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Abstract: α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and
walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative
pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived
neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling
pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review,
we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman.
Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military
and civilian populations. Once considered only for battlefield use, these agents are now used by
terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase
(AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results
from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation
of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences
in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain
damage, but must be given within minutes after exposure to OP nerve agents supporting interest
in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated
molecular and cellular program to restore neuronal networks and improve cognitive function in
soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term
consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and
chronic neurodegenerative disorders.
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1. α-Linolenic Acid—An Essential Nutraceutical

α-Linolenic acid (ALA) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is found
in green leaves, seed oil (flax), pumpkin seeds, beans and walnuts; flaxseeds are the richest source of
ALA [1]. ALA is an 18 carbon polyunsaturated fatty acid containing three double bonds at the 9, 12
and 15 positions. ALA plays an important role in brain function and protection as well as exhibiting
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anti-inflammatory and neuroplastic properties [2–4] and has a very wide safety margin [5,6]. ALA is
a precursor of the long-chain PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

Early work showed that administration of ALA resulted in an increase of the omega-3
PUFAs 7,10,1,3,16,19-docosapentaenoic acid and 4,7,10,13,16,19-docosahexaenoic acid in the brain [7].
Humans and rats have the ability to metabolize ALA to form EPA and DHA, but the overall
conversion appears to be limited in humans [8] and in rats [9]. In a single male subject, a significant
portion of ALA is converted into DHA covalently bonded to the 2-acyl position of phosphatidyl
choline in plasma [10]. However, the significance of this product in plasma in a single male subject as
it applies to the pleotropic properties in brain mediated by the administration of ALA is unknown,
raising the possibility that ALA exerts actions of its own. Addition of ALA to cells in culture where
metabolism of ALA would not be expected to take place increased neuronal stem cell survival
and reduced neuronal cell death in a model of N-methyl-D-aspartate (NMDA) receptor-mediated
excitotoxicity [3]. In weanling rats made deficient in essential fatty acids, administration of ALA
resulted in a reduction in omega-6 polyunsaturated fatty acids such as arachidonic acid suggesting
that omega-3 PUFAs exert their effect in brain by inhibiting the desaturation of dihomo-γ-linolenic
acid to arachidonic acid. Although ALA was converted to docosahexaenoic acid, there were no
differences in the brain levels of eicosapentaenoic acid, a metabolite of ALA [11]. In contrast,
administration of ALA in the form of perilla oil to a group of spontaneously hypertensive rats did
not change the ratio of unsaturated to saturated phospholipids but there were marked differences
in the proportion of omega-3 and omega-6 fatty acids compared with a group of rats administered
safflower oil. The most notable difference was a decrease in the proportion of the omega-3 PUFA
docosahexaenoate in phospholipids and an increase in the omega-6 PUFAs docosatetraenoic and
docosapentaenoic acids compared with the perilla oil group of animals. Importantly, the correct
response ratios were higher in the perilla oil group (high ALA) of animals compared with their
safflower counterparts in a learning discrimination task [12]. Administration of sunflower oil to rats
which is low in ALA resulted in changes at the cellular level. For example, the sodium-ATPase
activity in neuronal membranes was reduced by 40% whereas the activity of the 5’ nuclease
enzyme was reduced by 20%; these changes were associated with significant learning impairment
and neurons were more sensitive to injection of a neurotoxin [13]. These cellular changes may in
part be due to alterations in the fluidity within the plasma membrane. ALA has been shown to
increase membrane fluidity which may maintain or restore membrane function in undamaged and
damaged cells respectively [14]. It has been suggested that the high ratio of omega-6/omega-3
PUFA may be involved in the pathogenesis of many diseases, including cardiovascular disease,
cancer inflammatory and automimmune disorders [14]. While many believe that a balance between
omega-6/omega-3 PUFA may be important, the “ratio theory” remains controversial. Taken together,
ALA has been shown to undergo conversion to docosapentaenoic and docosahexaenoic acids in brain
but whether the conversion products are required for the actions of ALA is currently unknown.

2. ALA Protects against Animal Models of NMDA Receptor-Mediated Excitotoxicity

Glutamate is the major excitatory neurotransmitter in brain. Paradoxically, the pathophysiology
of hypoxic-ischemic neuronal damage in acute and chronic neurodegenerative disorders involves
glutamate. The glutamate receptor subtype N-methyl-D-asparate (NMDA) plays a major role in
neuronal damage [15–18] and references therein).

In a well-established model of epilepsy induced by kainic acid, ALA treatment, but not other
PUFAs or saturated fatty acids, was able to almost completely abolish neuronal cell death in the
hippocampal CA1 and CA3 subfields. While other PUFAs exerted neuroprotective efficacy in vivo,
ALA resulted in the most efficacious and reproducible effect [19]. Surprisingly, the intravenous
administration of ALA (500 nmol/kg) significantly increased the hippocampal levels of activated
nuclear factor kappaB (NF-κB), a transcription factor, in a time- and concentration-dependent
manner [20–22]. Furthermore, the increase in activated NF-κB levels in neurons played an essential
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role in mediating neuroprotection induced by ALA in vivo [20] and by subtoxic concentrations
of NMDA against NMDA receptor-mediated excitotoxicity in vitro [16]. It has been suggested
that NF-κB is involved in neuronal plasticity in addition to its well-known role in inflammatory
responses [23–26]. ALA was demonstrated to be neuroprotective in other models of hypoxic-ischemic
neuronal injury [27–30].

3. Organophosphate (OP) Nerve Agent-Induced Excitotoxicity and the Limited Availability of
Neuroprotective Therapies

Organophosphate (OP) nerve agents are some of the most deadly toxins known to man.
The G series class of OP nerve agents includes soman, sarin, cyclosarin, tabun and VX. These
agents penetrate the human body through skin, inhalation, and via the bloodstream. The rapidity
of symptom onset depends upon the route of nerve agent exposure. Nerve agents inhibit
acetylcholinesterase (AChE) quickly and completely and little to no spontaneous reactivation of
the enzyme occurs following exposure to sarin, cyclosarin or soman. In the case of severe nerve
agent exposure, absorption into the bloodstream occurs quickly and death occurs within minutes
of the development of the cholinergic crisis secondary to respiratory and cardiovascular collapse.
Absorption of a volatile nerve agent through the skin results in a more deliberate uptake and
accumulation of nerve agent in the bloodstream leading to a slower cholinergic crisis [31].

