaved product. Furthermore, we obtained only indole-cleaved product, when the substrate
3v containing a methyl group adjacent to the nitro as well as the second indole position was used.
It is important to note that the reactions took longer when the methyl group was adjacent to the nitro
group as in case of entries 2, 3 in Table 6.

Table 5. Reductive cyclization of 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one derivatives
derived from various indoles and 2-nitrochalcone.
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A reaction mechanism for the formation of the indolylquinoline as well as the indole-cleaved
product from 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3a) is proposed based
on our previous work (Scheme 2). Initially, the nitro group of the 3-(1H-indol-3-yl)-3-(2-
nitrophenyl)-1-phenylpropan-1-one (3a) is reduced to an amino group by Fe/HCl, then it attacks the
carbonyl group in the presence of FeCl3 in the solvent, forming a dihydroquinoline intermediate. The
dihydroquinoline intermediate compound is unstable, and undergoes aromatization by the loss of
hydrogen or the indole moiety to give either 4a or 5a. Besides, we also anticipate that indolylquinoline
derivative 4a may also undergo a slow decomposition to indole-cleaved product 5a through reductive
elimination. To explore this reductive elimination possibility, the indolylquinoline 4a was treated with
Fe/AcOH under the identical conditions used in the preparation of indolylquinoline derivatives. We
obtained around 14% of indole-cleaved product along with 82% of the unchanged indolylquinoline
4a after 24 h. The result was similar even when reaction was conducted with Fe/HCl used as
reagent in ethanol. However, when the reaction was performed with FeCl3, the indolylquinoline
was unchanged. From these experiments, we cannot exclude this route for the formation of the
indole-cleaved product.

Molecules 2015, 20, page–page 

9 

A reaction mechanism for the formation of the indolylquinoline as well as the indole-cleaved 
product from 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3a) is proposed based on 
our previous work (Scheme 2). Initially, the nitro group of the 3-(1H-indol-3-yl)-3-(2-nitrophenyl)- 
1-phenylpropan-1-one (3a) is reduced to an amino group by Fe/HCl, then it attacks the carbonyl 
group in the presence of FeCl3 in the solvent, forming a dihydroquinoline intermediate. The 
dihydroquinoline intermediate compound is unstable, and undergoes aromatization by the loss of 
hydrogen or the indole moiety to give either 4a or 5a. Besides, we also anticipate that indolylquinoline 
derivative 4a may also undergo a slow decomposition to indole-cleaved product 5a through reductive 
elimination. To explore this reductive elimination possibility, the indolylquinoline 4a was treated with 
Fe/AcOH under the identical conditions used in the preparation of indolylquinoline derivatives. We 
obtained around 14% of indole-cleaved product along with 82% of the unchanged indolylquinoline 
4a after 24 h. The result was similar even when reaction was conducted with Fe/HCl used as 
reagent in ethanol. However, when the reaction was performed with FeCl3, the indolylquinoline 
was unchanged. From these experiments, we cannot exclude this route for the formation of the 
indole-cleaved product. 

 
Scheme 2. Mechanistic route for the reductive cyclization of 3-(1H-indol-3-yl)-3-(2-nitrophenyl)- 
1-phenylpropan-1-one derivatives. 

3. Experimental Section 

3.1. General Information 

All chemicals were purchased from various commercial sources and used directly without further 
purification. Analytical thin-layer chromatography was performed using E. Merck (New York, NY, USA) 
silica gel 60F glass plates and E. Merck silica gel 60 (230–400 mesh) was used in flash chromatography 
separations. MS were measured by a JMS-HX110 spectrometer (JEOL, Hsinchu, Japan). HRMS 
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spectra were recorded with an Advance EX 400 MHz spectrometer (Bruker, San Francisco, CA, USA). 
Chemical shifts are reported in parts per million (δ) using TMS as an internal standard and coupling 
constant were expressed in hertz. IR spectra were performed on a 100 series FT-IR instrument (Perkin 
Elmer, Waltham, MA, USA). Melting points were recorded using a capillary melting point apparatus 
(Electrothermal, Staffordshire, UK) and are uncorrected. All substrates were prepared using 
literature procedures. 
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3.2. General Procedure for the Reaction of Indoles with Nitrochalcones to give Products 3a–3v

The mixture of nitrochalcone (2.0 mmol), indole (2.2 mmol), and sulfamic acid (1 mmol,
0.5 eq.) was heated at 90 ˝C until the complete consumption of starting materials, which was
monitored by TLC. Then, the reaction mixture was allowed to cool to room temperature, diluted
with ethyl acetate (20 mL) and washed with water, followed by brine. The organic layer was
separated, dried over anhydrous MgSO4, and concentrated in vacuum to obtain the crude product.
The residue was purified by flash column chromatography (petroleum ether/ethyl acetate) to obtain
the desired products 3a–3v. (The 1H-, 13C-NMR spectra of the compounds (3a–3v) was showed
in Supplementary).

3-(1H-Indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3a): Pale crystalline yellow solid (crystallized
from ethyl acetate and hexane) with a melting point of 176–178 ˝C; IR (KBr): 3320, 3050, 1684, 1525,
1354, 741 cm´1. 1H-NMR (DMSO-d6) δ 10.99 (s, 1H), 8.00 (d, J = 7.5 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H),
7.61 (d, J = 6.3 Hz, 2H), 7.54–7.48 (m, 3H), 7.42–7.36 (m, 2H), 7.38–7.33 (m, 2H), 7.04 (t, J = 7.3 Hz,
1H), 6.90 (t, J = 4.7 Hz, 1H), 5.45 (t, J = 6.8 Hz, 1H), 4.04 (dd, J = 18.0, 6.4 Hz, 1H), 3.88 (dd, J = 18.0,
7.6 Hz, 1H); 13C-NMR (DMSO-d6) δ 197.8, 149.7, 138.0, 136.4, 136.4, 133.3, 132.6, 130.1, 128.6, 128.0,
127.2, 126.2, 123.7, 123.1, 121.2, 118.6, 118.4, 116.2, 111.5, 44.5, 31.5; MS (EI) m/z (relative intensity) 370
(M+, 36), 353 (47), 251 (100), 231 (59), 204 (65), 105 (87); HRMS (EI) m/z calcd for C23H18N2O3 (M+)
370.1317, found 370.1310.

3-(5-Fluoro-2-nitrophenyl)-3-(1H-indol-3-yl)-1-phenylpropan-1-one (3b): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo it give a brown oil; IR (KBr): 3340,
3056, 1670, 1601, 1520, 1474, 1347, 1287, 974, 623 cm´1. 1H-NMR (CDCl3) δ 8.16 (s, 1H), 7.97–7.95
(m, 2H), 7.90 (dd, J = 9.0, 5.2 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.47–7.43 (m, 3H), 7.32 (d, J = 8.2 Hz,
1H), 7.16 (dt, J = 7.6, 0.7 Hz, 1H), 7.12–7.09 (m, 2H), 7.03 (dt, J = 7.1, 0.4 Hz, 1H), 6.95 (ddd, J = 9.2,
6.5, 2.7 Hz, 1H), 5.79 (t, J = 7.1 Hz, 1H), 3.86 (dd, J = 17.3, 7.4 Hz, 1H), 3.76 (dd, J = 17.3, 7.4 Hz,
1H); 13C-NMR (CDCl3) δ 197.4, 164.7 (d, JC–F = 254 Hz), 146.1 (d, JC–F = 3 Hz), 143.2, 143.1, 136.7
(d, JC–F = 10 Hz), 133.6, 128.9, 128.3, 127.5 (d, JC–F = 10 Hz), 126.5, 122.8, 122.2, 120.1, 119.4, 117.0 (d,
JC–F = 24 Hz), 116.9, 114.6 (d, JC–F = 23 Hz), 111.5, 44.9, 33.2; HRMS (EI) m/z calcd for C23H18N2O3F
([M + H]+) 389.1301, found 389.1318.

