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Abstract: The development of new approaches to obtain optically pure β-hydroxy esters is 

an important area in synthetic organic chemistry since they are precursors of other high 

value compounds. Herein, the kinetic resolution of racemic β-hydroxy esters using a 

planar-chiral DMAP derivative catalyst is presented. Following this procedure, a range of 

aromatic β-hydroxy esters was obtained in excellent selectivities (up to s = 107) and high 

enantiomeric excess (up to 99% ee). Furthermore, the utility of the present method was 

demonstrated in the synthesis of (S)-3-hydroxy-N-methyl-3-phenylpropanamide, a key 

intermediate for bioactive molecules such as fluoxetine, tomoxetine or nisoxetine, in its 

enantiomerically pure form. 

Keywords: non-enzymatic kinetic resolution; β-hydroxy esters; planar-chiral DMAP 

catalyst; ferrocenyl catalyst 

 

1. Introduction 

In the recent decades, the development of methods for asymmetric synthesis of organic molecules 

has gained increasing importance [1]. As a representative example, the development of approaches to 
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achieve optically pure β-hydroxy esters has emerged as an important issue in synthetic organic 

chemistry [2], since these chiral derivatives have received special attention due to their importance as 

intermediates in the synthesis of a variety of important chemicals, such as β-lactams, pheromones and 

carotenoids [3,4]. In addition, β-hydroxy esters are also precursors to norepinephrine or serotonin 

reuptake inhibitors that are an important class of drugs. For example, fluoxetine (Prozac), which is 

formulated as a racemate, is one of the most widely prescribed antidepressants. It has been shown that 

the different enantiomers display different pharmacological properties [5–7] and therefore the 

enantioselective synthesis of enantiopure compounds is of interest [8–12]. Several routes to produce 

optically pure 1,3-hydroxy esters have been explored, including asymmetric aldol reaction [13–16], the 

Reformatsky reaction [17–22], or regioselective epoxide ring opening [23–26]. The most widely studied 

method to achieve this kind of derivatives is asymmetric reduction, using either biocatalysts [4,27–30] or 

organometallic complexes [31–36] (Scheme 1). 

Scheme 1. Different asymmetric approaches to β-hydroxy esters. 

  

In comparison, kinetic resolution (KR) of β-hydroxy esters has been less studied. There are four 

different kinetic resolution approaches to prepare β-hydroxy esters including: hydrolytic KR [37–40], 

oxidative KR [41,42], acylation reactions [43–45], and dehydrative KR [46] (Scheme 2a–d). 

Scheme 2. Kinetic resolution alternatives of β-hydroxy esters: (a) hydrolytic KR; (b) 

oxidative KR, (c) acylative KR and (d) dehydrative KR. 

 

With the exception of oxidative KR, which takes place in the presence of a palladium complex 

containing (−)-sparteine ligand [41,42], and the dehydrative KR, in which a chiral aminoalcohol in the 
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presence of a zinc complex dehydrates the chiral alcohol [46], the remaining examples described in 

bibliography to date are enzymatic processes [37–40,43–45]. 

In the last decade, several organocatalysts for the enantioselective acylation of alcohols have been 

developed as an alternative to enzymes [47]. In 1996, Vedejs and Chen described the first example of a 

chiral DMAP derivative catalyst for the kinetic resolution of secondary aryl alcohols [48,49]. 

Independently, Fu and co-workers developed the synthesis of planar-chiral ferrocenyl DMAP 

analogues, e.g., (−)-1, which catalyzed the kinetic resolution of secondary aryl [50,51], allylic [52] and 

propargylic [53] alkyl alcohols with good selectivity factors. In addition, Fu and co-workers recently 

reported the compatibility of (−)-1 with a ruthenium-based racemization catalyst representing the first 

highly selective non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols [54,55]. 

The advantages of using the planar-chiral ferrocene DMAP derivative are that both (S)-(−)-1 and 

(R)-(+)-1 enantiomers are commercially available providing an easy access to both enantiomers of the 

substrates. Further, the kinetic resolution can be performed with low loading of the planar-chiral 

DMAP catalyst (1–2 mol %), the catalyst can easily be recovered after the reaction by simple flash 

chromatography [50,51], and it is possible to combine it with a racemization catalyst for an appealing 

DKR [54,55]. We have focused our effort in expanding the substrate scope of the KR by (−)-1 to sec-aryl 

alcohols that contains an additional heteroatom-containing functional group in the alkyl moiety [56,57] 

(Scheme 3), which includes aromatic β-azido alcohols and β-hydroxy phosphonate alcohols, that are 

important intermediates for the synthesis of bioactive molecules. 

