Asymmetric Synthesis and Absolute Configuration Assignment of a New Type of Bedaquiline Analogue

Chang-Jiang Qiao, Xiao-Kui Wang, Fei Xie, Wu Zhong and Song Li

Figure S1. HPLC spectrum of 9a, Chiralpak IC ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu$), IPA/hexane $=$ $30 \%: 70 \%$, flow $=1.0 \mathrm{~mL}, \mathrm{~T}=20^{\circ} \mathrm{C}, \lambda=225 \mathrm{~nm}$.

Figure S2. HPLC spectrum of $\mathbf{9 b}$, Chiralpak IC ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu$), IPA/hexane $=$ $30 \%: 70 \%$, flow $=1.0 \mathrm{~mL}, \mathrm{~T}=20^{\circ} \mathrm{C}, \lambda=225 \mathrm{~nm}$.

Figure S3. HPLC spectrum of TM-05-a, Astec ${ }^{\circledR}$ CYCLOBOND ${ }^{\circledR}$ I 2000 RSP ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, 5μ), MeOH:($50 \mu \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ aqueous solution $)=80 \%: 20 \%$, flow $=0.8 \mathrm{~mL}, \mathrm{~T}=20^{\circ} \mathrm{C}$, $\lambda=225 \mathrm{~nm}$.

Figure S4. HPLC spectrum of TM-05-c, Astec ${ }^{\circledR}$ CYCLOBOND ${ }^{\circledR}$ I 2000 RSP ($250 \times 4.6 \mathrm{~mm}$, $5 \mu)$, $\mathrm{MeOH}:\left(50 \mu \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}\right.$ aqueous solution $)=80 \%: 20 \%$, flow $=0.8 \mathrm{~mL}, \mathrm{~T}=20^{\circ} \mathrm{C}$, $\lambda=225 \mathrm{~nm}$.

Figure S5. 2D NOESY spectrum of TM-05-c in CDCl_{3}.

Figure S6. 2D ROESY spectrum of TM-05-d in CDCl_{3}

QCJ-AC1 (91.037\%)

QCJ-AC5 (0.034\%)

QCJ-AC2 (7.303\%)

QCJ-AC6 (0.026\%)

QCJ-AC7 (0.004\%)

QCJ-AC4 (0.053\%)

QCJ-AC8 (0.002\%)

Figure S7. Computer searched eight conformers of $(1 R, 2 S)$ isomer of TM-05.

QCJ-CC1 (85.203\%)
QCJ-CC2 (13.722\%)
QCJ-CC3 (0.992\%)
QCJ-CC4 (0.071\%)
QCJ-CC5 (0.007\%) QCJ-CC6 (0.005\%)

Figure S8. Computer searched six conformers of $(1 R, 2 R)$ isomer of TM-05.

Figure S9. The overlay results between crystal structure of bedaquiline from PDB database (ID: 4V1F) and optimized conformer of ($1 R, 2 S$) isomer of TM-05. Fast overlay was performed on Chem3D Ultra 10.0 and the optimized conformer of $(1 R, 2 S)$ isomer used was QCJ-AC1 from the calculated result in Figure S7.

(a)

(b)

Figure S10. Crystal structures of the two stereoisomers of compound 10. (a) An ORTEP plot of $(2 R, 3 R)$ stereoisomer of compound 10; (b) An ORTEP plot of $(2 S, 3 S)$ stereoisomer of compound 10 .