There has been a disturbing resurgence in OP nerve agent use around the world against military
and civilian populations by terrorist groups and organizations. The release of sarin in Matsumoto
and in the Tokyo subway by a terrorist organization led to the intoxication of thousands of people
and nineteen deaths [32–34]. The latest incident was in Syria where more than one thousand people,
including 426 children, died in the aftermath of sarin deployment last year [35]. Current therapy
against exposure to nerve agents targets selective areas within the body to promote overall survival.
Atropine, a muscarinic antagonist, reduces the attended copious secretions, bradycardia and
gastrointestinal effects. Pralidoxime (2-PAM), an oxime, reactivates acetylcholinesterase molecules
that have not undergone aging. After the phosphate moiety on OP nerve agent binds to the serine
residue within the active site of AChE to form an ester, a process known as aging occurs whereby
there is an internal dealkylation reaction leading to an OP nerve agent-acetylcholinesterase bond that
cannot be reactivated by an oxime [36]. The rate of aging is variable, depending on the toxicity of the
nerve agent. Acetylcholinesterase will “age” in only two minutes after binding to soman [37].

The underlying mechanism of OP-induced toxicity is the inhibition of AChE which in
turn leads to the excessive accumulation of the excitatory neurotransmitter acetylcholine (ACH)
within synapses (the cholinergic phase) resulting in a plethora of signs and symptoms including
Status epilepticus; overactivation of muscarinic receptors results in the generation of seizures
and Status epilepticus [38–43]. Overstimulation of muscarinic receptors by the excessive synaptic
levels of acetylcholine and ischemia secondary to the generalized seizures increases the release
of glutamate [44–46] and γ-aminobutyric acid [GABA] [47,48] disrupting the balance between
excitatory and inhibitory input resulting in Status epilepticus. The glutamate phase involves glutamate
receptors which in turn participate in the propagation and maintenance of nerve agent-induced
seizures; the N-methyl-D-aspartate (NMDA) glutamate receptor subtype plays a major role in
excitotoxic-mediated neuronal cell death in vulnerable brain regions [49–52].

Prolonged seizures result in brain region-specific neuropathology leading to long-term
cognitive and behavioral deficits in animals; long-term cognitive and behavioral deficits have
been demonstrated in human survivors [53]. The most profound neuropathology occurs in the
amygdala followed by the hippocampus and piriform cortex [21,41]. In fact, the neuropathology
can be observed in vulnerable brain regions even when seizures were stopped by benzodiazepines
after five minutes [40]. This result alone indicates the danger of exposure to OP nerve agents in
survivors. Thus, diazepam, a benzodiazepine, stops/attenuates seizures, but does not prevent the
neuropathology [40].

20357



Molecules 2015, 20, 20355–20380

Cognitive and behavioral impairment have been observed years after exposure to
OP nerve agents. For example, on the day of the Tokyo subway attack, 5500 individuals that were
exposed to sarin gas were evaluated by hospitals. While most complained about minor symptoms,
1000 patients had moderate and 50 patients had severe signs of cholinergic crisis, respectively,
associated with low plasma cholinesterase activity and there were 12 deaths [54]. Forty-five percent of
victims from the Tokyo subway attack that responded to a survey continued to exhibit symptoms one
year after the incident in one study [53]. Post-traumatic stress disorder (PTSD), anxiety, depression,
lack of concentration, memory and cognitive deficits, impairment in motor function and coordination
as well as structural changes in the right insular cortex and temporal cortex, left hippocampus and
loss of white matter in the left temporal area near the insular region on brain MRI [55] develop months
to years after exposure to OP nerve agents as well as OP insecticides [56–63]. Importantly, depression
and memory impairment are serious and prominent features of exposure to OP nerve agents as well
as pesticides [56,61,62,64–66]. While depression correlated with PTSD in those exposed to sarin in
the Tokyo subway terrorist attack [54], depression is also observed in individuals exposed to OP
pesticides [60,61] as well as those individuals exposed to sarin where red blood cell cholinesterase
level is between 10% and 40% of control [66] raising the possibility that a cultural difference in
Japanese people may have contributed to the depressive symptoms associated with PTSD [54].
Alterations on brain MRI in white as well as gray matter were also observed in Gulf War veterans
exposed to OP nerve agents at Khamisiyah [67,68].

Cognitive and behavioral deficits have also been observed in animal models of OP nerve
agents. Learning and memory impairments were demonstrated in rodents exposed to OP nerve
agents [69–73] including deficits in the Morris water maze and passive avoidance test which are
hippocampal-dependent memory tasks [74–76]. Deficits in fear-based learning were also shown to
be present after exposure to OP nerve agents [77,78]. PTSD and anxiety were demonstrated in
rodents exposed to OP nerve agents [78–80]. For the first time, our group showed an increased
immobility time on the Porsolt forced swim test indicative of a depressed-like state after OP nerve
agent exposure [76]. Altogether, the cognitive and behavioral deficits observed in animal models of
OP nerve agents replicate the cognitive and behavioral impairment observed in humans that survived
exposure to OP nerve agents.

The capability of OP nerve agents to cause mass casualties, the long-term morbidity of individual
survivors after exposure to OP nerve agents and the modestly effective antidotal drugs provide the
underpinnings for the development of new and more efficacious therapies.

Exposure to an OP nerve agent results in a plethora of signs and symptoms indicative of a
cholinergic crisis in the peripheral and central nervous system (Figure 1) [51]. The rapid increase
of acetylcholine that occurs early in soman poisoning is known as the cholinergic phase. During this
phase seizures can be blocked with muscarinic receptor antagonists when given immediately after
nerve agent exposure. If not controlled, continued seizure activity recruits glutamate and possibly
other neurotransmitters to propagate and maintain seizures [45,46,81]. This is the transitional phase
with modulation of cholinergic/non-cholinergic systems. During this phase which is referred to as
the glutamate phase, seizures cannot be stopped with muscarinic receptor antagonists. Moreover,
glutamate can further stimulate the release of acetylcholine contributing to maintenance of the
seizures and central nervous system (CNS) neurotoxicity [49,51]. Status epilepticus triggers a
cascade of effects (overactivation of inotropic glutamate receptors, cytotoxicity, ion imbalance—Ca2+

influx—and inflammation) leading to hypoxic-ischemic injury and NMDA receptor-mediated
excitotoxicity, the major contributor to neuronal death after OP poisoning.
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Figure 1. Signs and symptoms after acute intoxication to an OP nerve agent. Exposure to a the
chemical warfare agent such as soman results in the inhibition of acetylcholinesterase (AChE) activity
leading to excessive accumulation of acetylcholine (ACH) within synapses. These physiological
alterations result in the overactivation of muscarinic receptors and a cholinergic crisis in the peripheral
and central nervous system.

