Supplementary Materials: Synthesis and Physicochemical Characterization of the Process-Related Impurities of Olmesartan Medoxomil. Do 5-(Biphenyl-2-yl)-1-triphenylmethyltetrazole Intermediates in Sartan Syntheses Exist?

Iwona Dams, Anna Ostaszewska, Maria Puchalska, Justyna Chmiel, Piotr Cmoch, Iwona Bujak, Agata Białońska and Wojciech J. Szczepek

Table of contents	Page
Syntheses	S1
Table S1	S2
Table S2	S2
Table S3	S3
Spectral data (NMR, IR, HRMS) and DSC thermograms of the bromide 2 and compounds	
synthesized	S10
¹ H-NMR spectra of compounds 2 , 3 , 6 , 7 , 9 and 10 in CDCl ₃ solutions	S10
¹ H-NMR spectra of compounds 2 , 3 and 6-10 in DMSO- <i>d</i> ₆ solutions	S18
¹³ C-NMR spectra of compounds 2 , 3 , 6 , 7 , 9 and 10 in CDCl ₃ solutions	S25
¹³ C-NMR spectra of compounds 2 , 3 and 6–10 in DMSO- <i>d</i> ⁶ solutions	S31
¹ H/ ¹³ C g-HMBC NMR spectra of dimedoxomil derivatives 9 and 10	S38
¹ H/ ¹⁵ N g-HMBC NMR spectra of dimedoxomil derivatives 9 and 10	S40
IR spectra of compounds 2 , 3 and 6–10	S42
HRMS spectra of compounds 3 and 6–10	S49
DSC thermograms of compounds 2, 3, 6–8 and 10	S55
Abbreviations used in the text	S61
References	S61

Syntheses

Scheme S1. Synthesis of OM (7) and the impurities **9** and **10**: (1) K₂CO₃, KI, DMF, 24 h at r.t., 83%; (2) KOH, DMF, 54–56 °C for 22 h; (3) K₂CO₃, KI, DMF, 22 h at r.t., 96%; (4) H₂SO₄–H₂O, Me₂CO, 50–55 °C for 2 h; 80%; (5) NaOH, MeOH, 24 h at r.t.; (6) AcOH, H₂O; 96%; (7) K₂CO₃, KI, DMF, 22 h at r.t.

[2'-(2-Triphenylmethyl-2H-tetrazol-5-yl)biphenyl-4-yl]methyl bromide (2)

The IR and NMR spectra, as well as DSC thermogram, were recorded for commercial sample of the bromide **2**.

M.p. 155.10–160.57 °C, peak 157.73 °C, heating rate 10.00 °C/min (white crystals). Lit. m.p.: 150–151 [1], 141.0–142.3 [2], 140–142 [3], 137.8 [4], 137–138 [5], 136–138 [6,7], 135–138 [8–10], 135–137 [11,12], 134–137 [13], 129.5–133.0 [14].

FT-IR (KBr) v: 3445, 3054, 3028, 1489, 1463, 1445, 1431, 1406, 1230, 1204, 1186, 1156, 1026, 1006, 768, 749, 697, 678, 640, 609 cm⁻¹.

¹H-NMR (CDCl₃, 600 MHz) δ: 7.96 (1H, dd, *J* = 7.8 and 1.2 Hz, biphenyl H-3'), 7.48 (1H, td, *J* = 7.5 and 1.2 Hz, biphenyl H-5'), 7.45 (1H, td, *J* = 7.5 and 1.2 Hz, biphenyl H-4'), 7.37 (1H, dd, *J* = 7.8 and 1.2 Hz, biphenyl H-6'), 7.32 (3H, m, *para*-H of -CPh₃), 7.25 (6H, m, *meta*-H of -CPh₃), 7.11 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 7.08 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.90 (6H, m, *ortho*-H of -CPh₃), 4.37 (2H, s, -CH₂Br). Lit. ¹H-NMR data in CDCl₃ are presented in Table S1.

Table S1. Literature ¹H-NMR data for [2'-(*N*-triphenylmethyltetrazol-5-yl)biphenyl-4-yl]methyl bromides (**2**) in CDCl₃ compared with data from current work (CW).

CW, 600 MHz	Lit. [2]	Lit. [4]	Lit. [6], 400 MHz	Lit. [15], 300 MHz
4.37 (2H, s)	4.37 (2H, s)	4.40 (2H, s)	4.53 (2H, s)	4.52 (3H, s)
6.90 (6H, m)	6.88–6.91 (7H, m)		7.02–7.04 (6H, m)	7.13–7.32 (15H, m)
7.08 (2H)	7.09–7.10 (3H, m)		7.20 (2H, d)	
7.11 (2H)		7.15 (2H, d)	7.28 (2H, d)	
7.25 (6H, m)	7.24–7.38 (10H, m)	7.30–7.70 (21H, m)	7.33–7.53 (10H, m)	7.26 (2H, d)
7.32 (3H, m)				7.39 (2H, d)
7.37 (1H, dd)				7.6–7.8 (4H, m)
7.45 (1H ,td)	7.43–7.51 (2H, m)		7.58–7.66 (2H, m)	
7.48 (1H, td)				
7.96 (1H, dd)	7.95–7.97 (1H, m)		8.01 (1H, d)	

¹H-NMR (DMSO-*d*₆, 600 MHz) δ: 7.82 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-3'), 7.63 (1H, td, *J* = 7.8 and 1.2 Hz, biphenyl H-5'), 7.56 (1H, td, *J* = 7.8 and 1.2 Hz, biphenyl H-4'), 7.48 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-6'), 7.38 (3H, m, *para*-H of -CPh₃), 7.34 (6H, m, *meta*-H of -CPh₃), 7.29 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 7.06 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.85 (6H, m, *ortho*-H of -CPh₃). Lit. ¹H-NMR data in DMSO-*d*₆ are presented in Table S2.

Table S2. Literature ¹H-NMR data for [2'-(*N*-triphenylmethyltetrazol-5-yl)biphenyl-4-yl]methyl bromides (**2**) in DMSO-*d*₆ compared with data from current work (CW).

CW, 600 MHz	Lit. [1], 300 MHz	Lit. [16], 400 MHz	Lit. [17], 400 MHz
4.65 (2H, s)	4.48 (2H, s)	4.65 (2H, s)	4.61 (2H, s)
6.85 (6H, m)	7.00–7.84 (23H, m)	6.84 (6H, d)	6.80 (6H, d)
7.06 (2H)		7.06 (2H, d)	7.01 (2H, d)
7.29 (2H)		7.28 (2H, d)	7.24 (2H, d)
7.34 (6H, m)		7.32–7.38 (9H, m)	7.28–7.35 (9H, m)
7.38 (3H, m)			
7.48 (1H, dd)		7.42–7.64 (3H, m)	7.43–7.45 (1H, dd)
7.56 (1H, td)			7.50–7.56 (1H, td)
7.63 (1H, td)			7.58–7.60 (1H, td)
7.82 (1H, dd)		7.78–7.84 (1H, m)	7.77–7.79 (1H, dd)

¹³C-NMR (CDCl₃, 150 MHz) δ: 163.8 (tetrazole C-5), 141.5 (biphenyl C-1'), 141.3 (biphenyl C-1), 141.1 (3C, *ipso*-C of -CPh₃), 136.2 (biphenyl C-4), 130.6 (biphenyl C-6'), 130.3 (6C, *ortho*-C of -CPh₃), 130.3 (biphenyl C-3'), 130.0 (biphenyl C-5'), 129.6 (2C, biphenyl C-2 and C-6), 128.5 (2C, biphenyl C-3 and C-5), 128.2 (3C, *para*-C of -CPh₃), 127.7 (biphenyl C-4), 127.6 (6C, *meta*-C of -CPh₃), 126.3 (biphenyl C-2'), 83.0 (-CPh₃), 33.2 (-CH₂Br). Lit. ¹³C-NMR data in CDCl₃ are presented in Table S3.

¹³C-NMR (150 MHz, DMSO-*d*₆) δ: 163.3 (tetrazole C-5), 141.0 (biphenyl C-1'), 140.7 (3C, *ipso*-C of -CPh₃), 140.1 (biphenyl C-1), 136.6 (biphenyl C-4), 130.6 (biphenyl C-6'), 130.5 (biphenyl C-5'), 130.3 (biphenyl C-3'), 129.6 (6C, *ortho*-C of -CPh₃), 129.1 (2C, biphenyl C-2 and C-6), 129.0 (2C, biphenyl C-3 and C-5), 128.3 (3C, *para*-C of -CPh₃ group), 127.9 (biphenyl C-4'), 127.8 (6C, *meta*-C of -CPh₃), 125.6 (biphenyl C-2'), 82.3 (-CPh₃), 34.0 (-CH₂Br). Lit. ¹³C-NMR data in DMSO-*d*₆ are presented in Table S3.