Scheme 3. Kinetic resolution of secondary aryl alcohol catalyzed by planar-chiral DMAP 

derivative (−)-1. 

 

In this study, we wish to present the non-enzymatic kinetic resolution of a variety of β-hydroxy 

esters with good to excellent selectivities, using the planar-chiral ferrocenyl DMAP catalyst (−)-1. 

Furthermore, the utility of the present method could be demonstrated in the synthesis of the  

(S)-3-hydroxy-N-methyl-3-phenylpropanamide, which is a key intermediate for highly selective 

norepinephrine or serotonin reuptake inhibitor aryloxyphenylpropylamine derivatives, such as fluoxetine, 

tomoxetine or nisoxetine, in their enantiomerically pure forms. 
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2. Results and Discussion 

2.1. Substrate Screening 

In accordance with previous studies [51,56,57], the kinetic resolution of secondary alcohols 

catalyzed by the planar-chiral DMAP catalyst (−)-1 proceeds in an efficient and selective way in  

tert-amyl alcohol and in the presence of acetic anhydride (0.75 equiv.) as acylation agent. Employing 

these conditions, the influence of the temperature and addition of triethylamine was investigated in the 

kinetic resolution of rac-(2a), which was used as a model substrate in order to find the best conditions 

for the selectivity of the reaction. Using the standard conditions, it was found that the selectivity factor 

increases when the reaction was performed at lower temperature, but at the expense of the reaction rate 

with a subsequent increase of the reaction times. Previously, the addition of triethylamine increased the 

rate of the reaction [50–52]. Unfortunately, triethylamine catalyzed the unselective acetylation of the 

more reactive β-hydroxy esters, resulting in a decrease of the selectivity. For this reason, the rest of the 

kinetic resolution studies of the β-hydroxy esters were performed at a lower temperature (0 °C) and 

without addition of base. 

Next, we wanted to explore the influence of the bulkiness of the substituent in the β-position to the 

hydroxyl group on the selectivity of the kinetic resolution. Kinetic resolutions were performed for the 

substrates (2a–i) containing either ethyl or the bulkier tert-butyl carboxylate group using the standard 

conditions. The selectivity factor was determined from the enantiomeric excess of the chiral alcohol 

and the acetylated product after 3 h of reaction (Entries 1 to 9, Table 1). 

Table 1. Selectivity for the kinetic resolution of β-hydroxy-β-aryl esters (rac-2) by (−)-1 a. 

 

Entry R Ar Time/h eeROH (%) b eeROAc (%) b Conv. (%) c s c 

1 Et Ph (2a) 3 32.4 95.4 25.4 58 
2 Et 4-NO2-Ph (2b) 3 84.2 92.8 44.6 71 
3 Et 4-MeO-Ph (2c) 3 39.8 94.6 29.6 53 
4 tert-Bu Ph (2d) 3 28.8 95.2 23.2 54 
5 tert-Bu 4-NO2-Ph (2e) 3 88.4 93.6 48.6 89 
6 tert-Bu 4-MeO-Ph (2f) 3 39.4 96.0 29.1 72 
7 tert-Bu 2-Naphthyl (2g) 3 83.4  95.2 46.7 107
8 tert-Bu 4-Cl-Ph (2h) 3 75.0 95.2 44.1 92 
9 tert-Bu 2,6-Cl2-Ph (2i) 3 40.4 96.6 29.5 86 

a: Reaction conditions: rac-(2) (0.15 mmol), Ac2O (0.75 equiv.), (−)-1 (0.003 mmol, 2 mol %) in 0.6 mL of 

tert-amyl alcohol at 0 °C; b: Determined by HPLC; c: Selectivity and conversion calculated using the 

following equations: s = ln[(1 − c)(1 − eeROH)]/ln[(1 − c)(1 + eeROH)] and c = eeROH/(eeROH + eeROAc).  