4. Lifesaving Treatment and OP Nerve Agents

The high mortality associated with soman exposure requires treatment with an oxime (HI-6,
pralidoxime), a drug that reactivates AChE molecules that have not undergone aging, atropine
methyl nitrate, a muscarinic antagonist drug, and diazepam, an anticonvulsant that stops/attenuates
seizures [51,82–84]. The molecular forms of the oxime and atropine prevent them from crossing
the blood-brain barrier so that the neuropathology is reproducible and only controlled by a single
drug. Diazepam does cross the blood-brain barrier to stop/attenuate Status epilepticus and is used
to standardize the model, but diazepam does not prevent the neuropathology [40,85–87]. The
neuropathology induced by soman is ongoing for at least 3 months [88] that may be due to the
development of recurrent seizures after soman exposure [89]. Administration of the oxime, atropine
and diazepam increases animal survival and are based upon the current drug use developed for
personnel entering areas of nerve agent contamination. These drugs are also given to control animals
in order to compare results across all groups ([4,21,41,51,76,82–84,90] and references therein). Over
the course of the first two to four days after soman exposure, animals lose approximately 20% of their
body weight. Supportive care in the form of lactate Ringers is injected subcutaneously to prevent
dehydration and wet mash is provided to make it easier for the debilitated animals to eat until they
are able to eat and drink on their own [76].

5. Vulnerability to OP Nerve Agents Is Brain-Region Specific

The brain regions damaged by soman exposure are the piriform cortex, amygdala, prefrontal/
cingulate cortex, hippocampus, caudate/putamen, and thalamus [21,40,41,51,82]. The amygdala and
hippocampus are profoundly damaged by soman [4,21,41,76]. The neuronal degeneration induced
by OP agents occurs mainly by necrosis, but apoptosis and hybrid forms have been reported
in one study [91]. The necrotic process leading to neuronal death is thought to be via NMDA
receptor-mediated excitotoxicity after soman poisoning [51,92–94].
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6. The Nutraceutical α-Linolenic Acid Is a Potent Neuroprotective Agent against
Soman-Induced Neuropathology

There were no known neuroprotective agents that could be administered systemically against
soman-induced neuropathology that weren’t also anticonvulsants, drugs that stop/attenuate Status
epilepticus, which in turn reduces the brain damage [40,87,95–97] or AChE reactivators for those
enzyme molecules that were not aged [75,98,99] [NMDA receptor antagonists are not included here
due to their adverse effects and the unlikelihood of FDA approval].

A highly sensitive, specific and reproducible method to quantify neuronal degeneration that
occurs in vulnerable brain regions after soman exposure is the Fluoro-Jade C staining method.
Fluoro-Jade C, a fluorescent ligand that may be the sulfate ester of one of the Fluoro-Jade B
components [100], specifically stains degenerating neurons, axons, dendrites and terminals with
a very high signal to noise ratio [100]. Cells exhibiting classic morphological features of neurons
consisting of a pyramidal shape with a single axon and/or dendrites are identified as neurons. This
method can be applied to either fixed ([4,21,76,100–105], and references therein) or fresh tissue [106].
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control (A). The inset shows the morphology of a typical neuron consisting of a pyramidal shape with 
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Figure 2. Pretreatment with a single injection of ALA reduces the number of Fluoro-Jade C-positive
neurons. Young adult Sprague-Dawley male rats were administered ALA (500 nmol/kg) by
intravenous injection 3 days prior to soman exposure or vehicle (0.05% ethanol). All animals were
injected with the oxime, HI-6 (125 mg/kg, intraperitoneally [i.p.]) thirty min prior to soman followed
by soman (180 µg/kg, subcutaneously [s.c], 1.6 x LD50) or saline (control). This dose of soman was
chosen because it reproducibly elicits seizures in 100% of the animals tested [21]. Atropine methyl
nitrate (2 mg/kg, intramuscularly [i.m.]) is injected 1 min after soman. Rats were allowed to seize
for 40 min and then treated with the anticonvulsant diazepam (10 mg/kg, i.m.) to stop/attenuate the
Status epilepticus. Rats exposed to soman are monitored for seizure activity by the modified Racine
scale: Stage 0, no behavioral response; Stage 1, behavioral arrest; Stage 2, oral/facial movements,
chewing, head nodding; Stage 3, unilateral/bilateral forelimb clonus without rearing, Straub tail,
extended body posture; Stage 4, bilateral forelimb clonus plus rearing; Stage 5, rearing and falling; and
Stage 6, full tonic seizures. Stage 6 behavioral seizures were observed 4–8 min after soman exposure
and continued until the soman-exposed animals were injected with diazepam (10 mg/kg, i.m.) 40 min
after the initiation of Status epilepticus. After injection of diazepam, all animals became comatose.
Animals were euthanized, brains fixed and post-fixed 24 h after soman exposure. Sections through
the basolateral amygdala were obtained from saline/vehicle (A); saline/ALA500 (B); soman/vehicle
(C) and soman/ALA500 (D) and stained with Fluoro-Jade C as described previously (4, 21, 76).
A significant increase in the number of fluoro-Jade C-positive neurons (arrowheads) is observed in
the soman/vehicle (C) compared with the saline control (A). The inset shows the morphology of a
typical neuron consisting of a pyramidal shape with three processes.
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Representative images using the Fluoro-Jade C staining method after soman exposure in
the basolateral amygdala are shown in Figure 2. After exposure to soman, there is a striking
increase in the number of Fluoro-Jade C-positive neurons (degenerating neurons) in the basolateral
amygdala compared to saline-vehicle (compare Figure 2C with Figure 2A). Administration of a single
intravenous injection of ALA (500 nmol/kg) 3 days prior to soman exposure significantly reduced the
number of Fluoro-Jade C-positive neurons in the basolateral amygdala compared to saline-ALA500
(compare Figure 2D with Figure 2B) when examined 24 h after soman exposure. ALA not does
affect seizure threshold, seizure severity or seizure duration [4]. Previous work showed that a single
intravenous injection of ALA administered 30 min after soman also protected neurons in vulnerable
brain regions against soman [21]. We also had preliminary data suggesting that the higher ALA
dose (500 nmol/kg) was more efficacious than a lower dose (100 nmol/kg) [21]. These findings
suggested that ALA may be capable of preventing the primary as well as the secondary neuronal
damage triggered by soman, which in turn could reduce the attendant cognitive impairment. Taken
together, this was the first demonstration that the nutraceutical ALA exerted a potent neuroprotective
effect against soman-induced neuropathology. The next critical issue was to determine whether the
reduction in neuronal degeneration improved functional outcome.