		CDCl ₃		DMS	5O-d ₆	
CW	T :+ [0]	Lit. [6]	T : [1=]	T :	CW	Lit. [1]
150 MHz	LIL, [2]	160 MHz	LIL. [15]	L11, [4]	150 MHz	75 MHz
33.2	33.1	33.2	33.5	38.2	34.0	38.0
83.0	82.9	83.0	95.3	62.1	82.3	64.6
126.3	126.2	127.7	118.0	126.2	125.6	111.9
127.6	127.4	127.9	126.2	127.9	127.8	127.4
127.7	127.5	128.2	128.0	128.2	127.9	127.4
128.2	127.5	128.5	128.1	128.9	128.3	127.9
128.5	127.6	129.4	128.3	129.6	129.0	128.2
129.6	127.8	129.6	128.7	131.0	129.1	128.4
130.0	128.1	130.0	129.0	135.9	129.6	129.0
130.3	128.1	130.2	129.4	136.2	130.3	129.2
130.3	128.4	130.3	129.4	137.8	130.5	129.4
130.6	129.5	130.6	135.2	138.0	130.6	129.5
136.2	129.8	138.2	135.4	143.2	136.6	135.1
141.1	130.1	141.1	136.8		140.1	135.4
141.3	130.2	163.8	141.8		140.7	136.0
141.5	130.2		142.5		141.0	136.8
163.8	130.3		163.6		163.3	141.0
	130.5					144.0
	136.1					151.4
	141.0					
	141.1					
	141.2					
	141.4					
	146.8					
	163.7					

Table S3. Literature ¹³C-NMR data for [2'-(*N*-triphenylmethyltetrazol-5-yl)biphenyl-4-yl]-methyl bromides (**2**) in CDCl₃ and DMSO-*d*₆ compared with data from current work (CW).

Ethyl

4-(1-hydroxy-1-methylethyl)-2-propyl-1-[2'-(2-triphenylmethyl-2*H*-tetrazol-5-yl)-biphenyl-4-yl]met hyl-1*H*-imidazole-5-carboxylate (3)

The bromide **2** (58.08 g, 104.18 mmol, 1.0 eq), K_2CO_3 (18.0 g, 130.23 mmol, 1.25 eq) and KI (0.87 g, 5.21 mmol, 0.05 eq) were added to a solution of the ethyl ester **1** (25.03 g, 104.18 mmol, 1.0 eq) in DMF (230 mL). The reaction mixture was vigorously stirred at room temperature for 24 h. H₂O (345 mL) was added dropwise and the resulting suspension was allowed to cool to room

temperature while stirring. The solid precipitated was filtered off and washed with H₂O (230 mL). The wet-cake was macerated in Me₂CO (220 mL) under reflux for 30 min. The mixture was allowed to cool to room temperature. The solid was filtered off, washed with Me₂CO (50 mL) and dried in air at room temperature to afford the ethyl ester **3** (62.06 g, 83%).

M.p. 168.37–171.86 °C, peak 168.70 °C, heating rate 10.00 °C/min (white crystals). Lit. m.p.: 167–168 °C (diisopropyl ether, dec.) [18], 165–166 °C (diisopropyl ether-hexane, dec.) [19], 165–169 °C (water) [20,21], 161 °C (isopropanol) [22], 164–167 °C (N,N-dimethylacetamide-water) [23].

FT-IR (KBr) v: 3401, 3055, 2962, 2934, 2873, 1737, 1701, 1665, 1604, 1525, 1492, 1470, 1446, 1409, 1376, 1290, 1177, 1142, 1056, 1033, 757, 746, 699, 640 cm⁻¹. Lit. IR v: (KBr) 3407, 3056, 2977, 2935, 1961, 1702, 1666, 1603, 1470, 1290, 1177, 1033, 881, 756, 699 cm⁻¹ [22]; (KBr) 3403, 3088, 3055, 3026, 1778, 1701, 1666, 1524, 1492, 1469, 1446, 1409, 1396, 1376, 1335, 1176, 1142, 1055, 1032, 928, 778, 746 cm⁻¹ [23]; 1666, 1525, 1291, 1177, 881, 756, 699, 640 cm⁻¹ [20,21].

¹H-NMR (CDCl₃, 600 MHz) δ: 7.87 (1H, dd, *J* = 7.8 and 1.2 Hz, biphenyl H-3'), 7.49 (1H, td, *J* = 7.8 and 1.2 Hz, biphenyl H-5'), 7.44 (1H, td, *J* = 7.5 and 1.2 Hz, biphenyl H-4'), 7.36 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-6'), 7.34 (3H, m, *para*-H of -CPh₃), 7.26 (6H, *meta*-H of -CPh₃), 7.10 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.96 (6H, m, *ortho*-H of -CPh₃), 6.72 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.80 (1H, s, -OH), 5.35 (2H, s, >N-CH₂-), 4.13 (2H, q, *J* = 7.2 Hz, -OC<u>H</u>₂CH₃), 2.51 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CH₂CH₃), 1.67 (2H, m, -CH₂CH₂CH₃), 1.65 (6H, s, -C(OH)(C<u>H</u>₃)₂), 1.08 (3H, t, *J* = 7.2 Hz, -OCH₂C<u>H</u>₃), 0.88 (3H, t, *J* = 7.2 Hz, -CH₂CH₂CH₃).

Lit. ¹H-NMR (CDCl₃) δ : (400 MHz) 7.85–7.88 (1H, m), 7.26–7.47 (12H, m), 7.08–7.11 (2H, m), 6.94–6.97 (6H, m), 6.07–6.74 (2H, m), 5.35 (2H, s), 4.07–4.17 (2H, q, *J* = 13.6 Hz), 2.48–2.55 (2H, t, *J* = 14.4 Hz), 1.70–1.82 (2H, m), 1.64 (6H, s), 1.04–1.11 (3H, t, *J* = 13.6 Hz), 0.84–0.91 (3H, t, *J* = 13.6 Hz) [22]; 7.8–8.1 (1H, m), 6.7–7.61 (22H, m), 5.78 (1H, s), 5.38 (2H, s), 4.12 (2H, q), 2.52 (2H, t), 1.64 (6H, s), 1.5–1.8 (2H, m), 1.08 (3H, t), 0.88 (3H, t) [24]; 7.8–8.1 (1H, m), 6.7–7.6 (22H, m), 5.78 (1H, s), 5.38 (2H, s), 4.12 (2H, q), *J* = 7.0 Hz), 2.52 (2H, t, *J* = 8.0 Hz), 1.64 (6H, s), 1.5–1.8 (2H, m), 1.08 (3H, t, *J* = 7.0 Hz), 0.88 (3H, t, *J* = 7.0 Hz), 18].

¹H-NMR (DMSO-*d*₆, 600 MHz) δ: 7.77 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-3'), 7.61 (1H, td, *J* = 7.8 and 1.2 Hz, biphenyl H-5'), 7.54 (1H, td, *J* = 7.5 and 1.2 Hz, biphenyl H-4'), 7.44 (1H, brd d, *J* = 7.2 Hz, biphenyl H-6'), 7.38 (3H, m, *para*-H of -CPh₃), 7.33 (6H, m, *meta*-H of -CPh₃), 7.06 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.90 (6H, m, *ortho*-H of -CPh₃), 6.84 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.42 (1H, s, -OH), 5.41 (2H, s, >N-CH₂-), 4.08 (2H, q, *J* = 7.2 Hz, -OC<u>H</u>₂CH₃), 2.47 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CH₂CH₃), 1.55 (2H, m, -CH₂CH₃), 1.50 (6H, s, -C(OH)(C<u>H</u>₃)₂), 1.00 (3H, t, *J* = 7.2 Hz, -OCH₂C<u>H</u>₃), 0.79 (3H, t, *J* = 7.2 Hz, -CH₂CH₂CH₃).

Lit. ¹H-NMR (DMSO-*d*₆, 300 MHz) δ: 6.83–7.75 (23H, m), 5.41 (3H, d), 4.06 (2H, q), 2.45 (2H, d), 1.52 (8H, m), 0.99 (3H, t), 0.77 (3H, t) [23].

