Supplementary Materials

S1. Synthesis

Basket 1 was synthesized by optimized procedure shown in the Scheme S1 below [1]. In particular, we discovered that palladium-catalyzed cyclotrimerization of dibromoolefin S3 would give compound S4 in 20% yield [1–3]. Compound 2 (Figure 1, main text) was obtained following an already published procedure [4].

S2. Variable Temperature ¹H-NMR Spectroscopic Study of Basket 1

Figure S1. Variable temperature ¹H-NMR spectra (400 MHz) of basket 1 (1.1 mg) suspended in *m*-xylene- d_{10} (0.5 mL) at 298.0–348.0 K.

S3. ¹H-NMR Binding Studies

Since the rate of chemical exchange between basket 1 in its free [1] and complexed [1–2] forms was slow on the NMR time scale (300.1 K), in solvents 3–6, we integrated N-H signals corresponding to 1 (in its free and complexed forms) to calculate binding constants K_a (M⁻¹). Figures S2–S5 depict ¹H-NMR spectra (400 MHz) of basket 1, in solvents 3–6, containing various quantities of guest 2; note that a standard solution of guest 2 (see below) was used in all experiments.

Figure S2. ¹H-NMR spectra (400 MHz, 300.1 K) of basket **1** (0.54 mg) in benzene-d₆ (0.5 mL) obtained upon an incremental addition of a standard solution of CH_3CBr_3 **2** in benzene-d₆ (250 mM).

Figure S3. ¹H-NMR spectra (400 MHz, 300.1 K) of basket **1** (0.54 mg) in toluene- d_8 (0.5 mL) obtained upon an incremental addition of a standard solution of CH₃CBr₃ **2** in toluene- d_8 (112 mM).

Figure S4. ¹H-NMR spectra (400 MHz, 300.1 K) of basket **1** (0.54 mg) in *m*-xylene- d_{10} (0.5 mL) obtained upon an incremental addition of a standard solution of CH₃CBr₃ **2** in *m*-xylene- d_{10} (250 mM).

Figure. S5. ¹H-NMR spectra (400 MHz, 300.1 K) of basket **1** (0.54 mg) in mesitylene- d_{12} (0.5 mL) obtained upon an incremental addition of a standard solution of CH₃CBr₃ **2** in mesitylene- d_{12} (250 mM).

S4. DOSY NMR Experiments

Figure S6. ¹H DOSY NMR spectrum (500 MHz, 300.1 ± 0.5 K) of basket 1 (0.88 mM) and CH₃CBr₃ 2 (98.6 mM) in benzene-d₆ 3 (0.5 mL).

Figure S7. ¹H DOSY NMR spectrum (500 MHz, 300.1 \pm 0.5 K) of basket 1 (0.88 mM) and CH₃CBr₃ 2 (10 mM) in toluene-d₈ 4 (0.5 mL).

Figure S8. ¹H DOSY NMR spectrum (500 MHz, 300.1 ± 0.5 K) of basket 1 (0.88 mM) and CH₃CBr₃ 2 (19.4 mM) in *m*-xylene-d₁₀ 5 (0.5 mL).

Figure S9. ¹H DOSY NMR spectrum (500 MHz, 300.1 \pm 0.5 K) of basket 1 (0.88 mM) and CH₃CBr₃ 2 (16.7 mM) in mesitylene-d₁₂ 6 (0.5 mL).

S5. ¹H, ¹H-EXSY Experiments

Sample Preparation: All deuterated solvents (3–6) were degassed by standard freeze-thaw procedure and then stored under nitrogen in a glove box. All solutions of 1 and 2 were, for EXSY experiments, prepared in J. Young NMR tubes purchased from Norell.

Procedure for 2-D ¹H EXSY Experiment: A solution of basket 1 and guest 2, in solvent 3–6, was kept at 300.0 ± 0.1 K inside the J. Young NMR tube for 30 min. The ¹H spin-lattice relaxation times (T₁) were, for free guest 2, determined in each solvent by standard inversion-recovery pulse sequence. Following, a series of gradient EXSY experiments were run with a relaxation delay of 5*T₁ and mixing times (τ_m) of 0 ms and three others ranging from 250 ms to 450 ms such that the cross-peaks were clearly resolved. Each of the 128 F1 increments was the accumulation of at least 4 scans. The corresponding integrals were determined using MestReNova software from Mestrelab Research, after the phase and baseline corrections in both dimensions. The magnetization exchange rate constants (k_{out} *) were, at each mixing time τ_m , calculated using the EXSYCalc program (Mestrelab Research) [5]. The dissociation k_{out} rate constants were then obtained as: $k_{out} = k_{out}$ *. All EXSY experiments were repeated twice. The mean value of k_{out} was reported with standard deviation as an experimental error (Table 1).

Table S1. Rate coefficients k_{out} (s⁻¹) (see Table below) were obtained from ¹H, ¹H-EXSY experiments (300.1 K) corresponding to CH₃CBr₃ **2** departing basket **1** (0.53 mg) in benzene-d₆ **3** (0.5 mL). We completed two sets of measurements with different quantity of CH₃CBr₃ at 300.1 ± 0.1 K.