7. Cognitive Deficits and Neurodegeneration

Alterations in learning, memory and behavior are long-term deleterious effects of OP
nerve agent intoxication. Soldiers exposed to OP nerve agents, as occurred during the 1991
Iraq Gulf War [107], civilians in the 1995 Tokyo subway terrorist attack [60,108], and subjects
intentionally injected with an OP nerve agent [66] suffer from neurological and neuropsychiatry
disorders—namely, cognitive and memory impairments, and depression. Behavioral tests are able to
access several learning and memory processes involving the hippocampus, cortex and amygdala in
animal models of OP nerve agents. Because the amygdala and hippocampus are severely damaged
by OP nerve agents [40,41,84,109–111], it is possible that these brain regions play a pivotal role in
the long-term cognitive and behavioral deficits reported in rodents and possibly humans after nerve
agent exposure.

After exposure to soman, rodents exhibit cognitive deficits in the Morris water maze, a
spatial memory task [69,71–73], passive avoidance [74,75], active avoidance [112,113] and fear
conditioning [77]. The profound hippocampal injury after soman exposure is associated with the poor
performance in the Morris water maze [70]. In sharp contrast, no alteration was found in the Morris
water maze after an intrahippocampal soman injection that does not induce neurodegeneration
indicating that it is the damage that mediates the poor performance [114].

8. The Nutraceutical ALA Improves Cognitive Function and Exerts an Anti-Depressant Effect
after Soman Exposure in Vivo

Because of the profound deficits in standard behavior tasks observed in soman-exposed rats
and the significant mortality, we used a dosing schedule that we hypothesized would improve
performance on the behavior tasks as well as animal survival. We also administered the α-linolenic
acid after soman to reflect a real-life scenario. After exposure to soman or saline, animals were
intravenously injected with ALA500 (α-linolenic acid, 500 nmol/kg) or vehicle at 30 min, 3 days
and 7 days after soman. ALA500 significantly reduced the soman-induced animal mortality 21 days
after soman exposure. For each behavior task, animals were trained prior to being tested. Testing
began on day 16 after soman exposure [76]. The open field test was employed because it is a
preliminary measure for motor impairment or weakness in rodents [115]. Thus, fifteen days after
soman exposure, cohorts of animals exposed to soman or saline and either ALA500 or vehicle were
placed in the open field for one hour for training. On the following day, the cohorts were placed
back in the open field for their test day. We found no differences across all groups of animals in
their locomotor activity. The next behavior task we performed was the rotarod task. Soman-exposed
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animals spend significantly less time on the rotarod compared with their cohort saline control
animals [76]. In sharp contrast, intravenous administration of ALA500 at 30 min, 3 days and 7 days
after soman exposure significantly improved motor performance on the rotarod. Depressive behavior
was tested next using a modified version of the Porsolt forced swim test, a widely used test to
evaluate antidepressant efficacy [116,117]. The Porsolt forced swim test is a model of behavioral
despair and a widely accepted test that predicts antidepressant efficacy [117]. Experiments that assess
depressive-like behavior had not been yet studied in models of soman exposure in rats. The time
spent immobile has been identified as correlating with depressive-like activity and can be reduced
by antidepressants drugs [117]. Soman exposure induced a profound effect on the forced swim
test immobility time. Rats exposed to soman spent significantly more time immobile compared to
saline/vehicle and saline/ALA500-treated groups of animals [76]. The increase in immobility time in
the forced swim test after soman exposure cannot be attributed to changes in locomotor performance
since no significant differences were apparent in soman-exposed rats in the open-field test compared
to respective controls. For the first time, administration of ALA500 at 30 min, 3 days and 7 days
after soman effectively reverses the observed behavioral despair in the Porsolt forced swim test.
The depressive-like symptoms induced by soman in animals is similar to clinical observations of
deployed veterans exposed to nerve agents [118], those individuals exposed to sarin gas in the
Tokyo subway [54], volunteers who were exposed to a sarin-like compound where depression was
manifested when acetylcholinesterase activity levels were between 10% and 40% [66] as well as the
intentional or accidental exposure to OP pesticides [61,62]; in these cases, depression was particularly
prominent in women [119]. The observed increase in immobility time in the forced swim test after
soman exposure may be a neuropsychiatric consequence of neuronal loss in limbic brain structures, as
evidence indicates that mood disorders are characterized by enhanced neurodegeneration [120–122].
Structural changes on brain MRI consisting of alterations in white and gray matter have also been
observed in soldiers exposed to OP nerve agents during the Gulf War [67,68,123,124]; structural
changes were positively correlated with behavior testing [68]. Despite these results, there is some
controversy about whether neuronal degeneration or reduced neurogenesis is the fundamental
mechanism [125].

Interestingly, a diet restricted in α-linolenic acid reduced brain-derived neurotrophic factor
(BDNF) levels in the cortex in mice [126] whereas increased intake of ALA and other polyunsaturated
fatty acids increased BDNF protein levels and reduced depressive symptoms in humans and in
animals [127–131]. Recently, epigenetic alterations in the elongation of very long-chain fatty acids
protein 5 (Elovl5) of polyunsaturated fatty acids were associated depression and suicide risk [132].