¹³C-NMR (CDCl₃, 150 MHz) δ: 164.1 (tetrazole C-5), 161.6 (>C=O), 158.7 (imidazole C-4), 151.3 (imidazole C-2), 141.5 (biphenyl C-1'), 141.3 (3C, *ipso*-C of -CPh₃), 140.4 (biphenyl C-1), 135.6 (biphenyl C-4), 130.7 (biphenyl C-6'), 130.4 (biphenyl C-3'), 130.2 (6C, *ortho*-C of -CPh₃), 129.9 (biphenyl C-5'), 129.7 (2C, biphenyl C-2 and C-6), 128.3 (3C, *para*-C of -CPh₃), 127.6 (6C, *meta*-C of -CPh₃), 127.6 (biphenyl C-4'), 126.3 (biphenyl C-2'), 124.8 (2C, biphenyl C-3 and C-5), 116.9 (imidazole C-5), 82.9 (-CPh₃), 70.3 (-C(OH)(CH₃)₂), 61.2 (-OCH₂CH₃), 48.8 (>N-CH₂-), 29.4 (2C, -C(OH)(CH₃)₂), 29.3 (-CH₂CH₂CH₃), 21.3 (-CH₂CH₂CH₃), 13.9 (-OCH₂CH₃), 13.8 (-CH₂CH₂CH₃).

¹³C-NMR (DMSO-*d*₆, 150 MHz) δ: 163.5 (tetrazole C-5), 161.5 (>C=O), 157.0 (imidazole C-4), 150.5 (imidazole C-2), 141.1 (biphenyl C-1'), 140.8 (3C, *ipso*-C of -CPh₃), 139.0 (biphenyl C-1), 136.3 (biphenyl C-4), 130.6 (biphenyl C-6'), 130.5 (biphenyl C-5'), 130.3 (biphenyl C-3'), 129.5 (6C, *ortho*-C of

-CPh₃), 129.2 (2C, biphenyl C-2 and C-6), 128.3 (3C, *para*-C of -CPh₃), 127.8 (6C, *meta*-C of -CPh₃), 127.7 (biphenyl C-4'), 125.7 (biphenyl C-2'), 125.3 (2C, biphenyl C-3 and C-5), 116.8 (imidazole C-5), 82.2 (-CPh₃), 69.6 (-<u>C</u>(OH)(CH₃)₂), 60.8 (-O<u>C</u>H₂CH₃), 47.9 (>N-<u>C</u>H₂-), 29.7 (2C, -C(OH)(<u>C</u>H₃)₂), 28.2 (-<u>C</u>H₂CH₂CH₃), 20.4 (-CH₂<u>C</u>H₂CH₃), 13.6 (-CH₂<u>C</u>H₂<u>C</u>H₃), 13.5 (-OCH₂<u>C</u>H₃).

HRMS (ESI) m/z 717.3550 (calcd. for C₄₅H₄₅N₆O₃ [M + H]⁺ 717.3553).

Crystal data for 3: C₄₅H₄₄N₆O₃, M = 716.86, triclinic, P-1, a = 9.531(2) Å, b = 10.196(3) Å, c = 20.049(3) Å, α = 77.46(3)°, β = 80.09(3)°, γ = 78.98(3)°, V = 1849.4(8) Å³, Z = 2, D_c = 1.287 Mg·m⁻³, T = 100(2) K, R = 0.066, wR = 0.144 [5777 reflections with $I > 2\sigma(I)$] for 497 variables. CCDC 1059380.

(5-Methyl-2-oxo-1,3-dioxolen-4-yl)methyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-[2'-(2-triphenylmethyl-2*H*-tetrazol-5-yl)biphenyl-4-yl]me thyl-1*H*-imidazole-5-carboxylate (6)

KOH (7.72 g, 137.50 mmol, 1.55 eq) was added to a suspension of the ethyl ester 3 (63.59 g, 88.71 mmol, 1.0 eq) in DMF (254 mL). After heating at 54-56 °C for 22 h, TLC analysis (50% AcOEt/hexanes, $R_f = 0.48$ for 3) indicated the disappearance of the starting material. The reaction mixture was cooled to 40 °C. K₂CO₃ (12.87 g, 93.15 mmol, 1.05 eq) and KI (4.42 g, 26.61 mmol, 0.3 eq) were added to a solution of potassium salt 4, followed by dropwise addition of the chloride 5 (26.35 g, 177.42 mmol, 2.0 eq). After being stirred at room temperature for 20 h, TLC analysis (30% MeOH/AcOEt, $R_f = 0.34$ for 4) indicated the disappearance of the potassium salt 4. The reaction mixture was diluted with CH₂Cl₂ (200 mL), chilled H₂O (400 mL) and the resulting layers were separated. The aqueous layer was extracted with CH2Cl2 (2 × 150 mL). The combined organic phases were washed with brine (400 mL), dried over anhydrous MgSO4 (50 g), filtered and concentrated by evaporation under reduced pressure to give the crude 6 as a light brown oil. A mixture of *i*-PrOH-H₂O (2:1; 300 mL) was added slowly to the oily residue. The resulting mixture was stirred at room temperature for 30 min. and then filtered. The solid obtained was washed with a mixture of *i*-PrOH–H₂O (2:1; 60 mL) and dried in air at room temperature to give the medoxomil ester 6 (68.06 g, 96% yield). HPLC purity: 2 (0.05%), 3 (0.08%), 6 (97.11%), 8 (0.13%), 9 (0.56%), 10 (0.56%) and the sum of other impurities (1.51%).

M.p. 99.86–106.59 °C, peak 103.13 °C, heating rate 10.00 °C/min (white crystals). Lit. m.p.: 104–106 °C (diisopropyl ether) [23], 103–104 °C (acetonitrile) [25], 102–104 °C (ethyl acetate-diisopropyl ether) [19], 98–100 °C (diisopropyl ether, dec.) [18].

FT-IR (KBr) v: 3395, 3059, 2969, 2929, 2873, 1818, 1804, 1737, 1679, 1527, 1493, 1467, 1446, 1435, 1394, 1308, 1283, 1231, 1185, 1146, 1058, 1004, 770, 762, 749, 698 cm⁻¹. Lit. IR v: (KBr) 3398, 3059, 3027, 2873, 1819, 1805, 1737, 1707, 1527, 1492, 1465, 1393, 1357, 1256, 1170, 1094, 1004, 726, 678 cm⁻¹ [23]; 3408, 1818, 1805, 1741, 1681, 1529, 1147, 1003, 699 cm⁻¹ [26]; (KBr) 3420, 1825, 1738, 1707, 1678 cm⁻¹ [19]; (KBr) 3408, 1819 cm⁻¹ [25].

¹H-NMR (CDCl₃, 600 MHz) δ: 7.87 (1H, dd, J = 7.8 and 1.2 Hz, biphenyl H-3'), 7.51 (1H, td, J = 7.8 and 1.2 Hz, biphenyl H-5'), 7.45 (1H, td, J = 7.5 and 1.2 Hz, biphenyl H-4'), 7.41 (1H, dd, J = 7.2 and 1.2 Hz, biphenyl H-6'), 7.34 (3H, m, *para*-H of -CPh₃), 7.27 (6H, m, *meta*-H of -CPh₃), 7.10 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.97 (6H, m, *ortho*-H of -CPh₃), 6.69 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.59 (1H, s, -OH), 5.30 (2H, s, >N-CH₂-), 4.71 (2H, s, -CH₂O-), 2.54 (2H, t, J = 7.2 Hz, -CH₂CH₂CH₃), 1.97 (3H, s, medoxomil CH₃-5), 1.69 (2H, m, -CH₂CH₂CH₃), 1.63 (6H, s, -C(OH)(C<u>H₃)₂)</u>, 0.90 (3H, t, J = 7.2 Hz, -CH₂CH₂CH₂).

Lit. ¹H-NMR (CDCl₃) δ: 7.87 (1H, d, *J* = 7.5 Hz), 6.90–7.52 (20H, m), 6.68 (2H, d, *J* = 7.5 Hz), 5.61 (1H, s), 5.30 (2H, s), 4.70 (2H, s), 2.54 (2H, t, *J* = 8.0 Hz), 1.97 (3H, s), 1.6–1.75 (2H, m), 1.62 (6H, s), 0.89 (3H, t, *J* = 7.5 Hz) [18,19]; (200 MHz) 7.87 (1H, d), 6.90–7.52 (20H, m), 6.68 (2H, d), 5.61 (1H, s), 5.30 (2H, s),

4.70 (2H, s), 2.54 (2H, t), 1.97 (3H, s), 1.6–1.75 (2H, m), 1.62 (6H, s), 0.87 (3H, t) [24]; 7.23–7.82 (15H, m), 6.98 (2H, d, *J* = 8.2 Hz), 6.82 (4H, d, *J* = 8.2 Hz), 6.75 (2H, d, *J* = 8.2 Hz), 5.31 (2H, s), 5.22 (1H, s), 5.02 (2H, s), 2.30–2.60 (2H, m), 2.0 (3H, s), 1.56 (6H, s), 1.41–1.60 (2H, m), 0.85 (3H, t, *J* = 7.2 Hz) [25].