3-(5-Chloro-2-nitrophenyl)-3-(1H-indol-3-yl)-1-phenylpropan-1-one (3c): Purified by column chromatography
using 1:4 ethyl acetate and hexane. After concentration in vacuo a pale brown solid with a melting
point of 151–153 ˝C was obtained; 1H-NMR (CDCl3) δ 8.09 (s, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.78 (d,
J = 8.7, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.46–7.42 (m, 3H), 7.38 (d, J = 2.0, 1H), 7.33 (d, J = 8.1, 1H), 7.25 (s,
1H), 7.16 (t, J = 7.4, 1H), 7.12 (s, 1H), 7.03 (t, J = 7.6, 1H), 5.73 (t, J = 7.2, 1H), 3.87 (dd, J = 17.4, 6.8 Hz,
1H), 3.75 (dd, J = 17.2, 7.7 Hz, 1H); 13C-NMR (CDCl3) δ 197.3, 148.4, 141.4, 139.1, 136.8, 136.7, 133.6,
130.2, 128.9, 128.3, 127.6, 126.5, 126.1, 122.8, 122.2, 120.1, 119.4, 116.8, 111.5, 44.9, 32.9; MS (EI) m/z
(relative intensity) 406 ([M + 2]+, 8), 404 (M+ , 25), 387 (29), 285 (85), 265 (41), 253 (33), 204 (26), 203
(11), 132 (11), 105 (100); HRMS (EI) m/z calcd. for C23H17N2O3Cl (M+) 404.0928, found 404.0926.

3-(5-Bromo-2-nitrophenyl)-3-(1H-indol-3-yl)-1-phenylpropan-1-one (3d): Purified by column chromatography
using 1:4 ethyl acetate and hexane. Concentration in vacuo give a pale brown solid with a melting
point of 166–168 ˝C; 1H-NMR (CDCl3) δ 8.14 (s, 1H), 7.93 (d, J = 7.4 Hz, 2H), 7.66 (d, J = 8.6, 1H),
7.55–7.52 (m, 2H), 7.46–7.40 (m, 3H), 7.37 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.14 (t,
J = 7.3 Hz, 1H), 7.07 (d, J = 1.9 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 5.70 (t, J = 7.1 Hz, 1H), 3.85 (dd,
J = 17.3, 6.8 Hz, 1H), 3.72 (dd, J = 17.2, 7.6 Hz, 1H); 13C-NMR (CDCl3) δ 197.3, 149.0, 141.4, 136.8,
136.7, 133.6, 133.2, 130.6, 128.9, 128.3, 127.5, 126.5, 126.1, 122.8, 122.2, 120.1, 119.4, 116.8, 111.5, 44.9,
32.8; MS (EI) m/z (relative intensity) 450 ([M + 2]+, 23), 448 (M+, 23), 431 (26), 329 (100), 311 (63), 285
(30), 217 (30), 206 (54), 176 (16), 132 (27), 105 (95); HRMS (EI) m/z calcd. for C23H17N2O3Br (M+)
448.0423, found 448.0432.
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1-(2-Chlorophenyl)-3-(1H-indol-3-yl)-3-(2-nitrophenyl)propan-1-one (3e): Yellow crystalline solid (crystallized
from ethyl acetate and hexane) with a melting point of 114–116 ˝C; 1H-NMR (CDCl3) δ 8.07 (s, 1H),
7.80 (d, J = 8.1 Hz, 1H), 7.43–7.21 (m, 9H), 7.14 (m, 2H), 6.98 (t, J = 7.5 Hz, 1H), 5.55 (t, J = 7.4 Hz, 1H),
3.84 (dd, J = 17.0, 7.0 Hz, 1H), 3.77 (dd, J = 17.0, 8.1 Hz, 1H); 13C-NMR (CDCl3) δ 201.3, 149.8, 138.9,
138.4, 136.7, 132.8, 131.9, 130.8, 130.6, 130.2, 129.0, 127.4, 127.1, 126.5, 124.5, 122.6, 122.5, 119.8, 119.3,
116.7, 111.4, 49.3, 33.3; MS (EI) m/z (relative intensity) 406 ([M + 2]+, 6), 404 (M+ , 18), 354 (24), 269
(44), 251 (74), 207 (46), 204 (42), 139 (100), 105 (76); HRMS (EI) m/z calcd for C23H17N2O3Cl (M+)
404.0928, found 404.0929.

1-(2-Bromophenyl)-3-(1H-indol-3-yl)-3-(2-nitrophenyl)propan-1-one (3f): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a yellow crystalline solid (from ethyl
acetate and hexane) with a melting point of 132–134 ˝C was obtained; 1H-NMR (CDCl3) δ 8.08 (s,
1H), 7.81 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.44–7.38 (m, 2H), 7.33–7.30 (m, 3H), 7.26–7.19
(m, 3H), 7.15–7.12 (m, 2H), 6.98 (t, J = 7.7 Hz, 1H), 5.54 (t, J = 7.4 Hz, 1H), 3.83 (dd, J = 16.9, 6.8 Hz,
1H), 3.74 (dd, J = 16.9, 8.0 Hz, 1H); 13C-NMR (CDCl3) δ 202.0, 149.9, 141.1, 138.3, 136.7, 133.8, 132.9,
131.8, 130.3, 128.7, 127.6, 127.5, 126.5, 124.5, 122.7, 122.5, 119.8, 119.3, 118.7, 116.6, 111.4, 49.0, 33.4; MS
(EI) m/z (relative intensity) 450 ([M + 2]+, 10), 448 (M+, 10), 354 (27), 251 (60), 204 (50), 183 (100), 155
(16), 132 (14), 105 (13); HRMS (EI) m/z calcd. for C23H17N2O3Br (M+) 448.0423, found 448.0420.

3-(1H-Indol-3-yl)-3-(2-nitrophenyl)-1-p-tolylpropan-1-one (3g): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo an orange oil was obtained; 1H-NMR
(CDCl3) δ 8.01 (s, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.46–7.38 (m, 3H), 7.31 (t,
J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.11 (s, 1H), 7.00 (t, J = 7.6 Hz, 1H),
5.68 (t, J = 7.2 Hz, 1H), 3.84 (dd, J = 16.8, 7.4 Hz, 1H), 3.77 (dd, J = 17.2, 7.8 Hz, 1H), 2.39 (s, 3H);
13C-NMR (CDCl3) δ 197.4, 150.1, 144.3, 139.0, 136.8, 134.4, 132.7, 130.1, 129.5, 128.4, 127.3, 126.6, 124.4,
122.5, 122.3, 119.8, 119.4, 117.4, 111.4, 44.9, 33.2, 21.8; MS (EI) m/z (relative intensity) 384 (M+, 46),
350 (39), 251 (100), 232 (40), 206 (38), 119 (63); HRMS (EI) m/z calcd for C24H20N2O3 (M+) 384.1474,
found 384.1473.

3-(1H-Indol-3-yl)-1-(4-methoxyphenyl)-3-(2-nitrophenyl)propan-1-one (3h): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a yellow solid with a melting point
of 207–209 ˝C was obtained; 1H-NMR (400 MHz,DMSO-d6) δ 10.96 (s, 1H), 7.98 (d, J = 8.8 Hz, 2H),
7.81 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.39–7.31 (m, 4H), 7.05–7.00
(m, 3H), 6.89 (t, J = 7.4 Hz, 1H), 5.41 (t, J = 7.2 Hz, 1H), 3.95 (dd, J = 17.7, 6.6 Hz, 1H), 3.83 (s, 3H), 3.77
(dd, J = 17.7, 8.0 Hz, 1H); 13C-NMR (DMSO-d6) δ 196.1, 163.2, 149.7, 138.8, 136.3, 132.6, 130.4, 130.0,
129.5, 127.1, 126.2, 123.7, 123.0, 121.2, 118.5, 118.4, 116.3, 113.8, 111.4, 55.5, 44.0, 31.6; MS (EI) m/z
(relative intensity) 400 (M+, 25), 366 (29), 250 (63), 222 (29), 206 (22), 135 (100); HRMS (EI) m/z calcd
for C24H20N2O4 (M+) 400.1423, found 400.1428.