The ability of ALA to exert an anti-depressant-like activity in animals exposed to soman may
be due to the enhanced protein expression of BDNF in the hippocampus and/or cortex [3,4], two
brain regions that are critically involved in adaptive responses. Brain-derived neurotrophic factor
is widely expressed in brain [133] and is involved in neuronal maintenance, neuronal survival,
learning and memory and neurogenesis [14,134–137]. It has been shown that direct injection
of BDNF into the dentate gyrus or CA3 subfield of the hippocampus exerts an antidepressant
effect and the antidepressant-like effect mediated by paroxetine is enhanced in rodent models of
depression [138,139]; enhanced BDNF signaling enhances mood [140,141]. Systemic administration
of BDNF also produces an antidepressant-like effect [142]. In contrast, genetic deletion of a single
allele of the BDNF gene (heterozygous BDNF knockout mice) or conditional deletion of the TrkB
gene in neural progenitor cells of mice impairs proliferation and neurogenesis in the dentate gyrus
of the hippocampus and leads to loss of antidepressant efficacy [143–145]. Importantly, intravenous
injection of ALA (500 nmol/kg) on day 1, day 3 and day 7 significantly increased BDNF protein levels
in the cortex and hippocampus and exerted an antidepressant-like activity in normal mice [3]. The
identical dosing schedule of ALA significantly increased BDNF protein levels in the hippocampus
in soman-exposed rats and exerted an anti-depressant-like effect [4,76]. Taken together, exposure
to soman results in a depressed-like state as measured by the immobility time in the Porsolt
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forced swim test. Intravenous administration of ALA at 30 min, 3 days and 7 days after soman
exposure animals effectively exerted an antidepressant effect suggesting that the enhanced BDNF
levels in the hippocampus contributes at least in part to the observed antidepressant-like activity in
soman-exposed animals.

9. The Amygdala and Hippocampus, Two Brain Regions Profoundly Damaged by Soman

The amygdala and hippocampus play a critical role in emotional memory and learning and
memory respectively [146]. Therefore, it is reasonable to predict that cellular damage in these regions
after soman exposure could be associated with functional deficits in some cognitive and behaviors
tasks. The hippocampus and amygdala are two limbic brain regions that are required for the passive
avoidance test [147–152] and they are the same two brain regions that are profoundly damaged by
the OP nerve agent soman. In addition, a recent study suggests that cholinergic input particularly
nicotinic receptors play an important role in consolidation and retention in the passive avoidance
task [153,154]. The significant deficit induced by soman in the passive avoidance task (see above)
and the requirement of the amygdala and hippocampus for the successful performance of this test
provided a unique opportunity to evaluate the magnitude of ALA to restore cognitive function. The
use of the passive avoidance task in soman exposed animals can be referred to as a “stress test” for
ALA as the ability of ALA to improve performance was expected to be difficult because the most
damage occurs in these two brain regions after soman exposure [41].

Groups of animals were exposed to soman or saline followed the intravenous injection of
either ALA500 or vehicle at 30 min, 3 days and 7 days. Cohorts of animals were trained for
the passive avoidance task sixteen days after soman exposure. Retention latency was determined
24 h and 5 days later. Retention latency analyzed 24 h after training showed no impairment in
soman/vehicle, soman/ALA500 or saline control animals indicating that memory retention occurred
in the brain. However, a deficit in memory retention was evidenced by reduced retention latency in
the soman/vehicle group of animals when tested five days after training compared to saline/vehicle
and saline/ALA500 groups of animals [76]. In contrast, intravenous administration of ALA at 30 min,
3 days and 7 days after soman reversed the reduced retention latency in soman-exposed animals
5 days after soman. These results show that ALA is a highly efficacious therapy against the memory
deficits in soman-exposed animals.

As stated above, neuronal loss was associated with the poor performance in the Morris water
maze and other behavioral tests. In a similar fashion, neuronal loss in the hippocampus correlated
with significant impairments in the passive avoidance task after kainate-induced Status epilepticus in
rats [155]. Other Pavlovian tasks involving learning and memory in the hippocampus and amygdala
such as fear conditioning are also impaired in rats exposed to soman and were associated with
neuronal loss and degeneration in the amygdala [77,156]. Significantly, intravenous administration
of ALA markedly improved performance on the passive avoidance task five days after training in the
soman-exposed rats. Improvement in this task as well as the rotarod and Porsolt forced swim test was
associated with a significant reduction in neuronal degeneration 21 days after soman exposure [76].
These data support the idea that ongoing neuroprotection by ALA may mediate in part the significant
improvement in cognitive performance.

10. OP Nerve Agents, Cognitive Deficits and Neurogenesis

The controversy over whether brain damage or reduced neurogenesis may underlie the
cognitive deficits after exposure to a neurotoxin such as soman and the significant reduction
in neuronal degeneration after ALA treatment 21 days after soman exposure prompted us to
evaluate neurogenesis in this model. Some data indicate that the neurodegenerative process in
the piriform cortex, amygdala and hippocampus underlie the pathophysiology of the cognitive
deficits [70,71]. However, increasing evidence suggests that reduced neurogenesis may also be a
contributory factor to nerve agent-induced long-term cognitive and behavioral disorders; impaired
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adult neurogenesis in rodents has been shown to be associated with defective spatial and contextual
memory [21,73,157–160].

Over the past decade, it has become apparent that new neurons are still formed in particular
regions of the adult brain, but their role in neurodegenerative disorders is not clear. Detection of
neurogenesis has been made possible by combining BrdU (5’-bromo-2’-deoxyuridine), a thymidine
analogue that is incorporated into DNA undergoing replication, with cell-specific proteins present in
the newly generated neurons at different stages of development [161].

Neurogenesis occurs in at least two regions of the adult mammalian brain: the subventricular
zone (SVZ) in the lining of the lateral ventricles, and the subgranular zone (SGZ) of the dentate gyrus
(DG) in the hippocampus. Neurogenesis has a particular importance in the hippocampus because
this brain region is critically involved in learning, memory and mood. The hippocampal DG harbors
progenitor cells located in the SGZ which is a thin band of tissue adjacent to the innermost layer of
granule neurons [162,163]. The neural progenitor cells located at SGZ give rise to dentate granule
cells (DGCs) in the granule cell layer (GCL) where they differentiate into neurons and mature over
several weeks [161]. As they mature, a fraction of those newly generated neurons become integrated
and form synapses, glutamatergic input from the entorhinal cortex and output to pyramidal cells in
the CA3, in a functional hippocampal network [164]. These processes are modulated both positively
and negatively by neurotransmitters, hormones, neurotrophic factors, pharmacological agents and
environmental factors [137,165–168].

The effect of neurogenesis on animal models of epilepsy induced by various compounds is
complex and beyond the scope of this review. In the case of soman, however, there is very little
information about the effect of this OP nerve agent on neurogenesis. In one study, mice were injected
with soman followed by an oxime and atropine in the absence of diazepam. In this study, the DG
cells that were marked only with the proliferation–marker bromodeoxyuridine (BrdU) showed the
following changes: a decrease after the first day, an increase at the third day, no changes between
day 8 and 30 compared to the control, and a marked reduction in BrdU-positive cells 90 days after the
insult, with a very low number of mature neuronal cells double marked with NeuN on day 34 [157].
In another study, double-labeling with BrdU and the immature neuronal marker doublecortin (DCX)
showed a decrease in neurogenesis on the 28th day after soman exposure with an associated spatial
learning impairment [73].