¹H-NMR (DMSO-*d*₆, 600 MHz) δ: 7.79 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-3'), 7.62 (1H, td, *J* = 7.8 and 1.2 Hz, biphenyl H-5'), 7.54 (1H, td, *J* = 7.5 and 1.2 Hz, biphenyl H-4'), 7.47 (1H, brd d, *J* = 7.2 Hz, biphenyl H-6'), 7.38 (3H, m, *para*-H of -CPh₃), 7.32 (6H, m, *meta*-H of -CPh₃), 7.02 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.88 (6H, m, *ortho*-H of -CPh₃), 6.78 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.36 (2H, s, >N-CH₂-), 5.26 (1H, s, -OH), 5.01 (2H, s, -CH₂O-), 2.44 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CH₂CH₃), 2.03 (3H, s, medoxomil CH₃-5), 1.54 (2H, m, -CH₂C<u>H</u>₂CH₃), 1.51 (6H, s, -C(OH)(C<u>H</u>₃)₂), 0.76 (3H, t, *J* = 7.2 Hz, -CH₂CH₂CH₃).

Lit. ¹H-NMR (DMSO-*d*₆) δ: (400 MHz) 7.78 (1H, d, *J* = 6.8 Hz), 7.63 (1H, m), 7.54 (1H, t, *J* = 6.8 and 7.6 Hz), 7.47 (1H, d, *J* = 7.6 Hz), 7.35 (9H, m), 7.01 (2H, d, *J* = 8.4 Hz), 6.88 (6H, d, *J* = 6.6 Hz), 6.77 (2H, d, *J* = 8.0 Hz), 5.36 (2H, s), 5.26 (1H, s), 5.0 (2H, s), 2.50 (2H, t, *J* = 1.6 and 1.6 Hz), 2.02 (3H, s), 1.53 (2H, m), 1.50 (6H, s), 0.75 (3H, t, *J* = 7.2 and 7.6 Hz) [27]; (300 MHz) 7.29–7.78 (13H, m), 7.02 (2H, d), 6.87 (6H, d), 6.77 (2H, d), 5.35 (2H, s), 5.25 (1H, s), 5.00 (2H, s), 2.43 (2H, t), 2.02 (3H, s), 1.54 (2H, m), 1.49 (6H, m), 0.75 (3H, t), [23].

¹³C-NMR (CDCl₃, 150 MHz) δ: 164.2 (tetrazole C-5), 160.7 (>C=O), 160.5 (imidazole C-4), 152.1 (imidazole C-2), 151.8 (medoxomil >C=O), 141.3 (biphenyl C-1'), 141.3 (3C, *ipso*-C of -CPh₃), 140.4 (biphenyl C-1), 140.4 (medoxomil C-4 or C-5), 135.5 (biphenyl C-4), 132.8 (medoxomil C-4 or C-5), 130.5 (biphenyl C-6'), 130.4 (biphenyl C-3'), 130.2 (6C, *ortho*-C of -CPh₃), 130.1 (biphenyl C-5'), 129.7 (2C, biphenyl C-2 and C-6), 128.3 (3C, *para*-C of -CPh₃), 127.7 (7C, biphenyl C-4' and *meta*-C of -CPh₃), 126.3 (biphenyl C-2'), 124.4 (2C, biphenyl C-3 and C-5), 115.9 (imidazole C-5), 82.9 (-CPh₃), 70.4 (-<u>C</u>(OH)(CH₃)₂), 53.7 (-CH₂O-), 49.2 (>N-<u>C</u>H₂-), 29.3 (-<u>C</u>H₂CH₂CH₃), 29.2 (2C, -C(OH)(<u>C</u>H₃)₂), 21.3 (-CH₂CH₂CH₃), 13.8 (-CH₂CH₂CH₃), 9.2 (medoxomil CH₃-5).

¹³C-NMR (DMSO-*d*₆, 150 MHz) δ: 163.4 (tetrazole C-5), 160.6 (>C=O), 157.7 (imidazole C-4), 151.6 (medoxomil >C=O), 150.9 (imidazole C-2), 141.1 (biphenyl C-1'), 140.8 (3C, *ipso*-C of -CPh₃), 140.3 (medoxomil C-5 or C-4), 139.0 (biphenyl C-1), 136.0 (biphenyl C-4), 132.8 (medoxomil C-4 or C-5), 130.6 (biphenyl C-6'), 130.4 (biphenyl C-5'), 130.2 (biphenyl C-3'), 129.5 (6C, *ortho*-C of -CPh₃), 129.0 (2C, biphenyl C-2 and C-6), 128.2 (3C, *para*-C of -CPh₃), 127.8 (6C, *meta*-C of -CPh₃), 127.7 (biphenyl C-4'), 125.7 (biphenyl C-2'), 125.0 (2C, biphenyl C-3 and C-5), 116.2 (imidazole C-5), 82.2 (-<u>C</u>Ph₃), 69.6 (-<u>C</u>(OH)(CH₃)₂), 54.1 (-CH₂O-), 48.0 (>N-<u>C</u>H₂-), 29.7 (2C, -C(OH)(<u>C</u>H₃)₂), 28.2 (-<u>C</u>H₂CH₂CH₂CH₃), 20.3 (-CH₂CH₂CH₃), 13.5 (-CH₂CH₂CH₃), 8.6 (medoxomil CH₃-5).

HRMS (ESI) *m*/*z* 801.3401 (calcd. for C₄₈H₄₅N₆O₆ [M + H]⁺ 801.3387).

Crystal data for 6 acetone solvate: C₄₈H₄₄N₆O₆·C₃H₆O, M = 858.97, orthorhombic, $Pca2_1$, a = 13.493(3) Å, b = 11.100(3) Å, c = 29.124(4) Å, V = 4362.0(16) Å³, Z = 4, $D_c = 1.308$ Mg·m⁻³, T = 100(2) K, R = 0.037, wR = 0.077 [7234 reflections with $I > 2\sigma(I)$] for 577 variables. CCDC 1059381.

(5-Methyl-2-oxo-1,3-dioxolen-4-yl)methyl

4-(1-hydroxy-1-methylethyl)-2-propyl-1-[2'-(1*H*-tetrazol-5-yl)biphenyl-4-yl]methyl-1*H*-imidazole-5 -carboxylate (7)

A solution of 96% H₂SO₄ (13.2 mL, 248.07 mmol, 3.0 eq) in H₂O (264 mL) was added to a suspension of the ester **6** (66.23 g, 82.69 mmol, 1.0 eq) in Me₂CO (132 mL). After heating at 50–55 °C for 2 h, TLC analysis (50% AcOEt/hexanes, $R_f = 0.36$ for **6**) indicated the disappearance of the starting material. The hot solution was diluted with H₂O (264 mL) and then cooled to 10 °C in an ice-water bath. Precipitated triphenylmethanol was removed by filtration and washed with H₂O (4 × 25 mL). The combined filtrate and washings were diluted with CH₂Cl₂ (200 mL) and then, while stirring,

very carefully neutralized with Na₂CO₃ (26.73 g, 252.20 mmol, 3.05 eq) solution in H₂O (100 mL). The resulting layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic phases were washed with brine (500 mL), dried over anhydrous MgSO₄ (30 g), filtered and concentrated by evaporation under reduced pressure to give a light-yellow solid (HPLC purity: **9** (0.64%), **10** (0.51%), **7** (98.63%) and the sum of other impurities (0.22%)). The crude medoxomil ester **7** was dissolved in Me₂CO (700 mL) under reflux. The resulting solution was filtered and the excess of Me₂CO (520 mL) was distilled off. AcOEt (230 mL) was added to the residue while stirring and 230 mL of a mixture of solvents were then distilled off. The resulting mixture was allowed to cool to room temperature. The precipitated solid was filtered off, washed with AcOEt (50 mL), dried in air and then in vacuum at room temperature to afford olmesartan medoxomil (**7**, 36.76 g, 80% yield). HPLC purity: **9** (0.04%), **10** (0.08%), **7** (99.20%) and the sum of other impurities (0.68%).

M.p. 182.00–186.14 °C, peak 183.07 °C, heating rate 10.00 °C/min (white crystals). Lit. m.p.: 182–184 °C (isobutanol) [20,21], 182–184 °C (THF) [20,21,26], 180–182 °C (ethanol, dec.) [19], 180–182 °C (acetone) [25], 177–180 °C (ethyl acetate, dec.) [18], 175–177 °C (t-butyl-methyl ether-ethyl acetate or ethyl methyl ketone or methanol-water) [28], 170–172 °C [18], 120–140 °C (heptane) [20,21].