In general, the substrates bearing the bulkier tert-butyl group show higher selectivity than the 

substrates with the ethyl substituents. The largest difference is seen for the substrates containing the 
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electron donating methoxy group or an electron-withdrawing nitro group in the para position (Entries 1–6, 

Table 1). The tendency that kinetic resolutions of substrates with more bulky alkyl substituents lead to 

higher selectivity is in agreement with the results previously reported by Fu for secondary benzylic 

alcohols with a bulky aliphatic substituent (the tert-butyl compared to the methyl substituent) [51] as 

well as for secondary β-hydroxyl-β-aryl phosphonates [57]. 

We also wanted to explore the influence of electronic effects of the substitution on the aromatic 

ring. The replacement of the phenyl group with an aryl containing an extended π-system led to a higher 

selectivity (selectivity factor of 107) and a faster reaction rate compared to the parent compound (entry 4 

vs. entry 7, Table 1). This is consistent with a suggested π–cation interaction between the cationic 

acylated catalyst and the aromatic substituent, which has previously been suggested for other catalytic 

systems [58–60]. In general, substrates with additional substituents gave a higher selectivity than the 

parent compound. For example, the compound with an electron donating methoxy group in the para 

position (2f) (entry 4 vs. entry 6, Table 1) and substrates with electron withdrawing groups in the 

phenyl ring led to higher selectivity compared to the parent compound. The results follow the previous 

trend [56,57] that electron-withdrawing substituents in the aromatic ring lead to a higher selectivity. 

This suggests that the electronic properties affect the interactions between the aromatic ring of the 

substrate and the acylated catalyst. 

The kinetic resolutions were also performed with longer reaction times (24 h) in order to be able to 

access the remaining alcohol in high enantiomeric excess (Table 2). We were able to isolate all the 

alcohols 2a–f in high enantiomeric excess (95%–99% ee) and in good to moderate yield (23%–45%). 

Table 2. Substrate screening for the kinetic resolution of β-hydroxy-β-aryl esters (rac-2) 

by (−)-1 a. 

 

Entry R Ar Conv. (%) c Yield (%) d eeROH (%) e 

1 Et Ph (2a) 57 41 99 
2 Et 4-NO2-Ph (2b) 79 23 99 f 
3 Et 4-MeO-Ph (2c) 55 32 99 f 

4 b tert-Bu Ph (2d) 56 39 95 
5 tert-Bu 4-NO2-Ph (2e) 66 33 99 f 
6 tert-Bu 4-MeO-Ph (2f) 55 41 99 
7 tert-Bu 2-Naphthyl (2g) 54 45 98 
8 tert-Bu 4-Cl-Ph (2h) 65 34 99 f 

9 b tert-Bu 2,6-Cl2-Ph (2i) 63 31 99 f 
a: Reaction conditions: rac-2 (0.25 mmol), Ac2O (0.75 equiv.), (−)-1 (0.005 mmol, 2 mol %) in 1 mL of  

tert-amyl alcohol at 0 °C, 24 h unless otherwise specified; b: 48 h; c: Conversion calculated using the 

following equation: c = eeROH/(eeROH + eeROAc); 
d: Isolated yield base on rac-2; e: Determined by HPLC;  

f: A single peak was judged as 99% ee. 
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2.2. Assignment of the Absolute Configuration of 2e and 2i after KR 

The absolute configuration of the optically pure β-hydroxy esters was assigned by comparing the 

sign of the optical rotation with literature values. Ethyl (S)-3-(4-nitrophenyl)-3-hydroxypropanoate  

(S)-2e and ethyl (S)-3-(2,6-dichlorophenyl)-3-hydroxypropanoate (S)-2i were the two substrates whose 

specific rotations are not reported in the literature and had to be determined. In order to confirm the 

absolute configuration of these two substrates after KR, the secondary alcohol was derivatized with a 

chiral auxiliary of already known absolute configuration (Scheme 4). 

Scheme 4. Synthesis of the Mosher’s esters using (R)-MTPA chloride as chiral derivatization agent. 

 

Numerous chiral derivatizing reagents have been described and used to assign the absolute 

configuration of chiral secondary alcohols [61]. The most common are the aryl-containing carboxylic 

acids (R)-(+) and (S)-(−)-α-methoxy-α-trifluoromethylphenylacetic acid (MTPA, Mosher’s reagent;  

(4) [62]. Chadha et al., reported the assignment of the absolute configuration of β-hydroxy esters using 

a single enantiomer of Mosher’s acid chloride [63–65]. 