Data	En Carat	Mixing Time		
Kate	Eq. Guest	300 ms	350 ms	400 ms
и г ⁻ 1а	17	/	19.137	17.996
			18.680	17.745
κ_{out} [S]	22	21.357	21.969	16.544
	$22 \qquad 21.357 \\ 22.678 $	19.805	17.795	

Figure S10. ¹H, ¹H-EXSY spectrum (400 MHz, 300.1 ± 0.1 K) of CH₃CBr₃ **2** (17 molar equivalents) exchanging to/from basket **1** (0.53 mg) in benzene-d₆ **3** (0.5 mL); note that for this particular experiment the mixing time τ_m was set to 400 ms.

Mixing Time Eq. Guest Rate 300 ms 350 ms 400 ms 12.207 11.083 14.235 8.0 13.688 8.672 10.559 11.368 9.810 12.471 $k_{out} [s^{-1}]$ 12 10.848 10.284 9.983 14.672 11.935 13.650 21 12.933 11.990 12.565

Table S2. Rate coefficients k_{out} (s⁻¹) (see Table below) were obtained from ¹H, ¹H-EXSY experiments (300.1 K) corresponding to CH₃CBr₃ **2** departing from basket **1** (0.60 mg) in toluene-d₈ **4** (0.5 mL). We completed three sets of measurements with different quantity of CH₃CBr₃ at 300.1 ± 0.1 K.

Figure S11. ¹H, ¹H-EXSY spectrum (400 MHz, 300.1 ± 0.1 K) of CH₃CBr₃ **2** (8.0 molar equivalents) exchanging to/from basket **1** (0.60 mg) in toluene-d₈ **4** (0.5 mL); note that for this particular experiment the mixing time τ_m was set to 300 ms.

Mixing Time Eq. Guest Rate 300 ms 400 ms 450 ms 9.219 8.026 7.135 3.0 8.026 8.558 8.223 5.899 7.377 6.439 5.6 7.539 6.997 6.722 8.758 8.717 6.687 10 8.434 7.360 6.166 $k_{out} [s^{-1}]$ 11.803 9.888 9.202 15 9.937 9.570 10.061 10.404 9.090 20 10.040 9.628 8.925 7.535 22 7.691 7.625 7.832 7.645

Table S3. Rate coefficients k_{out} (s⁻¹) (see Table below) were obtained from ¹H, ¹H-EXSY experiments (300.1 K) corresponding to CH₃CBr₃ **2** departing from basket **1** (1.1 mg) in *m*-xylene-d₁₀ **5** (0.5 mL). We completed six sets of measurements with different quantity of CH₃CBr₃ at 300.1 ± 0.1 K.

Figure S12. ¹H, ¹H-EXSY spectrum (400 MHz, 300.1 ± 0.1 K) of CH₃CBr₃ **2** (10 molar equivalents) exchanging to/from basket **1** (1.1 mg) in *m*-xylene-d₁₀ **5** (0.5 mL); note that for this particular experiment the mixing time τ_m was set to 400 ms.

Table S4. Rate coefficients k_{out} (s⁻¹) (see Table below) were obtained from ¹H, ¹H EXSY experiments (300.1 K) corresponding to CH₃CBr₃ **2** departing from basket **1** (0.79 mg) in mesitylene-d₁₂ **6** (0.5 mL). We completed four sets of measurements with different quantity of CH₃CBr₃ at 300.1 ± 0.1 K.

Data	En Carat	Mixing Time		
Kate	Eq. Guest	300 ms	350 ms	400 ms
$k_{out} [s^{-1}]$	4.4	3.758	3.914	3.710
		3.304	3.923	3.710
	8.3	3.065	3.479	3.147
		3.104	3.052	3.097
	$12 \qquad 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\$	2.524	2.288	/
		2.583	2.197	
	20	4.512	4.657	4.314
		4.582	4.742	4.773

Figure S13. ¹H, ¹H-EXSY spectrum (400 MHz, 300.1 ± 0.1 K) of CH₃CBr₃ **2** (4.4 molar equivalents) exchanging to/from basket **1** (0.79 mg) in mesitylene- d_{12} **6** (0.5 mL); note that for this particular experiment the mixing time τ_m was set to 350 ms.

S6. Variable Temperature ¹H, ¹H EXSY-NMR Experiments

Table S5. ¹H, ¹H-EXSY NMR experiments were completed at 306.3 ± 0.1 , 311.5 ± 0.1 , and 316.6 ± 0.1 K to obtain rate coefficients k_{out} (s⁻¹) for guest CH₃CBr₃ **2** (8.0 molar equivalents, 7.5 mM) departing basket **1** (0.54 mg) in *m*-xylene-d₁₀ **5** (0.5 mL).