FT-IR (KBr) v: 3396, 3290, 3040, 2972, 2931, 1832, 1740, 1708, 1502, 1474, 1401, 1389, 1302, 1226, 1169, 1136, 1054, 1003, 953, 782, 761 cm⁻¹. Lit. IR (KBr) v: 1831, 1707, 1391, 1300, 1167, 1140, 1003, 768, 765 cm⁻¹ [26]; 3398, 3291, 3040, 3004, 2972, 2931, 2874, 1832, 1708, 1474, 1389, 1169, 1136, 1053, 782, 761 cm⁻¹ [27]; 3291, 1833, 1740, 1708 cm⁻¹ [19]; 1832, 1740, 1707 cm⁻¹ [25].

¹H-NMR (CDCl₃, 600 MHz) δ : 7.82 (1H, dd, *J* = 7.5 and 1.2 Hz, biphenyl H-3'), 7.60 (1H, m, biphenyl H-5'), 7.52 (1H, m, biphenyl H-4'), 7.44 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-6'), 7.08 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.79 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.79 (1H, br. s, -OH), 5.41 (2H, s, >N-CH₂-), 4.96 (2H, s, -CH₂O-), 2.54 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CH₂CH₃), 2.18 (3H, s, medoxomil CH₃-5), 1.67 (2H, m, -CH₂C<u>H</u>₂CH₃), 1.59 (6H, s, -C(OH)(C<u>H</u>₃)₂), 0.91 (3H, t, *J* = 7.2 Hz, -CH₂CH₂C<u>H</u>₃).

Lit. ¹H-NMR (CDCl₃) δ: 7.81 (1H, dd), 7.43-7.6 (3H, m), 7.09 (2H, d), 6.79 (2H, d), 5.41 (1H, s), 4.95 (1H, s), 2.56 (3H, t), 2.17 (3H, s), 1.58–1.69 (2H, m), 1.58 (6H, s), 0.92 (3H, t) [24]; 7.83 (1H, dd, *J* = 1.0 and 7.5 Hz), 7.42–7.63 (3H, m), 7.10 (2H, d, *J* = 8 Hz), 6.83 (2H, d, *J* = 8.0 Hz), 5.45 (2H, s), 5.00 (2H, s), 2.70 (2H, t, *J* = 7.5 Hz), 2.19 (3H, s), 1.6–1.8 (2H, m), 1.63 (6H, s), 0.93 (3H, t, *J* = 7.5 Hz) [18]; (260 MHz) 7.72 (1H, dd, *J* = 1.7 Hz), 7.3–7.5 (3H, m), 6.99 (2H, d, *J* = 8,0 Hz), 6.70 (2H, d, *J* = 8.0 Hz), 5.32 (2H, s), 4.86 (2H, s), 2.48 (2H, t, *J* = 7.5 Hz), 2.07 (3H, s), 1.54–1.63 (2H, m), 1.50 (6H, s), 0.82 (3H, t, *J* = 7.5 Hz) [28].

¹H-NMR (DMSO-*d*₆, 600 MHz) δ: 16.30 (1H, br. s, >N-H), 7.68 (1H, dd, *J* = 7.5 and 1.2 Hz, biphenyl H-5'), 7.65 (1H, m, biphenyl H-3'), 7.57 (1H, m, biphenyl H-4'), 7.54 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-6'), 7.05 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.87 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.43 (2H, s, >N-CH₂-), 5.22 (1H, br. s, -OH), 5.06 (2H, s, -CH₂O-), 2.61 (2H, t, *J* = 7.2 Hz, -C<u>H</u>₂CH₂CH₃), 2.08 (3H, s, medoxomil CH₃-5), 1.59 (2H, m, -CH₂C<u>H</u>₂CH₃), 1.48 (6H, s, -C(OH)(C<u>H</u>₃)₂), 0.88 (3H, t, *J* = 7.2 Hz, -CH₂CH₂C<u>H</u>₂).

Lit. ¹H-NMR (DMSO-*d*₆) δ: (500 MHz) 7.68 (1H, dt, *J* = 1.5 and 8.5 Hz), 7.65 (1H, dd, *J* = 1.5 and 8.5 Hz), 7.57 (1H, dt, *J* = 1.5 and 8.5 Hz), 7.54 (1H, d, *J* = 8.0 Hz), 7.05 (2H, d, *J* = 8.5 Hz), 6.87 (2H, d, *J* = 8.5 Hz), 5.43 (2H, s), 5.22 (1H, s), 5.06 (2H, s), 2.61 (2H, t, *J* = 8.0 Hz), 2.08 (3H, s), 1.58 (2H, m), 1.48 (6H, s), 0.88 (3H, t, *J* = 7.5 Hz) [27]; 7.52–7.70 (4H, m), 7.04 (2H, d, *J* = 8.5 Hz), 6.86 (2H, d, *J* = 8.5 Hz), 5.20 (1H, s), 5.05 (2H, s), 2.60 (2H, t, *J* = 7.5 Hz), 2.08 (3H, s), 1.58 (2H, m, *J* = 7.5 Hz), 5.42 (2H, s), 5.20 (1H, s), 5.05 (2H, s), 2.60 (2H, t, *J* = 7.5 Hz), 2.08 (3H, s), 1.58 (2H, m, *J* = 7.5 Hz), 1.47 (6H, s), 0.88 (3H, t, *J* = 7.5 Hz) [19]; (300 MHz) 7.50–7.69 (4H, m), 7.03 (2H, d, *J* = 8.0 Hz), 6.85 (2H, d, *J* = 8.0 Hz), 5.41 (2H, s), 5.22 (1H, s), 5.05 (2H, s), 2.50 (2H, s), 2.08 (3H, s) [29].

¹³C-NMR (CDCl₃, 150 MHz) δ: 161.0 (imidazole C-4), 160.8 (>C=O), 155.1 (tetrazole C-5), 152.8 (medoxomil >C=O), 152.5 (imidazole C-2), 140.9 (medoxomil C-4 or C-5), 140.6 (biphenyl C-1'), 138.7 (biphenyl C-1), 136.4 (biphenyl C-4), 133.2 (medoxomil C-4 or C-5), 131.3 (biphenyl C-5'), 130.9 (biphenyl C-3'), 130.7 (biphenyl C-6'), 129.5 (2C, biphenyl C-2 and C-6), 128.2 (biphenyl C-4'), 125.2 (2C, biphenyl C-3 and C-5), 122.8 (biphenyl C-2'), 116.2 (imidazole C-5), 70.7 (-C(OH)(CH₃)₂), 53.9 (-CH₂O-), 49.1 (>N-CH₂-), 29.1 (-CH₂CH₂CH₃), 29.0 (2C, -C(OH)(CH₃)₂), 21.2 (-CH₂CH₂CH₃), 13.8 (-CH₂CH₂CH₃), 9.4 (medoxomil CH₃-5).

¹³C-NMR (DMSO-*d*₆, 150 MHz) δ: 160.7 (>C=O), 157.5 (imidazole C-4), 155.0 (tetrazole C-5), 151.7 (medoxomil >C=O), 151.0 (imidazole C-2), 141.0 (biphenyl C-1'), 140.4 (medoxomil C-5 or C-4), 138.1 (biphenyl C-1), 136.6 (biphenyl C-4), 132.8 (medoxomil C-4 or C-5), 131.0 (biphenyl C-5'), 130.5 (biphenyl C-3'), 130.5 (biphenyl C-6'), 129.0 (2C, biphenyl C-2 and C-6), 127.8 (biphenyl C-4'), 125.4 (2C, biphenyl C-3 and C-5), 123.5 (biphenyl C-2'), 116.2 (imidazole C-5), 69.6 (-<u>C</u>(OH)(CH₃)₂), 54.1 (-<u>C</u>H₂O-), 48.0 (>N-<u>C</u>H₂-), 29.7 (2C, -C(OH)(<u>C</u>H₃)₂), 28.2 (-<u>C</u>H₂CH₂CH₃), 20.6 (-CH₂<u>C</u>H₂CH₃), 13.6 (-CH₂<u>C</u>H₂CH₃), 8.7 (medoxomil CH₃-5).

Lit. ¹³C-NMR (DMSO-*d*₆) δ: 160.7, 157.7, 155.1, 151.7, 151.1, 141.1, 140.4, 138.2, 136.6, 132.8, 130.9, 130.5, 129.0, 127.7, 125.4, 123.6, 116.2, 69.7, 54.1, 48.1, 29.6, 28.3, 20.6, 13.5, 8.7 [27].

HRMS (ESI) *m*/*z* 559.2306 (calcd. for C₂₉H₃₁N₆O₆ [M + H]⁺ 559.2305).