Firstly, the Mosher’s ester of the racemic mixture and the (S)-enantiomer of the substrate tert-butyl 

3-hydroxy-3-(2-naphthyl)propanoate (2g) were prepared and used to validate the method. The 1H-NMR 

spectrum of the mixture of diastereomers formed shows that the chemical shift difference between the 

methoxy signals is significant enough to be used for the differentiation of the diastereomers  

(Figure 1a), as reported by Padhi and Chadha [64]. This chemical shift difference in the diastereomer 

originates from the fact that the methoxy group and the aromatic ring of the β-hydroxy ester are on the 

same side of the MTPA plane (i.e., (S)-2g-(R)-MTPA) and that the signal for the methoxy group 

protons is shielded due to the diamagnetic effect of the aromatic ring and appears at a lower chemical 

shift (3.42 ppm) (see Figure 1). The signal from the methoxy protons of the other diastereomer (i.e., 

(R)-2g-(R)-MTPA) appears downfield (3.56 ppm) because they are less shielded. In the same manner, 

the signals of the CF3 group allow the assignment by 19F-NMR and eliminate the possibility of 

overlapping signals (Figure 1b). The signal at −71.68 ppm belongs to the diastereomer that has the CF3 

group and the aromatic ring on the same side of the MTPA plane (i.e., (R)-2g-(R)-MTPA), whereas the 

signal at −71.31 ppm belongs to the other diastereomer that has these two groups in opposite sides of 

the plane (i.e., (S)-2g-(R)-MTPA) (see Figure 1). 
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Figure 1. (a) 1H-NMR of the methoxy region of (R)-MTPA esters of rac-2g (above) and 

(R)-MTPA ester of (S)-2g (below); (b) 19F-NMR of (R)-MTPA esters of rac-2g (above) 

and (R)-MTPA ester of (S)-2g (below).  

 

Therefore, the analysis of the 1H and 19F-NMR spectrum of the known enantiomer of (S)-2g allows 

us to conclude that obtained enantiomer has (S)-configuration which is in agreement with the 

previously reported sign of the optical rotation. The same method was used to determine the absolute 

configuration of the enantiomerically pure unknown enantiomers of 2e and 2i obtained after kinetic 

resolution. The 1H-NMR analysis of the Mosher’s esters (Figures 2a and 3b) shows that the signals of 

the methoxy protons are shielded (3.43 and 3.49 ppm for the Moshers esters of enantiopure 2e and 2i 

respectively). This supports the fact that the formed diastereomers have the methoxy group and the 

aromatic ring in the same side of the MTPA plane, i.e., the β-hydroxy esters have (S)-configuration. 

The same conclusion can be drawn from the 19F-NMR spectrum. The fluorine signal obtained 

belongs to the (S)-2e-(R)-MTPA (−71.29 ppm, Figure 2b) and (S)-2i-(R)-MTPA (−71.49 ppm, Figure 2b) 

because it appears in the deshielded region and this it indicates that the CF3 group and the aromatic 

ring are not in the same side of the plane as previously observed. 

The 1H-NMR and 19F-NMR analyses confirm that the absolute configuration of ethyl (S)-3-(4-

nitrophenyl)-3-hydroxypropanoate (S)-2e and ethyl (S)-3-(2,6-dichlorophenyl)-3-hydroxypropanoate 

(S)-2i is S. 
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Figure 2. (a) 1H-NMR of the methoxy region of (R)-MTPA esters of rac-2e (above) and 

(R)-MTPA ester of (S)-2e (below); (b) 19F-NMR of (R)-MTPA esters of rac-2e (above) 

and (R)-MTPA ester of (S)-2e (below). 

 

Figure 3. (a) 1H-NMR of the methoxy region of (R)-MTPA esters of rac-2i (above) and 

(R)-MTPA ester of (S)-2i (below); (b) 19F-NMR of (R)-MTPA esters of rac-2i (above) and 

(R)-MTPA ester of (S)-2i (below). 

