Supplementary Materials

1. General Information

All chemicals, precatalysts **2–6**, sulfocalixarene **1** and substrate Diethyl diallylmalonate **9** were purchased from Acros[®], Aldrich[®], Merck[®] or VWR[®] and used without further purification, unless otherwise specified. All solvents were distilled on the rotary evaporator before appliance. Substrate *N*-Tosyldiallylamine **7** was synthesized according to literature procedure [1]. All NMR spectra were measured at room temperature (298 K) on a BRUKER Avance 400 spectrometer. Chemical shifts (δ) are expressed in ppm and either refers to not-deuterated amount of used solvents [δ_{H} (CDCl₃) = 7.26, δ_{H} (D₂O) = 4.79, δ_{H} (MeOD-*d*₄) = 3.31, δ_{H} (DMSO-*d*₆) = 2.50] [2]. UV/vis spectra were detected via Cary Varian 60 spectrometer. Catalysis reactions were stirred via microplate shaker IKA[®] MS 3 basic.

2. ¹H-NMR Spectra of RCM Substrates and Products

Figure S1. Extract of ¹H-NMR spectra (rt, 400.13 MHz, D₂O/MeOD- d_4) of RCM substrate 9. *1 = MeOH; *2 = H₂O.

Figure S2. Extract of ¹H-NMR spectra (rt, 400.13 MHz, $D_2O/MeOD-d_4$) of complete conversion of substrate **9** to product **10** using 5 mol % precatalyst **5a**. *1 = MeOH; *2 = H₂O.

Figure S3. Extract of ¹H-NMR spectra (rt, 400.13 MHz, CDCl₃) of RCM substrate 7. $*1 = MeOH; *2 = H_2O.$

Figure S4. Extract of ¹H-NMR spectra (rt, 400.13 MHz, D₂O/MeOD- d_4) of RCM of substrate 7 to 91% product **8** using 5 mol % catalyst **4**. *1 = MeOH; *2 = H₂O.

3. Spectra of Solubilisation Experiments

Procedure: A mixture of the catalyst **2** (5 mg, 6.08 μ mol), and a supramolecular additive **1** (7.27 mg, 6.08 μ mol), when applicable in D₂O or MeOD (1 mL) as the solvent was stirred at room temperature and a constant stirring rate of 1000 rpm with exclusion of light. After stirring for a certain time, the mixture was analyzed by ¹H-NMR spectroscopy.

Figure S5. ${}^{31}P{}^{1}H$ NMR measured in D₂O.

Figure S6. ${}^{31}P{}^{1}H$ NMR measured in MeOD.

Figure S7. UV/vis spectra of precatalyst 2 and additive 1 in MeOH.

Figure S8. UV/vis spectra of precatalyst 2 and additive 1 in H₂O.

4. Binding Studies

4.1. $[Cy_3PH]^+[BF_4]^-$ with Sulfocalixarenes 1

 $c_{\text{Rezeptor}}/c_{\text{Substrat}}$

Figure S9. Binding isotherm of receptor **1a**: Plot $\Delta \delta_0$ against c_{receptor}/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:1-binding model; $\Delta \delta = \delta_{\text{receptor/substrate}} - \delta_{\text{substrate}}$).

 $c_{\text{receptor}}/c_{\text{substrate}}$

Figure S10. Binding isotherm of receptor **1b**: Plot $\Delta \delta_0$ against c_{receptor}/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:1-binding model; $\Delta \delta = \delta_{\text{receptor/substrate}} - \delta_{\text{substrate}}$).

Figure S11. Binding isotherm of receptor **1c**: Plot $\Delta \delta_0$ against creceptor/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:2-binding model; $\Delta \delta = \delta_{\text{receptor/substrate}} - \delta_{\text{substrate}}$).

4.2. Cy₃P=O with Sulfocalixarenes **1b**

Figure S12. Binding isotherm of receptor **1b** in D₂O: Plot $\Delta\delta_0$ against creceptor/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:1-binding model; $\Delta\delta = \delta_{\text{receptor/substrate}} - \delta_{\text{substrate}}$).