The participation of newly born neurons in hippocampal processing has been recently discussed
in reports showing that changes in neurogenesis are associated with learning performance in
hippocampus-dependent learning tasks [169]. Reduced hippocampal neurogenesis has been shown
to result in deficits in contextual fear conditioning [159,170–173], spatial long-term memory [174],
trace memories [175] and pattern separation [176]. Reduced neurogenesis has also been implicated
in mood disorders, such as depression, but recent studies have raised several controversies [177].
Recent studies using the passive avoidance test have now demonstrated that baseline neurogenesis is
required for hippocampal learning and long-term memory formation. Reduced neurogenesis through
rapid X-ray ablation causes impairment in performance of the passive avoidance task [178,179].

Conversely, a variety of studies have consistently demonstrated that enhanced neurogenesis
plays an important role in exerting the therapeutic efficacy of anti-depressant agents [180] and its
potential to affect contextual-memory systems has been increasingly recognized [181–184]. Consistent
with experimental studies, a computational approach has been able to draw a model to understand
how hippocampal networks are likely to be selected for encoding information. In the hypothesis of
how new neurons affect learning and memory, the new neurons are added to the DG network, instead
of replacing existing neurons. This addition could effectively encode and retrieve new memories in
the network without interfering with old memories [185]. However, new research has proposed that
the continuous integration of new neurons may affect memories already stored in these circuits by
competing with existing cells for inputs and outputs when examined over longer times [186].
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We demonstrated previously that the intravenous administration of ALA on day 1, day 3 and
on day 7 enhanced neurogenesis and increased the number of mature neurons in the subgranular
zone of the hippocampus in naïve mice [3]. However, whether this dosing schedule could increase
neurogenesis in a damaged brain and whether the hypothesized enhanced neurogenesis by ALA
was involved in the improvement in the cognitive performance in soman-exposed animals were
unknown. If neurogenesis was increased by ALA, what signaling mechanisms were involved?

The mammalian target of rapapmycin, a serine/threonine kinase that plays a crucial role in the
regulation of cellular proliferation and growth. Intravenous administration of ALA at 30 min, 3 days
and 7 days after soman exposure significantly increases the endogenous expression of mature BDNF
protein levels in the hippocampus [4]. BDNF is released via the constitutive or activation-dependent
pathway into the extracellular milieu. When mature BDNF binds to and activates full-length
TrkB, its cognate receptor, TrkB receptor monomers dimerize, which increases the catalytic activity
of the intracellular domain of the intrinsic tyrosine kinase. This enables the phosphorylation of
tyrosine residues inside the activation loop and subsequently the autophosphorylation of tyrosine
residues situated outside of the activation loop. The next step is the activation and recruitment
of partner proteins and adaptors that lead to the activation of three main intracellular signaling
pathways: [1] the phospholipase Cγ (PLCγ) pathway, which leads to activation of protein kinase
C; [2] the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK)
pathway, which activates several downstream effectors; and [3] the phosphatidylinositol 3-kinase
(PI3K) pathway, that activates the serine/threonine kinase Akt. Both MAPK and PI3K play crucial
roles in neuronal survival, protein-synthesis dependent plasticity and neurogenesis [134,187–196].
A pathway regulated by nutrients and growth factors i.e., BDNF is the mammalian target of
rapamycin complex 1 (mTORC1). Once Akt is fully activated via phosphorylation of Ser473 and
Thr308, this serine-threonine kinase activates mTORC1 [197,198].

Mammalian target of rapamycin is a large (~289 kDa) serine-threonine kinase that exists in
two distinct heteromeric protein complexes referred to as mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2). The mTORC1 is sensitive to the selective inhibitor rapamycin and it is
activated by phosphorylation of serine2448 in the canonical PI3K-Akt pathway after growth factor
stimulation [199]. Rapamycin does not directly inhibit mTOR kinase activity; instead, it binds to the
immunophilin FK506-binding protein 1A, (FKBP12) and disrupts the mTOR-RAPTOR interaction,
e.g., the complex of mTORC1. By contrast, mTORC2 is resistant to rapamycin, and recent studies
have suggested that mTORC2 may phosphorylate Akt at Ser473 [200,201] but its mechanisms in brain
plasticity and neurogenesis are not well understood.

It has been demonstrated that BDNF is required for baseline neurogenesis in the
hippocampus [137]. Activation of TrkB via BDNF activates the PI3K pathway and downstream
activation of Akt which in turn would activate mTORC1. The activation of mTOR signaling by
neurotrophins increases the translation of synaptic proteins, which is essential for synaptic plasticity,
by two mechanisms: First, mTORC1 phosphorylates and inactivates the eIF4E-binding protein
(4E-BPs), facilitating translation initiation by releasing the inhibition of eukaryotic initiation factor
4E (eIF4E), which is a crucial initiation factor in cap-dependent translation. The association of 4E-BPs
with eIF-4E inhibits the ability of eIF-4E to associate with eIF-4G and initiate translation. Second,
mTORC1 leads to the activation of p70 S6 kinase, an enzyme that controls translation at a number
of levels, including synthesis of the S6 ribosomal subunit, phosphorylation of RNA helicase cofactor
eIF4A, and inhibition of eukaryotic elongation factor 2 (eEF2) kinase [202]. The p70 S6 kinase and
4E-BP are also regulated by MAPK/ERK to control protein-synthesis dependent plasticity [203],
and p70 S6 can further phosphorylate mTOR setting up an autoregulatory mechanism. Protein
synthesis-dependent synaptic plasticity strengthens the neuronal connection and would be expected
to regulate memory storage in the brain. On the other hand, excessive protein synthesis results
in behavioral deficits, instead of improving neuroplasticity, suggesting a temporal window to
where mTOR should be carefully modulated [202]. Recently, one study found that rather than
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just increasing translation of new proteins for synaptic plasticity, mTORC1 activation leads to the
induction of genes encoding the enzymes of glycolysis, pentose phosphate pathway and lipid sterol
biosynthesis, generating the building blocks for anabolic cell growth [204]. This process could help
the development and maturation of new neurons in adult neurogenesis and also cellular repair.
The newly generated neurons integrate multiple signals into local circuitry of the hippocampus and
several lines of evidence have revealed the importance of these newborn neurons in the acquisition
and retention of memories [137,174,184,205] and mood control [206].