4-(1-Hydroxy-1-methylethyl)-2-propyl-1-[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]-methyl-1H-imidazole-5-carboxylic acid (olmesartan, 8)

A solution of NaOH (0.716 g, 17.9 mmol, 2.0 eq) in H₂O (15 mL) was added to a solution of olmesartan medoxomil (7, 5.0 g, 8.95 mmol, 1.0 eq) in MeOH (100 mL). After being stirred at room temperature for 24 h, TLC analysis (MeOH/AcOEt 30%) indicated the disappearance of the starting material 7. MeOH was evaporated under reduced pressure and the residue was portioned between H₂O (100 mL) and AcOEt (25 mL). The aqueous layer was separated and acidified to pH 5.5–6.0 by the dropwise addition of glacial AcOH. The resulting mixture was stirred at room temperature for additional 30 min. The precipitated solid was filtered off, washed with H₂O and dried under vacuum at room temperature. The crude product (3.98 g) was purified by maceration in Me₂CO to afford olmesartan (8, 3.83 g, 96%).

M.p. 172.90–185.87 °C, peak 179.46 °C, heating rate 10.00 °C/min (white powder). Lit. m.p.: 166–169 °C (diisopropyl ether) [18], 199–201 °C (EtOH) [19].

FT-IR (KBr) v: 3432, 2972, 1637, 1572, 1509, 1463, 1432, 1364, 1336, 1193, 979, 874, 825, 761 cm⁻¹. Lit. IR (KBr) v: 3429, 3066, 1637 cm⁻¹ [30].

¹H-NMR (DMSO-*d*₆, 600 MHz) δ : 7.67 (1H, dd, *J* = 7.5 and 1.2 Hz, biphenyl H-5'), 7.64 (1H, m, biphenyl H-3'), 7.56 (1H, m, biphenyl H-4'), 7.53 (1H, dd, *J* = 7.2 and 1.2 Hz, biphenyl H-6'), 7.06 (2H, BB' of AA'BB' system, biphenyl H-2 and H-6), 6.95 (2H, AA' of AA'BB' system, biphenyl H-3 and H-5), 5.65 (2H, s, >N-CH₂-), 2.58 (2H, t, *J* = 7.2 Hz, -CH₂CH₂CH₃), 1.54 (6H, s, -C(OH)(CH₃)₂), 1.53 (2H, m, -CH₂CH₂CH₃), 0.85 (3H, t, *J* = 7.2 Hz, -CH₂CH₂CH₃).

Lit. ¹H-NMR (DMSO-*d*₆) δ: (400 MHz) 7.62–7.70 (2H, m), 7.51-7.59 (2H, m), 7.06 (2H, d, *J* = 8.3 Hz), 6.94 (2H, d, *J* = 8.3 Hz), 5.64 (2H, s), 2.57 (2H, t, *J* = 7.6 Hz), 1.53 (6H, s), 1.53 (2H, tq, J= 7.3 and 7.6 Hz), 0.85 (3H, t, *J* = 7.3 Hz) [31]; 7.5–7.7 (4H, m), 7.06 (2H, d, *J* = 8.5 Hz), 6.94 (2H, d, *J* = 8.5 Hz), 5.64 (2H, s), 2.58 (2H, t, *J* = 8 Hz), 1.4-1.6 (2H, m), 1.54 (6H, s), 0.85 (3H, t, *J* = 7.5 Hz), [18]; 7.59–7.61 (2H, m), 7.47–7.53 (2H, m), 7.01–7.03 (2H, m), 6.89–6.91 (2H, m), 5.61 (2H, s), 2.54 (2H, t), 1.49–1.51 (8H, m), 0.82 (3H, t) [32]; (400 MHz) 7.5–7.8 (4H, m), 6.9–7.2 (4H, m), 5.7 (2H, s), 2.6 (2H, t, *J* = 5.4 Hz), 1.4–1.7 (2H, m), 1.6 (6H, s), 0.8 (3H, t, *J* = 5.6 Hz) [30].

¹³C-NMR (DMSO-*d*₆, 150 MHz) δ: 160.9 (>C=O), 155.0 (tetrazole C-5), 153.1 (imidazole C-4), 150.7 (imidazole C-2), 141.0 (biphenyl C-1'), 138.1 (biphenyl C-1), 136.8 (biphenyl C-4), 131.1 (biphenyl C-5'), 130.6 (biphenyl C-3'), 130.6 (biphenyl C-6'), 129.0 (2C, biphenyl C-2 and C-6), 127.8 (biphenyl C-4'), 126.0 (2C, biphenyl C-3 and C-5), 123.4 (biphenyl C-2'), 118.0 (imidazole C-5), 70.8 (-<u>C</u>(OH)(CH₃)₂), 47.0 (>N-<u>C</u>H₂-), 29.7 (2C, -C(OH)(<u>C</u>H₃)₂), 28.0 (-<u>C</u>H₂CH₂CH₃), 20.4 (-CH₂<u>C</u>H₂CH₃), 13.6 (-CH₂CH₂CH₃).

HRMS (ESI) *m*/*z* 447.2134 (calcd. for C₂₄H₂₇N₆O₃ [M + H]⁺ 447.2145).

Spectral data (NMR, IR, HRMS) and DSC thermograms of the bromide 2 and compounds synthesized

Figure S1. ¹H-NMR (600 MHz, CDCl₃, δ, ppm) spectrum of the bromide **2**.

Figure S2. ¹H-NMR (600 MHz, CDCl₃, δ , ppm) spectrum of the ethyl ester 3.

Figure S3. ¹H-NMR (600 MHz, CDCl₃, δ, ppm) spectrum of the medoxomil ester **6**.

Figure S4. ¹H-NMR (600 MHz, CDCl₃, δ , ppm) spectrum of the olmesartan medoxomil (7).

Figure S5. ¹H-NMR (600 MHz, CDCl₃, δ, ppm) spectrum of the *N*-2 substituted medoxomil impurity **9**.

Figure S6. ¹H-NMR (200 MHz, CDCl₃, δ, ppm) spectrum of the *N*-2 substituted medoxomil impurity 9.

Figure S7. ¹H-NMR (600 MHz, CDCl₃, δ, ppm) spectrum of the *N*-1 substituted medoxomil impurity **10**.

Figure S8. ¹H-NMR (200 MHz, CDCl₃, δ, ppm) spectrum of the *N*-1 substituted medoxomil impurity **10**.

Figure S9. ¹H-NMR (600 MHz, DMSO- d_6 , δ , ppm) spectrum of the bromide 2.

Figure S10. ¹H-NMR (600 MHz, DMSO- d_6 , δ , ppm) spectrum of the ethyl ester 3.

Figure S11. ¹H-NMR (600 MHz, DMSO-*d*₆, δ, ppm) spectrum of the medoxomil ester **6**.

Figure S12. ¹H-NMR (600 MHz, DMSO-*d*₆, δ, ppm) spectrum of the olmesartan medoxomil (7).

Figure S13. ¹H-NMR (600 MHz, DMSO-*d*₆, δ, ppm) spectrum of the olmesartan (8).

Figure S14. ¹H-NMR (600 MHz, DMSO-*d*₆, δ, ppm) spectrum of the *N*-2 substituted medoxomil impurity 9.

Figure S15. ¹H-NMR (600 MHz, DMSO-*d*₆, δ, ppm) spectrum of the *N*-1 substituted medoxomil impurity **10**.

Figure S16. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the bromide **2**.

Figure S17. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the ethyl ester **3**.

Figure S18. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the medoxomil ester 6.

Figure S19. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the olmesartan medoxomil (7).

Figure S20. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the *N*-2 substituted medoxomil impurity **9**.

Figure S21. ¹³C-NMR (150 MHz, CDCl₃, δ, ppm) spectrum of the *N*-1 substituted medoxomil impurity **10**.

Figure S22. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the bromide **2**.

Figure S23. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the ethyl ester **3**.

Figure S24. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the medoxomil ester **6**.

Figure S25. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the olmesartan medoxomil (7).

Figure S26. ¹³C-NMR (150 MHz, DMSO-d₆, δ, ppm) spectrum of the olmesartan (8).

Figure S27. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the *N*-2 substituted medoxomil impurity **9**.

Figure S28. ¹³C-NMR (150 MHz, DMSO-*d*₆, δ, ppm) spectrum of the *N*-1 substituted medoxomil impurity **10**.

Figure S29. ¹H/¹³C g-HMBC NMR spectrum of the *N*-2 substituted medoxomil derivative **9** in CDCl₃ solution.

N~Ń Ń, __ľ

Figure S30. ¹H/¹³C g-HMBC NMR spectrum of the *N*-1 substituted medoxomil derivative **10** in CDCl₃ solution.

Figure S31. ¹H/¹⁵N g-HMBC NMR spectrum of the *N*-2 substituted medoxomil derivative 9 in DMSO-*d*₆ solution.

Figure S32. ¹H/¹⁵N g-HMBC NMR spectrum of the *N*-1 substituted medoxomil derivative **10** in DMSO-*d*₆ solution.

Figure S33. IR spectrum (KBr, v, cm⁻¹) of the bromide **2**.

Figure S34. IR spectrum (KBr, v, cm⁻¹) of the ethyl ester 3.