Table S1. Association constant, observed chemical shifts and complexation induced chemical shift (CIS) for the binding process of receptor **1b** with Cy_3PO as guest in D_2O .

$K_{Ass} = 28.8 \pm 1.15 \text{ M}^{-1}$	H^{1}	H^2	H ³	H^4	H ⁵	H^6
δ_0 (ppm)	1.2688	1.3840	1.7218	1.8109	1.8692	2.0092
$\Delta\delta_0$ (ppm)	-0.1649	-0.1172	-0.2852	-0.1974	-0.1178	-0.0850
$\Delta\delta_{calc}$ (ppm)	-0.5458	-0.3924	-0.9371	-0.6679	-0.4035	-0.2941

 $\Delta \delta_0 = \delta_{RS} - \delta_0$ determined by NMR Titration experiments measured in D₂O and MeOD as internal standard; $\Delta \delta_{calc}$ complexation induced shift, calculated by extrapolation with HypNMR.

4.3. Substrate 7 with Sulfocalixarenes 1

Figure S13. Binding isotherm of receptor **1a** in D₂O: Plot $\Delta \delta_0$ against c_{receptor}/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:1-binding model; $\Delta \delta = \delta_{\text{receptor/substrate}} - \delta_{\text{substrate}}$).

$K_{Ass} = 22.4 M^{-1}$	\mathbf{H}^{1}	H^2	H ³	H^4	H ⁵	H^6
δ ₀ (ppm)	2.254	3.6607	7.2923	7.5918	5.0662	5.5182
$\Delta\delta_0 (ppm)$	-0.1608	0.0673	-0.0223	0.0566	0.0713	0.0802
$\Delta \delta_{\text{calc}}$ (ppm)	-0.6564	0.2466	-0.1071	0.1949	0.2605	0.2989

Table S2. Association constant, observed chemical shifts and complexation induced chemical shift (CIS) for the binding process of receptor 1a with 7 as guest in D₂O.

 $\Delta \delta_0 = \delta_{RS} - \delta_0$ determined by NMR Titration experiments measured in D₂O and DMSO as internal standard; $\Delta \delta_{calc}$ complexation induced shift, calculated by extrapolation with HypNMR.

Figure S14. Binding isotherm of receptor **1b** in D₂O: Plot $\Delta\delta_0$ against creceptor/c_{substrate} (Dots: experimental measured chemical shift; solid line: fit of the experimental data using a 1:1-binding model; $\Delta\delta = \delta_{receptor/substrate} - \delta_{substrate}$).

Table S3. Association constant, observed chemical shifts, and complexation induced chemical shift (CIS) for the binding process of receptor **1b** with **7** as guest in D_2O .

$K_{Ass} = 36.3 M^{-1}$	H^{1}	H^2	H ³	\mathbf{H}^{4}	H ⁵	H^6
δ_0 (ppm)	2.2536	3.6531	7.2939	7.5710	5.0664	5.5180
$\Delta\delta_0$ (ppm)	-0.0772	-0.0214	-0.0424	-0.0229	-0.0332	-0.0211
$\Delta \delta_{calc} (ppm)$	-0.3951	-0.1146	-0.2171	-0.0189	-0.1708	-0.1101

 $\Delta \delta_0 = \delta_{RS} - \delta_0$ determined by NMR Titration experiments measured in D₂O and DMSO as internal standard; $\Delta \delta_{calc}$ complexation induced shift, calculated by extrapolation with HypNMR.

References

- 1. So, C.M.; Kume, S.; Hayashi, T. Rhodium-Catalyzed Asymmetric Hydroarylation of 3-Pyrrolines Giving 3-Arylpyrrolidines: Protonation as a Key Step. J. Am. Chem. Soc. 2013, 135, 10990–10993.
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics* 2010, 29, 2176–2179.