We set out to address whether intravenous administration of ALA at 30 min, 3 days and 7 days
after soman exposure increased neurogenesis in the subgranular zone (SGZ) of the hippocampus.
We first confirmed that this dosing schedule increases the endogenous expression of mature BDNF
levels in the hippocampus. We then tested the hypothesis that the increased expression of mature
BDNF levels in the hippocampus leads to an increase in activated Akt and activated mTORC1. We
showed that an increase in activated Akt and mTORC1 only occurred in those groups of animals
intravenously administered ALA500. We did not find an increase in activated Akt or mTORC1
in the hippocampus from animals exposed to soman-vehicle despite the fact that the endogenous
expression of mature BDNF levels increased in the hippocampus in this group of animals [4].
One possible explanation for the differential effect was that the mature BDNF was expressed in
different cells. To address this possibility, we carried out an immunohistochemical analysis using an
antibody against the mature neuronal marker, NeuN, and an antibody against mature BDNF. Cells
co-localizing NeuN and mature BDNF were identified as neurons. In the case of animals exposed
to soman or saline followed by ALA, we found an increase in the number of cells where NeuN
co-localized with mature BDNF identified as neurons in the dentate gyrus compared to saline-vehicle
and soman-vehicle-exposed animals. These results suggest that the neuronal expression of mature
BDNF in the hippocampus is induced by ALA. In sharp contrast, the neurotoxin soman increases
the endogensous expression of mature BDNF in non-neuronal cells [4]. We then hypothesized
that this dosing schedule of ALA would increase neurogenesis in the SVZ in animals exposed to
soman. In this experiment, groups of animals were exposed to soman or saline followed by ALA
or vehicle at 30 min, 3 days and 7 days. Another group of animals was also injected with the
long-term inhibitor of mTORC1, rapamycin. We showed that the intravenous administration of ALA
significantly increased neurogenesis (doublecortin-positive) 10 days after saline and increased the
number of mature neurons at 31 days confirming our previous findings [3]. Moreover, we found that
the intravenous administration of ALA significantly increased neurogenesis in the group of animals
exposed to soman 10 days after soman exposure. We also found a significant increase in the number of
mature neurons in the SVZ on day 31 after soman exposure. We showed that the mTORC1 inhibitor,
rapamycin, completely blocked the ALA-induced neurogenesis in the saline control animals and in
the group of animals that were exposed to soman [4] suggesting that the activation of mTORC1 was
critical for neurogenesis. The next step was to determine whether the increase in neurogenesis was
involved in the ALA-mediated enhancement in cognitive performance. The passive avoidance was
selected as the behavior measure to determine the role of neurogenesis because this task requires
the amygdala and hippocampus and both brain regions are profoundly damaged by soman. For
this experiment, groups of animals were exposed to soman or saline followed by either ALA or
vehicle. Some groups of animals were also injected with rapamycin over a 7 day period. All groups
of animals were trained in the passive avoidance task 16 days after soman exposure and tested
24 h and 5 days later. We confirmed that animals exposed to soman only showed a significant
deficit in retention latency 5 days after training; no deficit was observed 24 h after training across
all groups of animals [4,76]. Intravenous administration of ALA at 30 min, 3 days and 7 days after
soman resulted in a striking improvement in retention latency in soman-exposed animals 5 days after
training. Administration of rapamycin, however, completely blocked the ALA-induced improvement
in retention latency. Because rapamycin also blocked the ALA-induced increase in neurogenesis, our
results suggest that enhanced neurogenesis induced by ALA plays a critical role in the ALA-induced
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improvement in retention latency in the passive avoidance via an mTORC1-mediated mechanism.
The downstream mTORC1 pathway is likely activated by the increase in activated Akt via a
BDNF-TrkB-mediated mechanism.

11. ALA Induces Diverse and Mechanistically Distinct Endogenous Neuroprotective Pathways

To date, the overall summary of the fundamental mechanisms that appear to be involved in
protecting the hippocampus against soman-induced neuropathology by ALA is shown in Figure 3.
After the brain injury, intravenous administration of ALA is taken up into the central nervous system.
ALA has been shown to activate TWIK-related (TREK)-1 channels, two-pore rectifier potassium
channels [207]. Activation of the TREK-1 background potassium channels would be expected to
hyperpolarize the membrane which in turn would reduce the release of glutamate and NMDA
receptor-mediated excitotoxicity. ALA has also been shown to induce lipid rafts that along with
some NMDA receptors and TrkB would markedly enhance signaling efficiency [14,208–211]. ALA
uptake into the membrane followed by release intracellularly or direct uptake into the intracellular
compartment and/or of its long chain metabolites may mediate a diverse and mechanistically distinct
complement of molecular and cellular events to improve neuronal survival and restore function.

Molecules 2015, 20, page–page 

13 

and the signal transduction pathway resulting in activated Akt which in turn activates mTORC1. The 
activation of mTORC1 appears to be an essential requirement for ALA-induced neurogenesis. 

 
Figure 3. Overview of possible mechanisms involved in ALA-mediated neurorestoration. Injury to the 
brain results in the excessive release of glutamate (Glu) leading to the overactivation of NMDA receptors 
and neuronal cell death. Administration of ALA results in the formation of lipid rafts, an increase in 
activated nuclear factor kappaB (NF-κB) levels and cyclic AMP response element binding protein 
(CREB) [216] and enhanced levels of BDNF mRNA and protein in the hippocampus. Release of mature 
BDNF into the extracellular milieu results in the rapid activation of TrkB receptors and NMDA receptors 
to promote neuronal survival and enhance neurotransmission [217]. Activation of TrkB leads to the 
downstream activation of Akt which in turn activates mTORC1 to increase neurogenesis, differentiation 
and an increase in the number of mature neurons. The increase in mature neurons can integrate into 
and enhance functional neuronal networks which in turn enhances cognitive and behavioral outcome. 
It is also possible that ALA binds to the peroxisome proliferator activated receptors gamma (PPARγ) 
and/or peroxisome proliferator activated receptors alpha (PPARα) along with the retinoic acid 
receptor (RXR) in the nuclei of microglia to reduce the release of pro-inflammatory mediators such as 
interleukin-1 beta (IL-1β), interleukin-6 (IL-6), the inducible form of nitric oxide (iNOS), tumor necrosis 
factor (TNF), cyclo-oxygenase-2 (COX-2) and reactive oxygen species (ROS) possibly by reducing the 
activity of NF-κB.  