1-(Benzo[d][1,3]dioxol-5-yl)-3-(1H-indol-3-yl)-3-(2-nitrophenyl)propan-1-one (3i): Purified by column
chromatography using 1:5 ethyl acetate and hexane. After concentration in vacuo a pale yellow solid
with a melting point of 150–152 ˝C was obtained; 1H-NMR (CDCl3) δ 8.05 (s, 1H), 7.78 (dd, J = 8.0,
0.8 Hz, 1H), 7.58 (dd, J = 8.2, 1.7 Hz, 1H), 7.44–7.37 (m, 4H), 7.30–7.26 (m, 2H), 7.13 (dt, J = 7.2, 0.5 Hz,
1H), 7.08 (d, J = 2.0 Hz, 1H), 6.99 (dt, J = 7.5, 0.5 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.01 (s, 2H), 5.65
(t, J = 7.2 Hz, 1H), 3.77 (dd, J = 16.8, 7.2 Hz, 1H), 3.70 (dd, J = 17.0, 7.5 Hz, 1H); 13C-NMR (CDCl3) δ
195.8, 152.1, 150.2, 148.4, 138.9, 136.8, 132.7, 131.8, 130.2, 127.3, 126.6, 124.6, 124.5, 122.5, 122.3, 119.9,
119.5, 117.4, 111.4, 108.2, 108.1, 102.0, 44.8, 33.4; MS (EI) m/z (relative intensity) 414 (M+, 18), 380 (17),
251 (65), 207 (20), 148 (100); HRMS (EI) m/z calcd for C24H18N2O5 (M+) 414.1216, found 414.1209.

3-(1H-Indol-3-yl)-1-(naphthalen-2-yl)-3-(2-nitrophenyl)propan-1-one (3j): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a yellow solid with a melting point
of 185–187 ˝C was isolated; 1H-NMR (DMSO-d6) δ 10.98 (s, 1H), 8.79 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H),
7.99–7.96 (m, 3H), 7.84 (dd, J = 8.1, 1.1 Hz, 1H), 7.67–7.62 (m, 3H), 7.54 (dt, J = 7.7, 1.1 Hz, 1H), 7.44
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(d, J = 2.2 Hz, 1H), 7.42–7.38 (m, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.04 (dt, J = 7.1, 0.8 Hz, 1H), 6.90 (dt,
J = 7.4, 0.6 Hz, 1H), 5.49 (t, J = 7.2 Hz, 1H), 4.19 (dd, J = 17.9, 6.8 Hz, 1H), 3.99 (dd, J = 17.8, 7.7 Hz,
1H); 13C-NMR (DMSO-d6) δ 197.7, 149.7, 138.8, 136.4, 135.1, 133.7, 132.7, 132.2, 130.1, 130.1, 129.6,
128.7, 128.2, 127.6, 127.2, 126.9, 126.2, 123.8, 123.5, 123.1, 121.2, 118.6, 118.4, 116.2, 111.5, 44.5, 31.7;
MS (EI) m/z (relative intensity) 420 (M+, 5), 251 (19), 155 (100), 127 (36); HRMS (EI) m/z calcd for
C27H20N2O3 (M+) 420.1474, found 420.1465.

3-(1H-Indol-3-yl)-3-(2-nitrophenyl)-1-(thiophen-2-yl)propan-1-one (3k): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a pale brown solid with a melting
point of 146–148 ˝C was obtained; 1H-NMR (CDCl3) δ 8.04 (s, 1H), 7.81–7.79 (m, 2H), 7.61 (d,
J =4.7 Hz, 1H), 7.47–7.40 (m, 2H), 7.36–7.28 (m, 3H), 7.17–7.10 (m, 3H), 7.00 (t, J = 7.5 Hz, 1H), 5.67
(t, J = 7.4 Hz, 1H), 3.79 (dd, J = 14.5, 5.8 Hz, 1H), 3.74 (dd, J = 14.6, 5.6 Hz, 1H); 13C-NMR (CDCl3) δ
190.7, 150.0, 144.1, 138.6, 136.7, 134.1, 132.8, 132.3, 130.3, 128.4, 127.5, 126.6, 124.5, 122.5, 119.8, 119.3,
116.9, 111.5, 45.6, 33.6; MS (EI) m/z (relative intensity) 251 (22), 204 (25), 111 (100); HRMS (EI) m/z
calcd for C21H26N2O3S (M+) 376.0882, found 376.0880.

3-(5-Fluoro-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3l): Purified by column chromatography
using 1:4 ethyl acetate and hexane. After concentration in vacuo a yellow solid with a melting point
of 192–194 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.10 (s, 1H), 7.99 (d, J = 7.7 Hz, 2H), 7.83
(d, J = 8.1 Hz, 1H), 7.63–7.61 (m, 2H), 7.56–7.48 (m, 4H), 7.38 (t, J = 7.8 Hz, 1H), 7.33 (dd, J = 8.8,
4.6 Hz, 1H), 7.15 (dd, J = 10.2, 2.0 Hz, 1H), 6.88 (dt, J = 9.2, 2.2 Hz, 1H), 5.37 (t, J = 7.3 Hz, 1H), 4.00
(dd, J = 18.1, 6.2 Hz, 1H), 3.92 (dd, J = 18.1, 8.1 Hz, 1H); 13C-NMR (DMSO-d6) δ 197.8, 156.7 (d,
JC–F = 230 Hz), 149.8, 138.5, 136.4, 133.3, 133.1, 132.7, 129.9, 128.6, 128.0, 127.2, 126.4 (d, JC–F = 10 Hz),
125.3, 123.8, 116.6 (d, JC–F = 5 Hz), 112.5 (d, JC–F = 10 Hz), 109.4 (d, JC–F = 26 Hz), 103.2 (d, JC–F =
23 Hz); MS (EI) m/z (relative intensity) 388 (M+, 29), 371 (25), 269 (92), 222 (56); HRMS (EI) m/z calcd
for C23H17N2O3F (M+) 388.1223, found 388.1227.

3-(5-Chloro-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3m): Purified by column chromatography
using 1:4 ethyl acetate and hexane. After concentration in vacuo a pale yellow solid with a melting
point of 198–200 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.22 (s, 1H), 7.99 (d, J = 7.4 Hz, 2H), 7.84
(d, J = 8.0 Hz, 1H), 7.64–7.61 (m, 2H), 7.56–7.48 (m, 4H), 7.46 (d, J = 1.5 Hz, 1H), 7.40–7.34 (m, 2H),
7.04 (dd, J = 8.6, 1.8 Hz, 1H), 5.38 (t, J = 7.2 Hz, 1H), 4.00 (dd, J = 18.2, 6.4 Hz, 1H), 3.92 (dd, J = 18.2,
8.4 Hz, 1H); 13C-NMR (DMSO-d6) δ 197.7, 149.8, 138.5, 136.4, 134.8, 133.3, 132.8, 130.0, 128.6, 127.3,
127.3, 125.1, 123.9, 123.3, 121.2, 117.7, 116.2, 113.1, 44.5, 31.3; MS (EI) m/z (relative intensity) 406
([M + 2]+, 10), 404 (M+, 31), 387 (25), 285 (92), 265 (30), 253 (29), 205 (32), 204 (19), 105 (94), 84 (100);
HRMS (EI) m/z calcd for C23H17N2O3Cl (M+) 404.0928, found 404.0930.

