Next Article in Journal
Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines
Previous Article in Journal
A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogPO/W, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability
Article Menu

Export Article

Open AccessArticle
Molecules 2015, 20(10), 18352-18366; doi:10.3390/molecules201018352

Characterization and Quantification by LC-MS/MS of the Chemical Components of the Heating Products of the Flavonoids Extract in Pollen Typhae for Transformation Rule Exploration

1
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
2
Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China
3
Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing 210023, China
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 5 August 2015 / Revised: 28 September 2015 / Accepted: 1 October 2015 / Published: 8 October 2015
(This article belongs to the Section Natural Products)
View Full-Text   |   Download PDF [853 KB, uploaded 8 October 2015]   |  

Abstract

The Traditional Chinese Medicine herbs Pollen Typhae and Pollen Typhae Carbonisatus have been used as a hemostatic medicine promoting blood clotting for thousands of years. In this study, a reliable, highly sensitive method based on LC-MS/MS has been developed for differentiation of the heating products of total flavonoids in Pollen Typhae (FPT-N). Twenty three peaks were detected and 18 peaks have been structurally identified by comparing retention times, high resolution mass spectrometry data, and fragment ions with those of the reference substances and/or literature data. Additionally, 15 compounds have been quantified by multiple reaction monitoring in the negative ionization mode. It was found that the contents of the characterized compounds differed greatly from each other in FPT-N samples. Among them, the content of huaicarbon B significantly increased at first, while it decreased after heating for 25 min, which could be considered as the characteristic component for distinguishing FPT-N. The present study provided an approach to rapidly distinguish the differences of FPT-N samples. In addition, the actively summarized characteristic fragmentation might help deducing the structure of unknown flavonols compounds. Furthermore, transformation rules of flavonoids during the heating process in carbonisatus development could contribute to hemostatic therapeutic component exploration. View Full-Text
Keywords: chemical transformation; flavonoids; heating products; liquid chromatography-tandem mass spectroscopy; Pollen Typhae chemical transformation; flavonoids; heating products; liquid chromatography-tandem mass spectroscopy; Pollen Typhae
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chen, Y.; Yu, H.; Wu, H.; Pan, Y.; Wang, K.; Jin, Y.; Zhang, C. Characterization and Quantification by LC-MS/MS of the Chemical Components of the Heating Products of the Flavonoids Extract in Pollen Typhae for Transformation Rule Exploration. Molecules 2015, 20, 18352-18366.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top