Activation of mTORC1 phosphorylates and inactivates the eIF4E-binding protein (4E-BPs), 
facilitating translation initiation by releasing the inhibition of eukaryotic initiation factor 4E (eIF4E), 
which is a crucial initiation factor in cap-dependent translation and activates the p70 S6 kinase, an 
enzyme that controls translation at a number of levels. This machinery is likely critically involved in 
the increase in newborn neurons, the differentiation process leading to integration and new synapse 
formation within neuronal networks involved in learning and memory in the CA3 subfield of the 
hippocampus. We propose that ALA may exert an anti-inflammatory effect after brain injury. This 
anti-inflammatory effect may be on microglia, the resident macrophages of the brain and spinal cord. 
Resting microglia are thought to develop into primed microglia after brain injury occurs and along 
with peripheral humoral pro-inflammatory mediators such as IL-1β, IL-6, and/or chemokine ligand 1 

Figure 3. Overview of possible mechanisms involved in ALA-mediated neurorestoration. Injury to
the brain results in the excessive release of glutamate (Glu) leading to the overactivation of NMDA
receptors and neuronal cell death. Administration of ALA results in the formation of lipid rafts, an
increase in activated nuclear factor kappaB (NF-κB) levels and cyclic AMP response element binding
protein (CREB) [216] and enhanced levels of BDNF mRNA and protein in the hippocampus. Release
of mature BDNF into the extracellular milieu results in the rapid activation of TrkB receptors and
NMDA receptors to promote neuronal survival and enhance neurotransmission [217]. Activation
of TrkB leads to the downstream activation of Akt which in turn activates mTORC1 to increase
neurogenesis, differentiation and an increase in the number of mature neurons. The increase
in mature neurons can integrate into and enhance functional neuronal networks which in turn
enhances cognitive and behavioral outcome. It is also possible that ALA binds to the peroxisome
proliferator activated receptors gamma (PPARγ) and/or peroxisome proliferator activated receptors
alpha (PPARα) along with the retinoic acid receptor (RXR) in the nuclei of microglia to reduce the
release of pro-inflammatory mediators such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), the
inducible form of nitric oxide (iNOS), tumor necrosis factor (TNF), cyclo-oxygenase-2 (COX-2) and
reactive oxygen species (ROS) possibly by reducing the activity of NF-κB.
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For example, ALA has been shown to increase BDNF mRNA and protein levels in the
hippocampus, in cultured hippocampal neurons and in neural stem cells [3]. The increase in BDNF
mRNA may be mediated in part by the well-established increase in activated NF-κB levels in the
hippocampus [20,21]. Activation of NF-κB via the canonical pathway involves the phosphorylation
of the inhibitor, IκB at Ser32. Once phosphorylated mainly by Iκ kinase, IκB dissociates from
NF-κB and is degraded by the 26 s proteasome (Figure 3). Activated NF-κB translocates to the
nucleus where it binds to and activates gene transcription as long as the p65 subunit is one of
the dimer subunits. The increase in the endogenous expression of mature BDNF protein levels by
ALA stimulates neurogenesis that would be expected to exert multiple effects. Research activities
focusing on neural stem cells have shown that promoting their proliferation or grafting/infusing
them by different routes into the brain leads to neurological improvement in different brain disease
models [212–215]. This benefit does not come only by their capacity to replace lost neurons. They
can also trigger several other mechanisms, such as the induction of survival-promoting neurotrophic
factors or promote the restoration of synaptic transmitter release function by integrating into existing
synaptic networks, and thus improve the functional circuitry [164]. Administration of three injections
of α-linolenic acid promote neural stem cell proliferation, synaptogenesis and synaptic function [3].
It is worth noting that neural stem cells can induce the transcription of protective factors, such as
BDNF, which would be expected to modify the ischemic environment and promote neuroprotection.
In the scenario where administration of ALA induces the formation of lipid rafts, NMDA receptors
and TrkB would be spatially and temporally close together leading to enhanced functional efficacy.
This in turn would lead to a rapid activation of TrkB receptors and the signal transduction pathway
resulting in activated Akt which in turn activates mTORC1. The activation of mTORC1 appears to be
an essential requirement for ALA-induced neurogenesis.

Activation of mTORC1 phosphorylates and inactivates the eIF4E-binding protein (4E-BPs),
facilitating translation initiation by releasing the inhibition of eukaryotic initiation factor 4E (eIF4E),
which is a crucial initiation factor in cap-dependent translation and activates the p70 S6 kinase, an
enzyme that controls translation at a number of levels. This machinery is likely critically involved in
the increase in newborn neurons, the differentiation process leading to integration and new synapse
formation within neuronal networks involved in learning and memory in the CA3 subfield of the
hippocampus. We propose that ALA may exert an anti-inflammatory effect after brain injury. This
anti-inflammatory effect may be on microglia, the resident macrophages of the brain and spinal
cord. Resting microglia are thought to develop into primed microglia after brain injury occurs and
along with peripheral humoral pro-inflammatory mediators such as IL-1β, IL-6, and/or chemokine
ligand 1 (CXCL-1) develop into activated microglia. Activated microglia release pro-inflammatory
cytokines and the ongoing neuroinflammation is thought to result in the loss of neuronal integrity
and neuronal cell death. The peroxisome proliferator-activated receptors (PPAR) are a family
of transcription factors that regulate gene expression and act by forming heterodimers with the
retinoic-X-receptor [218]. PPARα and PPARγ receptors modulate the expression of inflammatory
genes [219,220]. We hypothesize that ALA binds to PPARγ or PPARα to reduce the synthesis and/or
release of pro-inflammatory cytokines from resident microglia possibly by reducing the activity of
NF-κB after brain injury [221] (Figure 3). Taken together, ALA targets multiple pathways in brain
to promote neuronal survival and improve cognitive function after brain injury. These fundamental
mechanisms may be vital to protect against other acute and chronic injuries in the central nervous
system that involve NMDA receptor-mediated excitotoxicity.

12. Conclusions

In summary, ALA is a nutraceutical with a very wide safety margin. The pleiotropic properties
activate transcriptional and translational programs in brain to promote neuronal survival and
improve cognitive function but the optimum dose to mediate these effects in humans will require
additional studies. The diverse and mechanistically distinct pathways activated by ALA serve as a
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blueprint for restoring brain function and as such may be efficacious against other acute and chronic
neurodegenerative disorders.
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