3-(5-Bromo-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3n): Purified by column chromatography
using 1:5 ethyl acetate and hexane. Concentration in vacuo gave a brown solid with a melting point
of 152–154 ˝C; 1H-NMR (DMSO-d6) δ 11.25 (s, 1H), 8.00 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 8.1 Hz, 1H),
7.63–7.60 (m, 3H), 7.56–7.52 (m, 2H), 7.50 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.6 Hz,
1H), 7.16 (d, J = 8.6 Hz, 1H), 5.40 (t, J = 7.2, 1H), 4.01 (dd, J = 18.2, 6.0 Hz, 1H), 3.92 (dd, J = 18.2,
8.4 Hz, 1H); 13C-NMR (DMSO-d6) δ 197.7, 149.7, 138.4, 136.4, 135.0, 133.3, 132.8, 129.9, 128.6, 128.0,
128.0, 127.3, 124.9, 123.8, 123.7, 120.7, 116.1, 113.5, 111.2, 44.5, 31.2; MS (EI) m/z (relative intensity)
450 ([M + 2]+, 7), 448 (M+, 7), 431 (7), 329 (26), 311 (23), 284 (16), 217 (13), 205 (23), 105 (100); HRMS
(EI) m/z calcd for C23H17N2O3Br (M+) 448.0423, found 448.0414.

3-(5-Methoxy-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3o): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a green oil was obtained; 1H-NMR
(CDCl3) δ 8.17 (s, 1H), 7.92 (s, 1H), 7.89 (d, J = 1.3 Hz, 1H), 7.71 (dd, J = 8.0, 1.1 Hz, 1H), 7.49 (t, J = 7.5
Hz, 1H), 7.37 (m, 3H), 7.31 (dt, J = 7.7, 1.0 Hz, 1H), 7.19 (dt, J = 7.5, 1.2 Hz, 1H), 7.08 (d, J = 8.8 Hz,
1H), 6.98 (d, J = 2.1 Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 6.73 (dd, J = 8.8, 2.4 Hz, 1H), 5.61 (t, J = 7.2 Hz,
1H), 3.79 (dd, J = 17.2, 6.9 Hz, 1H), 3.72 (dd, J = 17.2, 7.5 Hz, 1H), 3.66 (s, 3H); 13C-NMR (CDCl3) δ
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197.7, 154.3, 150.4, 138.8, 136.8, 133.5, 132.7, 131.8, 130.2, 128.9, 128.3, 127.4, 127.1, 124.4, 122.7, 117.4,
112.9, 112.1, 101.2, 55.9, 45.0, 33.0, MS (EI) m/z (relative intensity) 400 (M+ , 32), 383 (25), 281 (68),
261 (39), 249 (24), 204 (16), 162 (12), 105 (100); HRMS (EI) m/z calcd for C24H20N2O4 (M+) 400.1423,
found 400.1431.

3-(7-Methyl-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3p): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a pale green solid with a melting
point of 139–141 ˝C was obtained; 1H-NMR (CDCl3) δ 7.97–7.95 (m, 3H), 7.80 (d, J = 8.1 Hz, 1H),
7.55 (t, J = 7.36 Hz, 1H), 7.46–7.39 (m, 4H), 7.31–7.23 (m, 2H), 7.11 (d, J = 1.8 Hz, 1H), 6.96–6.91 (m,
2H), 5.67 (t, J = 7.2 Hz, 1H), 3.87 (dd, J = 16.7, 7.2 Hz, 1H), 3.80 (dd, J = 16.7, 6.6 Hz, 1H), 2.45 (s, 3H);
13C-NMR (CDCl3) δ 197.8, 150.1, 138.9, 136.8, 136.3, 133.4, 132.8, 130.1, 128.8, 128.3, 127.3, 126.1, 124.5,
123.1, 122.0, 120.6, 120.1, 117.8, 117.2, 45.0, 33.3, 16.7; MS (EI) m/z (relative intensity) 384 (M+, 23), 367
(28), 265 (60), 245 (41), 219 (32), 204 (12), 146 (10), 105 (100); HRMS (EI) m/z calcd for C24H20N2O3

(M+) 384.1474, found 384.1476.

3-(1-Methyl-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3q): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a yellow solid with a melting point
of 166–168 ˝C was obtained; 1H-NMR (CDCl3) δ 7.96 (d, J = 7.7 Hz, 2H), 7.80 (d, J = 8.1 Hz, 1H), 7.55
(t, J = 7.2 Hz, 1H), 7.47–7.39 (m, 5H), 7.30–7.24 (m, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.00 (t, J = 7.3 Hz, 1H),
6.95 (s, 1H), 5.67 (t, J = 7.2 Hz, 1H), 3.86 (dd, J = 16.9, 7.2 Hz, 1H), 3.80 (dd, J = 16.8, 6.8 Hz, 1H), 3.74
(s, 3H); 13C-NMR (CDCl3) δ 197.6, 150.1, 139.1, 137.5, 136.9, 133.4, 132.7, 130.1, 128.8, 128.3, 127.3,
127.0, 127.0, 124.5, 122.2, 119.6, 119.4, 115.9, 109.5, 45.2, 33.1, 33.0; MS (EI) m/z (relative intensity) 384
(M+, 24), 367 (55), 265 (100), 248 (45), 218 (58), 217 (23), 146 (20), 105 (58); HRMS (EI) m/z calcd for
C24H20N2O3 (M+) 384.1474, found 384.1478.

3-(2-Methyl-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3r): Purified by column chromatography
using 1:5 ethyl acetate and hexane. Concentration in vacuo gave a yellow solid with a melting point
of 129–131 ˝C; 1H-NMR (CDCl3) δ 7.88 (s, 1H), 7.86 (d, J = 1.0 Hz, 1H), 7.77 (s, 1H), 7.72 (d, J = 7.9 Hz,
1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53–7.47 (m, 2H), 7.38 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.20 (d,
J = 80 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 7.3 Hz, 1H), 5.71 (t, J = 7.2 Hz, 1H), 3.95 (dd, J = 16.9,
7.8 Hz, 1H), 3.84 (dd, J = 16.9, 6.7 Hz, 1H); 13C-NMR (CDCl3) δ 198.0, 150.4, 138.6, 137.0, 135.7, 133.3,
133.1, 132.3, 129.3, 128.8, 128.2, 127.6, 127.3, 124.9, 121.1, 119.7, 118.6, 111.5, 110.8, 43.3, 33.1, 12.2; MS
(EI) m/z (relative intensity) 384 (M+, 53), 367 (17), 265(100), 247 (92), 218 (60), 217 (46), 146 (67), 105
(55); HRMS (EI) m/z calcd for C24H20N2O3 (M+) 384.1474, found 384.1481.

3-(2-Nitrophenyl)-1-phenyl-3-(2-phenyl-1H-indol-3-yl)propan-1-one (3s): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a deep brown oil was obtained; IR
(KBr): 3390, 3059, 1682, 1601, 1526, 1451, 1351, 741, 698 cm´1. 1H-NMR (CDCl3) δ 8.15 (s,1H), 7.74 (d,
J = 7.4 Hz, 2H), 7.67 (t, J = 7.1 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.36–7.20 (m,
10H), 7.11 (t, J = 7.2 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 5.80 (t, J = 7.3 Hz, 1H), 4.05 (dd, J = 17.4, 8.5 Hz,
1H), 3.78 (dd, J = 17.3, 6.1 Hz, 1H); 13C-NMR (CDCl3) δ 197.6, 149.2, 139.0, 136.6, 136.5, 136.0, 132.9,
132.5, 132.5, 130.1, 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 127.2, 124.5, 121.9, 119.9, 119.8, 111.8, 111.7,
44.1, 33.8; HRMS (ESI) m/z calcd for C29H22N2O3Na ([M + Na]+) 469.1528, found 469.1519.