Figure S35. IR spectrum (KBr, v, cm⁻¹) of the medoxomil ester **6**.

Figure S36. IR spectrum (KBr, v, cm⁻¹) of the olmesartan medoxomil (7).

Figure S37. IR spectrum (KBr, v, cm⁻¹) of the olmesartan (8).

Figure S38. IR spectrum (KBr, v, cm⁻¹) of the *N*-2 substituted medoxomil impurity **9**.

Figure S39. IR spectrum (KBr, v, cm⁻¹) of the *N*-1 substituted medoxomil impurity **10**.

Figure S40. HRMS spectrum of the ethyl ester 3.

Monoisotopic Mass, Even Electron Ions 1110 formula(e) evaluated with 15 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-10 O: 0-10

Minimum: Maximum:		10.0	5.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	ula	
801.3387	801.3387 801.3401 801.3369 801.3414 801.3360 801.3427 801.3342 801.3342 801.3328 801.3320 801.3454 801.3302 801.3454 801.3302 801.3454 801.3302	$\begin{array}{c} 0.0\\ -1.4\\ 1.8\\ -2.7\\ 2.7\\ -4.0\\ 4.5\\ -5.4\\ 5.9\\ 6.7\\ -6.7\\ 8.5\\ -8.6\\ -9.4\\ 9.9 \end{array}$	$\begin{array}{c} 0.0\\ -1.7\\ 2.2\\ -3.4\\ 3.4\\ -5.0\\ 5.6\\ -6.7\\ 7.4\\ 8.4\\ -8.4\\ 10.6\\ -10.7\\ -11.7\\ 12.4 \end{array}$	24.5 29.5 37.5 25.5 28.5 38.5 33.5 21.5 38.5 34.5 21.5 38.5 34.5 25.5 37.5 29.5	759.5 758.5 760.5 758.2 762.4 753.2 758.4 755.8 755.9 766.6 759.4 759.8 765.5 763.2 761.1	6.414 5.427 7.450 5.154 9.312 0.156 5.334 2.741 2.832 13.537 6.281 6.750 12.369 10.104 8.005	0.16 0.44 0.06 0.58 0.01 85.59 0.48 6.45 5.89 0.00 0.19 0.12 0.00 0.00 0.00 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H49 H45 H45 H45 H45 H45 H45 H45 H45 H45 H45	N2 010 N6 06 03 N10 02 N8 08 08 08 08 08 08 08 08 04 04 04 010 010 08 03 N10 010 N8 03 N10 07 N2 02 N4 07

Figure S41. HRMS spectrum of the medoxomil ester 6.

Figure S42. HRMS spectrum of the olmesartan medoxomil (7).

Figure S43. HRMS spectrum of the olmesartan (8).

922 formula(e) evaluated with 14 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-200 N: 0-10 O: 0-10

Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
671.2454	671.2447 671.2434 671.2434 671.2479 671.2487 671.2420 671.2407 671.2506 671.2393 671.2519 671.2519 671.2538 671.2538 671.2546	$\begin{array}{c} 0.7 \\ -1.2 \\ 2.0 \\ -2.5 \\ -3.3 \\ 3.4 \\ 4.7 \\ -5.2 \\ 6.1 \\ -6.5 \\ 7.9 \\ -8.4 \\ 8.7 \\ -9.2 \end{array}$	$\begin{array}{c} 1.0 \\ -1.8 \\ 3.0 \\ -3.7 \\ -4.9 \\ 5.1 \\ 7.0 \\ -7.7 \\ 9.1 \\ -9.7 \\ 11.8 \\ -12.5 \\ 13.0 \\ -13.7 \end{array}$	33.5 20.5 28.5 25.5 37.5 24.5 24.5 24.5 24.5 24.5 27.5 16.5 25.5 28.5	939.7 934.7 938.9 935.0 943.3 937.9 936.8 934.3 934.7 937.5 944.7 941.9 936.9 941.1	6.503 1.540 5.674 1.808 10.157 4.675 3.601 1.117 1.534 4.322 11.547 8.718 3.766 7.891	0.15 21.44 0.34 16.40 0.00 0.93 2.73 32.73 21.58 1.33 0.00 0.02 2.31 0.04	$\begin{array}{cccccccc} C46 & H31 & N4 & O2 \\ C34 & H35 & N6 & O9 \\ C45 & H35 & O6 \\ C35 & H31 & N10 & O5 \\ C51 & H31 & N2 \\ C42 & H27 & N10 \\ C41 & H31 & N6 & O4 \\ C39 & H35 & N4 & O7 \\ C40 & H35 & N2 & O8 \\ C40 & H31 & N8 & O3 \\ C52 & H31 & O \\ C28 & H35 & N10 & O10 \\ C36 & H31 & N8 & O6 \\ C44 & H35 & N2 & O5 \\ \end{array}$

Figure S44. HRMS spectrum of the *N*-2 substituted medoxomil impurity 9.

Minimum: Maximum:		10.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
671.2463	$\begin{array}{c} 671.2466\\ 671.2447\\ 671.2479\\ 671.2487\\ 671.2434\\ 671.2420\\ 671.2506\\ 671.2407\\ 671.2519\\ 671.2519\\ 671.2538\\ 671.2538\\ 671.2546\\ 671.2367\\ 671.2367\\ 671.2559\end{array}$	-0.3 1.6 -1.6 -2.4 2.9 4.3 -4.3 5.6 -5.6 7.0 -7.5 -8.3 8.8 9.6 -9.6	-0.4 2.4 -2.4 -3.6 4.3 6.4 -6.4 8.3 -8.3 10.4 -11.2 -12.4 13.1 14.3 -14.3	20.5 33.5 25.5 37.5 24.5 25.5 37.5 23.5 37.5 33.5 33.5 33.5 33.5 33.5	105.4 114.8 103.7 118.1 114.4 112.4 108.6 111.8 111.2 111.0 114.4 115.9 119.8 105.2 117.1	$\begin{array}{c} 1.974\\ 11.404\\ 0.364\\ 14.737\\ 11.066\\ 9.047\\ 5.234\\ 8.405\\ 7.772\\ 7.587\\ 10.990\\ 12.533\\ 16.409\\ 1.836\\ 13.701 \end{array}$	$\begin{array}{c} 13.89\\ 0.00\\ 69.49\\ 0.00\\ 0.01\\ 0.53\\ 0.02\\ 0.04\\ 0.05\\ 0.00\\ 0.00\\ 0.00\\ 15.95\\ 0.00\\ 0.00\\ \end{array}$	C34 H35 N6 O9 C46 H31 N4 O2 C35 H31 N10 O5 C51 H31 N2 C45 H35 O6 C42 H27 N10 C39 H35 N4 O7 C41 H31 N6 O4 C40 H31 N8 O3 C40 H35 N2 O8 C28 H35 N10 O10 C44 H35 N2 O5 C52 H31 O C36 H31 N8 O6 C45 H31 N6 O

Figure S45. HRMS spectrum of the N-1 substituted medoxomil impurity 10.

Figure S46. DSC thermogram of the bromide 2.

Figure S47. DSC thermogram of the ethyl ester 3.

Figure S48. DSC thermogram of the medoxomil ester 6.

Figure S49. DSC thermogram of the olmesartan medoxomil (7).

Figure S50. DSC thermogram of the olmesartan (8).

Figure S51. DSC thermogram of the *N*-1 substituted medoxomil impurity 10.

Abbreviations

AcOEt	ethyl acetate
AcOH	acetic acid
DMF	N,N-dimethylformamide
DMSO	dimethyl slufoxide
EtOH	ethanol
MeCN	acetonitrile
Me ₂ CO	acetone
MeOH	methanol
<i>i</i> -PrOH	isopropanol
THF	tetrahydrofuran