Rate	T (K)	Mixing Time		
		300 ms	400 ms	450 ms
<i>k_{out}</i> [s ⁻¹]	306.3	9.697	9.124	9.361
		9.186	9.349	9.505
	211.5	15.247	13.531	12.456
	311.5	15.607	14.272	14.950
	316.6	17.114	16.602	17.246
		17.660	17.246	16.656

S7. Quantifying the Solubility of Basket 1

The solubility of basket 1 was measured in solvents 3-6 at 300.1 ± 0.1 K. First, we prepared a saturated solution of 1 in each solvent such that a precipitate always remained at the bottom of the container. Following, we added hexafluorobenzene (0.086 mmol) as an internal standard. ¹⁹F NMR spectra (376.54 MHz; Bruker Biospin instrument) were recorded: 128 scans with 90° pulse sequence and relaxation delay $\tau_d = 20$ s [6]. The solubility was calculated on the basis of the integration ratio of two ¹⁹F signals: -75.81 ppm for basket 1 and -164.07 ppm for hexafluorobenzene (see below).

Figure S14. ¹⁹F NMR spectra (376.54 MHz, 300.1 \pm 0.1 K) of basket **1** in solvents **3–6** (from bottom to top) in the presence of C₆F₆ (0.15 mM) as an internal reference.

S8. Variable Temperature ¹H-NMR Studies of [1–2] Complex

Variable temperature ¹H-NMR Spectra were recorded for basket **1** (0.54 mg) and guest **2** (8.8–99.4 mM) in solvents **3–6**. The coalescence temperature of the signal(s) (~4.3 ppm) corresponding to CH_2 hydrogen nuclei (H₄, Figure 2) in **1** was found to be a function of the bulk solvent. That is to say, the rate of the racemization of basket **1** was found slower in bigger solvents (see Table S6).

Table S6. Coalescence temperature of basket 1 in solvents 3-6 obtained from variable temperature ¹H-NMR spectroscopy study.

Solvent	3	4	5	6
Coalescence T (K)	<282.6	283.7-287.8	287.8-291.9	299.1-300.1

Figure S15. Variable temperature ¹H-NMR spectra (400 MHz) of a solution of basket 1 (0.54 mg) containing CH₃CBr₃ **2** (99.4 mM) in benzene-d₆ **3** (0.5 mL).

Figure S16. Variable temperature ¹H-NMR spectra (400 MHz) of a solution of basket 1 (0.54 mg) containing CH₃CBr₃ **2** (8.8 mM) in toluene- d_8 **4** (0.5 mL).

Figure S17. Variable temperature ¹H-NMR spectra (400 MHz) of a solution of basket 1 (0.54 mg) containing CH₃CBr₃ **2** (44 mM) in *m*-xylene- d_{10} **5** (0.5 mL).

Figure S18. Variable temperature ¹H-NMR spectra (400 MHz) of a solution of basket **1** (0.54 mg) containing CH₃CBr₃ **2** (19 mM) in mesitylene- d_{12} **6** (0.5 mL).

S9. ¹H- and ¹³C-NMR Spectra of Compound S2 and S3

Figure S19. ¹H-NMR spectrum (400 MHz, CDCl₃) of compound S2.

Figure S20. ¹³C-NMR spectrum (100 MHz, CDCl₃) of compound S2.

Figure S21. 2D HSQC NMR spectrum (100 MHz, CDCl₃) of compound S2.

Figure 22. ¹H-NMR spectrum (400 MHz, CDCl₃) of compound **S3**.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

Figure S24. ¹H-NMR spectrum (400 MHz, CDCl₃) of *anti* diastereomer of compound S4.

References

- 1. Maslak, V.; Yan, Z.; Xia, S.; Gallucci, J.; Hadad, C.M.; Badjić, J.D. Design, synthesis, and conformational dynamics of a gated molecular basket. *J. Am. Chem. Soc.* **2006**, *128*, 5887–5894.
- Wang, B.; Rieth, S.; Badjic, J.D. Tuning the rate of molecular translocation. J. Am. Chem. Soc. 2009, 131, 7250–7252.
- Hermann, K.; Sardini, S.; Ruan, Y.; Yoder, R.J.; Chakraborty, M.; Vyas, S.; Hadad, C.M.; Badjić, J.D. Method for the preparation of derivatives of heptiptycene: Toward dual-cavity baskets. *J. Org. Chem.* 2013, 78, 2984–2991.
- 4. Rieth, S.; Bao, X.; Wang, B.; Hadad, C.M.; Badjic, J.D. Gated molecular recognition and dynamic discrimination of guests. *J. Am. Chem. Soc.* **2010**, *132*, 773–776.
- Zaolnai, Z.; Juranic, N.; Vikic-Topic, D.; Macura, S. Quantitative determination of magnetization exchange rate constants from a series of Two-Dimensional Exchange NMR spectra. J. Chem. Inf. Comput. Sci. 2000, 40, 611–621.
- Delpuecha, J.-J.; Hamza, M.A.; Serratrice, G.; Stébé, M.-J. Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. J. Chem. Phys. 1979, 70, 2680–2687.