3-(1H-Indol-3-yl)-3-(3-methyl-2-nitrophenyl)-1-phenylpropan-1-one (3t): Purified by column chromatography
using 1:5 ethyl acetate and hexane. After concentration in vacuo a pale pink solid with a melting
point of 191–193 ˝C was obtained; 1H-NMR (CDCl3) δ 8.00 (s, 1H), 7.93 (d, J = 7.6 Hz, 2H), 7.54 (t, J =
7.3 Hz, 1H), 7.45–7.38 (m, 3H), 7.26 (t, J = 8.1 Hz, 1H), 7.21–7.20 (m, 2H), 7.14–7.10 (m, 2H), 7.02–6.98
(m, 2H), 5.07 (t, J = 6.8 Hz, 1H), 3.81 (dd, J = 16.8, 8.5 Hz, 1H), 3.69 (dd, J = 16.8, 6.0 Hz, 1H), 2.31
(s, 3H); 13C-NMR (CDCl3) δ 197.6, 151.5, 136.9, 136.8, 135.9, 133.4, 130.2, 129.7, 129.6, 128.9, 128.4,
127.0, 126.6, 122.6, 122.3, 119.9, 119.5, 117.0, 111.3, 45.1, 34.0, 17.7; MS (EI) m/z (relative intensity) 384
(M+, 22), 367 (25), 265 (23), 247 (60), 221 (42), 204 (18); HRMS (EI) m/z calcd for C24H20N2O3 (M+)
384.1474, found 384.1476.
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3-(2,5-Dimethyl-1H-indol-3-yl)-3-(2-nitrophenyl)-1-phenylpropan-1-one (3u): Purified by column
chromatography using 1:4 ethyl acetate and hexane. After concentration in vacuo a green solid
with a melting point of 119–121 ˝C was obtained; 1H-NMR (CDCl3) δ 7.88 (dd, J = 7.8, 1.3 Hz, 2H),
7.71–7.67 (m, 3H), 7.54–7.48 (m, 2H), 7.40 (t, J = 7.9 Hz, 2H), 7.32 (dt, J = 8.4, 1.2 Hz, 1H), 7.11–7.09 (m,
2H), 6.87 (d, J = 8.1 Hz, 1H), 5.69 (t, J = 7.1 Hz, 1H), 3.94 (dd, J = 17.0, 7.6 Hz, 1H), 3.84 (dd, J = 17.0,
6.8 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H); 13C-NMR (CDCl3) δ 198.0, 150.3, 138.7, 137.1, 133.9, 133.2, 133.2,
132.3, 129.5, 128.7, 128.7, 128.2, 127.9, 127.2, 124.8, 122.6, 118.5, 111.0, 110.5, 43.4, 33.1, 21.9, 12.3; MS
(EI) m/z (relative intensity) 398 (M+, 25), 262 (53), 261 (36), 207 (33), 160 (48), 105 (100); HRMS (EI)
m/z calcd for C25H22N2O3 (M+) 398.1630, found 398.1629.

3-(2,5-Dimethyl-1H-indol-3-yl)-3-(3-methyl-2-nitrophenyl)-1-phenylpropan-1-one (3v): Purified by column
chromatography using 1:4 ethyl acetate and hexane. After concentration in vacuo a pale yellow solid
with a melting point of 173–175 ˝C was obtained; 1H-NMR (CDCl3) δ 77.88–7.86 (m, 2H), 7.63 (s, 1H),
7.55–7.50 (m, 2H), 7.40 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.20 (s, 1H), 7.13 (d, J = 7.6 Hz, 1H),
7.09 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 5.18 (dd, J = 8.2, 6.2 Hz, 1H), 3.96 (dd, J = 16.9, 8.4 Hz,
1H), 3.80 (dd, J = 16.9, 6.2 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H), 2.23 (s, 3H); 13C-NMR (CDCl3) δ 197.9,
151.8, 137.1, 135.7, 133.9, 133.2, 133.0, 130.0, 129.9, 129.4, 128.7, 128.5, 128.2, 127.6, 126.2, 122.5, 118.5,
110.7, 110.4 ,43.2, 33.0, 21.9, 17.6, 12.1; MS (EI) m/z (relative intensity) 412 (M+, 25), 275 (39), 247 (16),
221 (50), 160 (37), 105 (100); HRMS (EI) m/z calcd for C26H24N2O3 (M+) 412.1787, found 412.1780.

3.3. General Procedure for Reductive Cyclization (Synthesis of 4a–4u)

To a stirred solution of 3a (1 mmol) in ethanol (10 mL), powdered Fe (6 mmol) and HCl
(1 mmol) were added and the reaction mixture was kept stirring at reflux until TLC analysis showed
complete consumption of 3a. Then, the reaction mixture was quenched by saturated aq. NaHCO3,
filtered by celite and concentrated, then the residue was extracted with ethyl acetate three times
(10 mL each time). The combined organic layers were dried over magnesium sulfate, filtered and
concentrated. The residue was purified by recrystallization or flash chromatography (EtOAc/hexane)
to afford the final product 4a. (The 1H-, 13C-NMR spectra of the compounds (4a–4u) was showed
in Supplementary).

4-(1H-Indol-3-yl)-2-phenylquinoline (4a): Pale yellow crystalline solid (crystallized from ethyl acetate
and hexane) with a melting point of 229–231 ˝C; IR (KBr): 3200, 3050, 1591, 1546, 1498, 1237, 828,
741 cm´1. 1H-NMR (DMSO-d6) δ 11.78 (s, 1H), 8.31 (d, J = 7.2 Hz, 2H), 8.17–8.13 (m, 3H), 7.90 (d,
J = 1.8 Hz, 1H), 7.79 (t, J = 7.3 Hz, 1H), 7.59–7.48 (m, 6H), 7.23 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.5 Hz,
1H); 13C-NMR (DMSO-d6) δ 155.9, 148.5, 142.9, 139.0, 136.6, 129.7, 129.6, 129.4, 128.8, 127.3, 126.6,
126.2, 126.1, 126.0, 125.7, 121.9, 120.0, 119.1, 118.5, 112.2, 112.0; MS (EI) m/z (relative intensity) 320
(M+, 100); HRMS (EI) m/z calcd for C23H16N2 (M+) 320.1313, found 320.1307.

6-Fluoro-4-(1H-indol-3-yl)-2-phenylquinoline (4b): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a pale brown solid with a melting point of 154–156 ˝C
was obtained; IR (KBr): 3320, 3048, 1588, 1545, 1494,1240, 830, 750 cm´1. 1H-NMR (DMSO-d6) δ 11.81
(s, 1H), 8.31–8.28 (m, 2H), 8.21 (dd, J = 17.4, 5.7 Hz, 1H), 8.16 (s, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.79
(dd, J = 10.5, 2.6 Hz, 1H), 7.70 (dt, J = 8.4, 2.7 Hz, 1H), 7.60–7.48 (m, 5H), 7.24 (t, J = 7.6 Hz, 1H), 7.13
(t, J = 7.8 Hz, 1H); 13C-NMR (DMSO-d6) δ 159.3 (d, JC–F = 244 Hz), 155.5 (d, JC–F = 3 Hz), 145.7, 142.5
(d, JC–F = 3 Hz), 138.7, 136.6, 132.5 (d, JC–F = 5 Hz), 129.5, 128.8, 127.2, 126.7, 126.4 (d, JC–F = 9 Hz),
126.0, 122.0, 120.1, 119.6 (d, JC–F = 25 Hz), 119.1, 118.9, 112.3, 111.5, 109.3 (d, JC–F = 23 Hz); MS (EI)
m/z (relative intensity) 338 (M+, 100), 337 (65), 285 (24), 149 (87), 105 (30); HRMS (EI) m/z calcd for
C23H15N2F (M+) 338.1219, found 338.1213.

6-Chloro-4-(1H-indol-3-yl)-2-phenylquinoline (4c): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a pale yellow solid with a melting point of
209–211 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.83 (s, 1H), 8.29 (d, J = 8.6 Hz, 2H), 8.16–8.13
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(m, 2H), 8.10 (d, J = 1.8 Hz, 1H), 7.94 (s, 1H), 7.77 (dd, J = 8.9, 2.1 Hz, 1H), 7.60–7.48 (m, 5H), 7.24 (t,
J = 7.3 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H); 13C-NMR (DMSO-d6) δ 156.4, 147.0, 142.4, 138.6, 136.6, 131.8,
130.6, 130.2, 129.7, 128.8, 127.3, 126.9, 126.5, 126.1, 124.8, 122.1, 120.2, 119.4, 118.9, 112.3, 111.4; MS (EI)
m/z (relative intensity) 356 ([M + 2]+, 8), 354 (M+, 24), 353 (12), 149 (100); HRMS (EI) m/z calcd for
C23H15N2Cl (M+) 354.0924, found 354.0919.