References

- Kamble, R.R.; Biradar, D.B.; Meti, G.Y.; Taj, T.; Gireesh, T.; Khazi, I.A.M.; Vaidyanathan, S.T.; Mohandoss, R.; Sridhar, B.; Parthasarathi, V. An efficient synthesis, X-ray and spectral characterization of biphenyl derivatives. *J. Chem. Sci.* 2011, 123, 393–401.
- Cepanec, I.; Litwic, M.; Koretic, S.; Bartolincic, A.; Druskovic, V.; Sporec, A. Process for Production of (S)-N-Pentanoyl-N-[[2'-(1H-Tetrazole-5-yl) [1,1'-Biphenyl]-4-yl]Methyl-L-Valine. WO Patent 2005/049586 A1, 2 June 2005.
- 3. Manning, R.E.; Reitz, D.B.; Huang, H.C. *N*-Substituted-1,2,4-Triazolone Compounds for Treatment of Cardiovascular Disorders. Patent 2001/020100 A1, 6 September 2001.
- 4. Nagaraj, B.; Narasegowda, R.S.; Yathirajan, H.S.; Gaonkar, S.L.; Bolte, M. 5-[4'-(Bromomethyl)biphenyl-2-yl]-2-trityl-2*H*-tetrazole. *Acta Cryst.* **2005**, *E61*, o767–o768.
- 5. Suenaga, S.; Kawagucchi, H.; Kato, T. Process for Producing 4-Bromomethylbiphenyl Compounds. EP Patent 0553879 A2, 4 August 1993.
- Agelis, G.; Resvani, A.; Durdagi, S.; Spyridaki, K.; Tumová, T.; Slaninová, J.; Giannopoulos, P.; Vlahakos, D.; Liapakis, G.; Mavromoustakos, T.; *et al.* The discovery of new potent non-peptide angiotensin II AT1 receptor blockers: A concise synthesis, molecular docking studies and biological evaluation of *N*-substituted 5-butylimidazole derivatives. *Eur. J. Med. Chem.* 2012, *55*, 358–374.
- 7. Roberts, D.A.; Russell, S.T.; Pittam, J.D. Manufacturing Process. Patent EP 0470795 A1, 2 February 1992.
- Carini, D.J.; Duncia, J.V.; Aldrich, P.E, Chiu, A.T.; Johnson, A.L.; Pierce, M.E.; Price, W.A.; Santella, J.B., III; Wells, G.J.; Wexler, R.R.; *et al.* Nonpeptide angiotensin II receptor antagonists: The discovery of a series of *N*-(biphenylmethyl)imidazoles as potent, orally active antihypertensives. *J. Med. Chem.* **1991**, *34*, 2525–2547.
- 9. Wang, G.X.; Sun, B.-P.; Ru, Z.-L. Synthesis and characterization of 4'-bromomethyl-2-(*N*-trityl-1*H*-tetrazol-5-yl) biphenyl. *Synth. Commun.* **2008**, *38*, 3577–3581.
- 10. Aldrich, P.E.; Pierce, M.E.; Duncia, J.J.V. Tetrazole Intermediates to Antihypertensive Compounds. EP Patent 0291969 A2, 23 November 1988.
- Chao, S.-J.; Hui, X.-P.; Li, S.; Qiu, Z.-Z.; Xu, P.-F.; Zhang, Z.-Y.; Wang, Q.; Guan, Z.-W.; Chin, J. Synthesis and antibacterial activities of novel biphenyltetrazole derivatives bearing 1,3,4-oxadiazole. *J. Chin. Chem. Soc.* 2005, 52, 539–544.
- 12. Sun, D.-G.; Hui, X.-P.; Xu, P.-F.; Zhang, Z.-Y.; Guan, Z.-W. Synthesis of novel biphenyltetrazole derivatives containing 5-methylisoxazole substituted 1,2,4-triazole. *J. Chin. Chem. Soc.* **2007**, *54*, 795–801.
- 13. Alken, R.-G. Deuterated Biphenyl Derivatives. WO Patent 2003066565 A1, 14 August 2003.
- 14. Ardecky, R.J.; Carini, D.J.; Duncia, J.J.V.; Wong, P.C. Fused Aryl Substituted Imidazole Angiotensin II Receptor Inhibitors. U.S. Patent 5,254,546, 19 October 1993.
- 15. Ismail, M.A.H.; Aboul-Enein, M.N.; ElSatar El-Azzouny, A.A.; Abouzid, K.A.M.; Ismail, N.S.M. Design, synthesis, and antihypertensive evaluation of 2'-tetrazolyl and 2'- carboxy-biphenylmethyl-pyrrolidine scaffolds substituted at their N₁, C₃, and C₄ positions as potential angiotensin II AT₁ receptor antagonists. *Med. Chem. Res.* **2015**, *24*, 442–458.
- 16. Ripka, A.S.; Saunders, J.O.; Kamenecka, T.M.; Griffin, P.R. *N*-Arylmethylindazole Modulators of PPARG. WO Patent 2013078237, 30 May 2013.
- 17. Choi, S.-K.; Fatheree, P.R.; Hegde, S.; Hudson, R.; Jendza, K.; Marquess, D.; McKinnel, R.M.; Sasikumar, V. Dual-Acting Antihypertensive Agents. U.S. Patent 2008/0188533 A1, 7 August 2008.

- 18. Yanagisawa, H.; Shimoji, Y.; Fujimoto, K.; Kanazaki, T.; Anemiya, Y.; Koike, H.; Sada, T. 1-Biphenylimidazole Derivavtives, Their Preparation and Their Therapeutic Use. EP Patent 0503785 A1, 16 September 1992.
- 19. Yanagisawa, H.; Anemiya, Y.; Kanazaki, T.; Shimoji, Y.; Fujimoto, K.; Kitahara, Y.; Sada, T.; Mizuno, M.; Ikeda, M.; Miyamoto, S.; *et al.* Nonpeptide angiotensin II receptor antagonists: Synthesis, biological activities, and structure-activity relationships of imidazole-5-carboxylic acids bearing alkyl, alkenyl, and hydroxyalkyl substituents at the 4-position and their related compounds. *J. Med. Chem.* **1996**, *39*, 323–338.
- 20. Silvo, Z.; Pecavar, A.; Vrbinc, M.; Jakse, R. Process for the Preparation of Olmesartan Medoxomil. EP Patent 1816131 A1, 8 August 2007.
- 21. Zupancic, S.; Pecavar, A.; Vrbinc, M.; Osolnik, R. Process for the Preparation of Olmesartan Medoxomil. WO Patent 2007/017135 A1. 15 February 2007.
- 22. Pati, H.N.; Lahiri, S.; Sabbam, R.K.; Vangala, V.B.; Ramalingam, B.; Hiriyanna, S.G.; Bose P. A convenient and practical synthesis of olmesartan medoxomil methyl ether. *J. Heterocycl. Chem.* **2008**, *45*, 917–920.
- 23. Rao, B.H.; Rao, I.V.S.; Kanth, V.R.; Rao, K.V.V.P.; Krishna, K.B.; Sundar, B.S. A competent and commercially viable process for the synthesis of the antihypertensive drug olmesartan medoxomil. *Sci. Pharm.* **2015**, *83*, 465–478.
- 24. Modi, I.A.; Bagepalli, C.S.; Gurusamy, R.; Ponnaiah, R.; Khamar, B.M. An Improved Process for the Preparation of Olmesartan Medoxomil. EP Patent 1916246 A2, 30 April 2008.
- 25. Babu, K.S.; Reddy, M.S.; Tagore, A.R.; Reddy, G.S.; Sebastian, S.; Varma, M.S.; Venkateswarlu, G.; Bhattacharya, A.; Reddy, P.P.; Anand, R.V. Efficient synthesis of olmesartan medoxomil, an antihypertensive drug. *Synth. Commun.* **2009**, *39*, 291–298.
- 26. Zupancic, S. Process for Preparing Olmesartan Medoxomil Intermediate. WO Patent 2010026255 A1, 11 March 2010.
- 27. Raju, M.N.; Kolla, N.; Mukkanti, K.; Bandichhor, R. An efficient and large scale synthesis of olmesartan medoxomil: Antihypertensive drug. *Chem. Biol. Int.* **2013**, *3*, 26–37.
- 28. Radl, S.; Stach, J. A Method of Removing the Triphenylmethane Protecting Group from Precursors of Antihypertensive Drugs. WO Patent 2007048361 A1, 3 May 2007.
- 29. Kim, J.W.; Cha, Y.G.; Ryu, H.C.; Kim, S.J. Method of Removing the Triphenylmethane Protection Group. WO Patent 2010067913 A1, 17 June 2010.
- 30. Babu, K.S.; Tagore, A.R.; Reddy, G.S.; Venkateswarlu, G.; Reddy, P.P.; Anand, R.V. Synthesis of related substances of olmesartan medoxomil, antihypertensive drug. *ARKIVOC* **2010**, *2*, 292–302.
- 31. Sato, K.; Yagi, T.; Sakuratani, K.; Tani, Y. Method for Producing 1-Biphenylmethylimidazole Compound. EP Patent 2298763 A1, 23 March 2011.
- 32. Kim, B.C.; Ahn, S.C.; Shin, H.I.; Lee, I.S.; Kim, Y.K. Novel Zinc Azide Complex and a Process for Preparing Tetrazole Derivatives Using the Same. WO Patent 2012148148 A2, 1 November 2012.
- 33. Venkanna, G.; Madhusudhan, G.; Mukkanti, K.; Sankar, A.; Sampath Kumar, Y.; Venakata Narayana, G. Synthesis and characterization of process-related impurities of antihypertensive drug olmesartan medoxomil. *J. Chem.* **2013**, *2013*, 516459.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).