6-Bromo-4-(1H-indol-3-yl)-2-phenylquinoline (4d): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a yellow solid with a melting point of 214–216 ˝C
was obtained; 1H-NMR (DMSO-d6) δ 11.83 (s, 1H), 8.28 (d, J = 7.4 Hz, 2H), 8.26 (d, J = 1.8 Hz, 1H),
8.15 (s, 1H), 8.06 (d, J = 8.9 Hz, 1H), 7.93 (d, J = 2.1 Hz, 1H), 7.86 (dd, J = 8.9, 1.8 Hz, 1H), 7.60 (d,
J = 8.1 Hz, 1H), 7.54–7.46 (m, 4H), 7.24 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H); 13C-NMR (DMSO-d6)
δ 156.5, 147.2, 142.3, 138.6, 136.6, 132.7, 131.9, 129.7, 128.8, 128.1, 127.4, 127.0, 126.9, 126.1, 122.1, 120.2,
119.4, 119.2, 118.9, 112.3, 111.4; MS (EI) m/z (relative intensity) 400 ([M + 2]+, 100), 398 (M+, 98), 319
(34), 318 (27); HRMS (EI) m/z calcd for C23H15N2Br (M+) 398.0419, found 398.0417.

2-(2-Chlorophenyl)-4-(1H-indol-3-yl)quinoline (4e): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a pale yellow solid with a melting point of
242–244 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.78 (s, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.13 (d,
J = 8.2 Hz, 1H), 7.88 (d, J = 2.6 Hz, 1H), 7.85- 7.77 (m, 3H), 7.65–7.51 (m, 6H), 7.22 (t, J = 7.3 Hz,
1H), 7.12 (t, J = 7.5 Hz, 1H); 13C-NMR (DMSO-d6) δ 156.3, 148.4, 141.7, 139.3, 136.6, 131.8, 131.3, 130.2,
129.8, 129.6, 129.6, 127.4, 126.8, 126.6, 126.1, 126.0, 125.4, 122.0, 122.0, 120.1, 118.8, 112.2, 111.4; MS (EI)
m/z (relative intensity) 356 ([M + 2]+, 42), 354 (M+, 100); HRMS (EI) m/z calcd for C23H15N2Cl (M+)
354.0924, found 354.0924.

2-(2-Bromophenyl)-4-(1H-indol-3-yl)quinoline (4f): Purified by column chromatography using 1:4 ethyl
acetate and hexane). After concentration in vacuo a pale yellow solid with a melting point of
236–238 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.80 (s, 1H), 8.27 (d, J = 7.9 Hz, 1H), 8.13 (d,
J = 8.1 Hz, 1H), 7.88 (d, J = 2.6 Hz, 1H), 7.83–7.78 (m, 3H), 7.73 (dd, J = 7.6, 1.6 Hz, 1H), 7.65–7.62
(m, 2H), 7.58–7.52 (m, 2H), 7.41 (dt, J = 7.8, 1.8 Hz, 1H), 7.22 (t, J = 7.3 Hz, 1H), 7.11 (t, J = 7.3 Hz, 1H);
13C-NMR (DMSO-d6) δ 157.8, 148.3, 141.7, 141.3, 136.6, 132.9, 131.7, 130.3, 129.6, 129.6, 127.8, 126.8,
126.6, 126.1, 126.0, 125.4, 122.0, 122.0, 121.1, 120.1, 118.9, 112.2, 111.4; MS (EI) m/z (relative intensity)
400 ([M + 2]+, 100), 399 ([M + 1]+, 95), 398 (M+, 90), 338 (13), 319 (34), 204 (22), 159 (12); HRMS (EI)
m/z calcd for C23H15N2Br (M+) 398.0419, found 398.0412.

4-(1H-Indol-3-yl)-2-p-tolylquinoline (4g): Purified by column chromatography using 1:4 ethyl acetate
and hexane. After concentration in vacuo an orange solid with s melting point of 277–279 ˝C was
obtained; IR (KBr): 3300, 3040, 1585, 1439, 1364, 1240, 814, 734 cm´1. 1H-NMR (DMSO-d6) δ 11.74
(s, 1H), 8.21 (d, J = 8.1 Hz, 2H), 8.13 (d, J = 8.7 Hz, 2H), 8.09 (s, 1H), 7.88 (d, J = 2.2 Hz, 1H), 7.78 (t,
J = 6.8 Hz, 1H), 7.57–7.51 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.11 (t, J = 7.4 Hz,
1H), 2.40 (s, 3H); 13C-NMR (DMSO-d6) δ 155.8, 148.5, 142.8, 139.0, 136.5, 136.2, 129.6, 129.6, 129.4,
127.1, 126.5, 126.2, 126.0, 125.9, 125.6, 121.9, 120.0, 119.1, 118.3, 112.2, 112.0, 20.9; MS (EI) m/z (relative
intensity) 334 (M+, 100); HRMS (EI) m/z calcd for C24H18N2 (M+) 334.1470, found 334.1469.

4-(1H-Indol-3-yl)-2-(4-methoxyphenyl)quinoline (4h): Purified by column chromatography using 1:4
ethyl acetate and hexane. After concentration in vacuo a pale yellow solid with a melting point of
231–233 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.74 (s, 1H), 8.28 (td, J = 8.8, 2.8 Hz, 2H), 8.11 (ddd,
J = 8.6, 2.3, 1.0 Hz, 2H), 8.08 (s, 1H), 7.88 (d, J = 2.6 Hz, 1H), 7.77 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.57 (d,
J = 8.1 Hz, 1H), 7.53–7.50 (m, 2H), 7.23 (ddd, J = 7.8, 7.2, 0.6 Hz, 1H), 7.13–7.09 (m, 3H), 3.85 (s, 3H);
13C-NMR (DMSO-d6) δ 160.5, 155.5, 148.5, 142.6, 136.5, 131.4, 129.5, 129.5, 128.6, 126.4, 126.3, 125.9,
125.6, 125.4, 121.8, 119.9, 119.1, 118.1, 114.1, 112.1, 112.1, 55.2; MS (EI) m/z (relative intensity) 350 (M+,
100), 349 (64); HRMS (EI) m/z calcd for C24H18N2O (M+) 350.1419, found 350.1412.

2-(Benzo[d][1,3]dioxol-5-yl)-4-(1H-indol-3-yl)quinoline (4i): Purified by column chromatography using
1:3 ethyl acetate and hexane. After concentration in vacuo a yellow solid with a melting point of
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237–239 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.74 (s, 1H), 8.10 (d, J = 8.4 Hz, 2H), 8.06 (s, 1H),
7.89–7.85 (m, 3H), 7.77 (t, J = 7.2 Hz, 1H), 7.57–7.50 (m, 3H), 7.22 (t, J = 7.4 Hz, 1H), 7.13–7.07 (m,
2H), 6.12 (s, 2H); 13C-NMR (DMSO-d6) δ 155.3, 148.6, 148.4, 148.1, 142.8, 136.6, 133.4, 129.6, 129.6,
126.6, 126.3, 126.0, 125.8, 125.6, 121.9, 121.7, 120.0, 119.2, 118.3, 112.2, 112.1, 108.5, 107.3, 101.4; MS
(EI) m/z (relative intensity) 364 (M+, 100); HRMS (EI) m/z calcd for C26H14N2O2 (M+) 364.1212,
found 364.1218.

4-(1H-Indol-3-yl)-2-(naphthalen-2-yl)quinoline (4j): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo an orange solid with a melting point > 300 ˝C was
obtained; 1H-NMR (DMSO-d6) δ 11.77 (s, 1H), 8.87 (s, 1H), 8.54 (d, J = 8.5 Hz, 1H), 8.32 (s, 1H),
8.21 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.3 Hz, 1H), 8.13–8.09 (m, 2H), 8.01–7.99 (m, 1H), 7.93 (s, 1H),
7.83 (t, J = 7.2 Hz, 1H), 7.59–7.55 (m, 5H), 7.24 (t, J = 7.4 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H); 13C-NMR
(DMSO-d6) δ 155.7, 148.5, 143.0, 136.6, 136.3, 133.4, 133.1, 129.7, 129.7, 128.8, 128.3, 127.5, 126.9, 126.8,
126.6, 126.5, 126.3, 126.2, 126.1, 125.8, 124.8, 121.9, 120.0, 119.1, 118.8, 112.2, 112.0; HRMS (ESI) m/z
calcd for C27H19N2 ([M + H]+) 371.1548, found 371.1554.

4-(1H-Indol-3-yl)-2-(thiophen-2-yl)quinoline (4k): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a yellow solid with a melting point of 201–203 ˝C
was obtained; IR (KBr): 3300, 3054, 1587, 1545, 1425, 1370, 1240, 811, 744 cm´1. 1H-NMR (DMSO-d6)
δ 11.75 (s, 1H), 8.11 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 3.7 Hz, 1H), 7.87
(d, J = 2.5 Hz, 1H), 7.78–7.73 (m, 2H), 7.57 (d, J = 8.2 Hz, 1H), 7.53–7.50 (m, 2H), 7.25–7.20 (m, 2H), 7.11
(t, J = 7.8 Hz, 1H); 13C-NMR (DMSO-d6) δ 151.6, 148.2, 145.0, 142.8, 136.5, 129.8, 129.3, 129.0, 128.5,
126.8, 126.6, 126.3, 126.1, 125.8, 125.8, 121.9, 120.0, 119.1, 117.4, 112.2, 111.7; MS (EI) m/z (relative
intensity) 326 (M+, 100), 163 (10), 84 (13), 66 (15); HRMS (EI) m/z calcd for C21H14N2S (M+) 326.0878,
found 326.0883.

4-(5-Fluoro-1H-indol-3-yl)-2-phenylquinoline (4l): Pale yellow crystalline solid (crystallized from ethyl
acetate and hexane) with a melting point of 236–238 ˝C; 1H-NMR (DMSO-d6) δ 11.87 (s, 1H), 8.32 (d,
J = 7.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H), 8.11–8.10 (m, 2H), 7.97 (d, J = 2.3 Hz, 1H), 7.80 (t, J = 7.6 Hz,
1H), 7.84–7.59 (m, 5H), 7.22 (dd, J = 9.9, 1.8 Hz, 1H), 7.08 (dt, J = 9.1, 2.1 Hz, 1H); 13C-NMR (DMSO-d6)
δ 157.6 (d, JC´´F = 232 Hz), 155.9, 128.5, 142.4, 139.0, 133.3, 129.8, 129.7, 129.4, 128.8, 128.6, 127.3,
126.6 (d, JC–F = 10 Hz), 126.2, 125.9, 125.6, 118.6, 113.3 (d, JC–F = 10 Hz), 112.3 (d, JC–F = 4 Hz), 110.3 (d,
JC–F = 26 Hz), 103.9 (d, JC–F = 23 Hz); MS (EI) m/z (relative intensity) 338 (M+, 100); HRMS (EI) m/z
calcd for C23H15N2F (M+) 338.1219, found 338.1210.

4-(5-Chloro-1H-indol-3-yl)-2-phenylquinoline (4m): Yellow crystalline solid (crystallized from ethyl
acetate and hexane) with a melting point of 204–206 ˝C; 1H-NMR (DMSO-d6) δ 11.97 (s, 1H), 8.32
(d, J = 7.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H), 8.12 (s, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H), 7.80 (t,
J = 7.7 Hz, 1H), 7.60–7.48 (m, 5H), 7.46 (d J = 1.0 Hz, 1H), 7.20 (dd, J = 8.6, 1.4 Hz, 1H); 13C-NMR
(DMSO-d6) δ 155.9, 148.5, 142.2, 139.0, 135.1, 129.8, 129.7, 129.4, 128.7, 128.2, 127.5, 127.3, 126.2, 125.8,
125.7, 124.7, 122.0, 118.8, 118.3, 113.8, 111.9; MS (EI) m/z (relative intensity) 356 ([M + 2]+, 33), 354
(M+, 100); HRMS (EI) m/z calcd for C23H15N2Cl (M+) 354.0924, found 354.0924.

4-(5-Bromo-1H-indol-3-yl)-2-phenylquinoline (4n): Purified by column chromatography using 1:4 ethyl
acetate and hexane). After concentration in vacuo a pale green solid with a melting point of 255–257 ˝C
was obtained; 1H-NMR (DMSO-d6) δ 12.00 (s, 1H), 8.32 (d, J = 7.3 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H),
8.12 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.61–7.46 (m, 6H), 7.34 (d,
J = 8.6 Hz, 1H); 13C-NMR (DMSO-d6) δ 155.9, 148.4, 142.1, 138.9, 135.3, 129.8, 129.7, 129.4, 128.8, 128.1,
128.0, 127.3, 126.2, 125.8, 125.7, 124.5, 121.2, 118.8, 114.2, 112.5, 111.7; MS (EI) m/z (relative intensity)
400 ([M + 2]+, 85), 398 (M+, 100); HRMS (EI) m/z calcd for C23H15N2Br (M+) 398.0419, found 398.0425.

4-(5-Methoxy-1H-indol-3-yl)-2-phenylquinoline (4o): White crystalline solid (crystallized from ethyl
acetate and hexane) with a melting point of 183–185 ˝C; 1H-NMR (DMSO-d6) δ 11.63 (s, 1H), 8.31
(dd, J = 7.2 Hz, 2H), 8.15 (d, J = 8.7 Hz, 2H), 8.13 (s, 1H), 7.85 (d, J = 2.6 Hz, 1H), 7.79 (dt, J = 7.0,
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1.8 Hz, 1H), 7.59–7.54 (m, 3H), 7.52–7.46 (m, 2H), 6.96 (d, J = 2.3 Hz, 1H), 6.88 (dd, J = 8.8, 2.4 Hz,
1H), 3.67 (s, 3H); 13C-NMR (DMSO-d6) δ 155.9, 154.1, 148.6, 143.1, 139.0, 131.7, 129.8, 129.7, 129.4,
128.8, 127.3, 127.2, 126.6, 126.2, 126.0 125.7, 118.4, 113.0,112.1, 112.0, 100.9, 55.3; MS (EI) m/z (relative
intensity) 350 (M+, 100), 349 (18); HRMS (EI) m/z calcd for C24H18N2O (M+) 350.1419, found 350.1422.

4-(7-Methyl-1H-indol-3-yl)-2-phenylquinoline (4p): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a pale yellow solid with a melting point of
163–165 ˝C was obtained; 1H-NMR (DMSO-d6) δ 11.74 (s, 1H), 8.30 (d, J = 7.3 Hz, 2H), 8.15 (d,
J = 8.7 Hz, 2H), 8.12 (s, 1H), 7.88 (d, J = 2.6 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.58–7.48 (m, 4H), 7.37–7.34
(m, 1H), 7.03–7.00 (m, 2H), 2.58 (s, 3H); 13C-NMR (DMSO-d6) δ 155.8, 148.5, 143.1, 139.0, 136.1, 129.7,
129.6, 129.4, 128.8, 127.3, 126.3, 126.1, 126.0, 126.0, 125.7, 122.4, 121.4, 120.2, 118.6, 116.7, 112.5, 16.8; MS
(EI) m/z (relative intensity) 334 (M+, 100), 333 (68); HRMS (EI) m/z calcd for C24H18N2 (M+) 334.1470
found 334.1477.

4-(1-Methyl-1H-indol-3-yl)-2-phenylquinoline (4q): White crystalline solid (from ethyl acetate and
hexane) with a melting point of 138–140 ˝C; 1H-NMR (DMSO-d6) δ 8.30 (d, J = 8.0 Hz, 2H), 8.17
(dd, J = 10.9, 8.8 Hz, 2H), 8.11 (s, 1H), 7.91 (s, 1H), 7.80 (dd, J = 8.0, 7.1 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H),
7.59–7.49 (m, 5H), 7.30 (t, J = 7.4 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 3.96 (s, 3H); 13C-NMR (DMSO-d6) δ
155.8, 148.5, 142.4, 139.0, 137.0, 130.7, 129.7, 129.7, 129.4, 128.8, 127.2, 126.5, 126.1, 125.9, 125.6, 122.0,
120.3, 119.3, 118.4, 111.0, 110.5, 32.8; MS (EI) m/z (relative intensity) 334 (M+, 100), 333 (61); HRMS
(EI) m/z calcd for C24H18N2 (M+) 334.1470, found 334.1469.

4-(2-Methyl-1H-indol-3-yl)-2-phenylquinoline (4r): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a brown solid with a melting point of 98–100 ˝C was
obtained; 1H-NMR (DMSO-d6) δ 8.73 (s, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 7.6 Hz, 2H), 7.87 (s,
1H), 7.81 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.9 Hz, 1H), 7.47 (t, J = 7.3 Hz, 1H), 7.42–7.29 (m, 4H), 7.17 (t,
J = 7.3 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 2.21 (s, 3H); 13C-NMR (DMSO-d6) δ 157.4, 149.1, 143.5, 140.0,
135.6, 133.8, 129.9, 129.8, 129.4, 129.0, 128.7, 127.9, 127.2, 126.8, 126.0, 121.9, 121.2, 120.3, 119.1, 110.9,
110.8, 12.7; MS (EI) m/z (relative intensity) 334 (M+, 100), 333 (55), HRMS (EI) m/z calcd for C24H18N2

(M+) 334.1470, found 334.1464.

2-Phenyl-4-(2-phenyl-1H-indol-3-yl)quinoline (4s): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo an orange solid with a melting point of 282–284 ˝C
was obtained; 1H-NMR (DMSO-d6) δ 12.00 (s, 1H), 8.21 (d, J = 7.3 Hz, 2H), 8.15 (d, J = 8.4 Hz, 1H), 8.04
(s, 1H), 7.72–7.65 (m, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.50–7.42 (m, 5H), 7.22 (t, J = 7.7 Hz, 1H), 7.26–7.16
(m, 5H), 7.01 (t, J = 7.5 Hz, 1H); 13C-NMR (DMSO-d6) δ 155.9, 148.4, 143.6, 138.7, 136.3, 135.9, 131.9,
129.7, 129.7, 129.5, 128.9, 128.8, 128.6, 127.7, 127.5, 127.2, 126.4, 126.1, 126.0, 122.4, 120.6, 120.1, 118.7,
111.7, 109.1; MS (EI) m/z (relative intensity) 396 (M+, 100), 395 (36), 193 (14); HRMS (EI) m/z calcd for
C29H20N2 (M+) 396.1626, found 396.1634.

4-(1H-Indol-3-yl)-8-methyl-2-phenylquinoline (4t): Purified by column chromatography using 1:4 ethyl
acetate and hexane. After concentration in vacuo a pale orange solid with a melting point of
102–104 ˝C was obtained; 1H-NMR (CDCl3) δ 11.75 (s, 1H), 8.35 (d, J = 7.5 Hz, 2H), 8.13 (s, 1H), 7.99
(d, J = 8.3 Hz, 1H), 7.86 (d, J = 2.3 Hz, 1H), 7.63–7.46 (m, 6H), 7.40 (t, J = 8.1 Hz, 1H), 7.22 (t, J = 7.2 Hz,
1H), 7.10 (t, J = 7.4 Hz, 1H), 2.87 (s, 3H); 13C-NMR (CDCl3) δ 154.4, 147.3, 143.2, 139.3, 137.0, 136.6,
129.6, 129.3, 128.8, 127.2, 126.5, 126.4, 125.7, 124.0, 121.9, 120.0, 119.1, 118.3, 112.4, 112.2, 18.2; MS (EI)
m/z (relative intensity) 334 (M+, 100), 333 (30), 219 (30); HRMS (EI) m/z calcd for C24H18N2 (M+)
334.1470, found 334.1471.

4-(2,5-Dimethyl-1H-indol-3-yl)-2-phenylquinoline (4u): Purified by column chromatography using 1:4
ethyl acetate and hexane. After concentration in vacuo an orange solid with a melting point of
181–183 ˝C was obtained; 1H-NMR (CDCl3) δ 8.27 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 7.4 Hz, 3H), 7.90 (s,
1H), 7.84 (d, J = 8.3 Hz, 1H), 7.73 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 7.54 (t, J = 7.2 Hz, 2H), 7.49–7.41 (m,
2H), 7.31 (d, J = 8.2 Hz, 1H), 7.12 (s, 1H), 7.05 (d, J = 8.2 Hz, 1H), 2.38 (s, 3H), 2.37 (s, 3H); 13C-NMR
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(CDCl3) δ 157.3, 149.2, 143.4, 140.3, 133.9, 133.6, 130.3, 129.9, 129.7, 129.4, 129.1, 129.0, 127.9, 127.3,
126.8, 126.1, 123.7, 121.2, 119.0, 110.9, 110.4, 21.7, 13.0; MS (EI) m/z (relative intensity) 348 (M+, 100),
347 (35), 166 (11); HRMS (EI) m/z calcd for C25H20N2 (M+) 348.1626, found 348.1632.

2-Phenylquinoline (5a): Purified by column chromatography using 1:6 ethyl acetate and hexane. After
concentration in vacuo a white solid with a melting point of 84–86 ˝C was obtained; 1H-NMR (CDCl3)
δ 8.46 (d, J = 8.7 Hz, 1H), 8.28 (d, J = 7.1 Hz, 2H), 8.15 (d, J = 8.7 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.00 (d,
J = 7.8 Hz, 1H), 7.79 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.62–7.45 (m, 4H); 13C-NMR (CDCl3) δ 156.1, 147.6,
138.7, 137.2, 130.0, 129.6, 129.1, 128.9, 127.8, 127.2, 127.0, 126.5, 118.8; MS (EI) m/z (relative intensity)
205 (M+, 100), 204 (78); HRMS (EI) m/z calcd for C15H11N (M+) 205.0891, found 205.0889.

8-Methyl-2-phenylquinoline (5v): Purified by column chromatography using 1:6 ethyl acetate and
hexane. After concentration in vacuo an orange oil was obtained; 1H-NMR (CDCl3) δ 8.30 (d,
J = 7.5 Hz, 2H), 8.18 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.61–7.54
(m, 3H), 7.49 (t, J = 7.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 2.94 (s, 3H); 13C-NMR (CDCl3) δ 155.7,
147.4, 140.1, 137.9, 137.1, 129.9, 129.4, 129.0, 127.7, 127.3, 126.2, 125.6, 118.4, 18.1; MS (EI) m/z (relative
intensity) 219 (M+, 100); HRMS (EI) m/z calcd for C16H13N (M+) 219.1048, found 219.1044.

4. Conclusions

In summary, we have successfully developed a strategy for the synthesis of 4-indolylquinoline
derivatives from 2-nitrochalcone derivatives in two steps. The process involves as a first step the
Michael addition of indole to nitrochalcones under solvent free conditions catalyzed by sulfamic
acid and the second step is a reductive cyclization of the 3-(1H-indol-3-yl)-3-(2-nitrophenyl)-1-
phenylpropan-1-one derivatives to 4-indolylquinoline derivatives via reductive cyclization by
Fe/HCl in ethanol. A wide substrate scope, clean reactions and high yields of the products are the
main merits of this strategy. This procedure offers an easy, convenient and alternative method to
existing methodologies for the synthesis of indolylquinoline derivatives.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/
12/19862/s1.
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