 

2.3. Synthesis of (S)-3-Hydroxy-N-methyl-3-phenylpropanamide 

In order to demonstrate the synthetic applicability of the present method, the synthesis of the 

enantiomerically pure intermediate (S)-3-hydroxy-N-methyl-3-phenylpropanamide was carried out 

(Scheme 5). First, the kinetic resolution of ethyl 3-hydroxy-3-phenylpropanoate, rac-2a (547.6 mg,  
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2.8 mmol) was performed, recovering 62% of the (S)-enantiomer (32% yield, 99% ee). The subsequent 

treatment of the β-hydroxy esters with aqueous methylamine gave access to the β-hydroxy amide (S)-4 

in 85% yield and with retention of the configuration (99% ee). The β-hydroxyamide (S)-4 can then be 

reduced by lithium aluminium hydride in THF to the corresponding amine, followed by an aromatic 

nucleophilic substitution by 4-chlorobenzotrifluoride using sodium hydride in DMF, in order to yield 

(S)-fluoxetine [8–12]. 

Scheme 5. Synthesis of (S)-3-hydroxy-N-methyl-3-phenylpropanamide.  

 
Reagents and conditions: (i) rac-(2a) (2.8 mmol), Ac2O (0.75 equiv.), (−)-1 (0.005 mmol, 2 mol %) 
in 1 mL of tert-amyl alcohol at 0 °C, 24 h. (ii) MeNH2 (40% aq), r.t, 3 h. 

3. Experimental Section 

3.1. General Information 

Commercially available reagents were purchased from Sigma-Aldrich Co. and used without further 

purification. Thin layer chromatography (TLC) was performed on ALUGRAM® SIL G/UV254 plates 

(0.2 mm), using UV-light (254 nm) for visualization. Flash column chromatography was performed 

using Merck silica gel (0.04–0.06 mm). 1H and 13C{1H} NMR spectra were recorded on a Varian 

Mercury 300 MHz, Varian Unity 400 MHz or Varian Unity 500 MHz spectrometer. The chemical shift 

values (δ) are given in parts per million (ppm) and are referred to the residual peak of the deuterated 

solvent used (CDCl3). Chemical shifts and literature NMR shifts were used as references in 

identification and characterization of the optically pure synthesized compounds. Characterization data 

for these compounds are as follows (copies of the HPLC chromatograms, 1H- and 13C{1H}-NMR 

spectra are included in the Supplementary data). IR spectra were recorded on a PerkinElmer Spectrum 

One (ATR Technique). High-resolution mass spectra were recorded by Aleh Yahorau, Department of 

Pharmaceutical Biosciences, Uppsala University, Sweden. 

3.2. Preparation of the Racemic Substrates 

3.2.1. General Procedure 

The racemic substrates 2a–c and 4a–f were prepared following the procedure described by Xu and 

Yuan [43]. The racemic acetates 3a–c and 5a–f were prepared, as a references for the measurement of 

the HPLC retention times, by routine acetylation of the corresponding alcohols in dichloromethane at 
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r.t. in the presence of catalytic amounts of DMAP and triethylamine. Chemical shifts and literature 

NMR shifts were used as references in identification and characterization of the synthesized 

compounds [43,66–71]. For the new substrates (4b and 4f) the IR and HRMS data are included in the 

characterization data. 

3.2.2. Characterization Data 

Ethyl 3-hydroxy-3-phenylpropanoate (2a) [43] 

 

1H-NMR (CDCl3) δ 7.28–7.17 (m, 5H, Ar-H), 5.04 (dd, J = 7.8, 4.2 Hz, 1H, CH), 4.10 (m, J = 6.9 Hz, 2H, 

CH2), 3.22 (bs, 1H, OH), 2.64-2.50 (m, 2H, CH2), and 1.17 (t, J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR 

(CDCl3) δ 172.6, 142.8, 128.8 (2C), 128.0, 125.9 (2C), 70.6, 61.1, 43.6 and 14.4. 

Ethyl 3-hydroxy-3-(4-nitrophenyl)propionate (2b) [43] 

 

1H-NMR (CDCl3) δ 7.87 (d, 2H, Ar-H), 7.46 (d, 2H, Ar-H), 5.25 (dd, J = 7.8, 4.2 Hz, 1H, CH), 4.29–4.11 

(m, 2H, CH2), 3.62 (bs, 1H, OH), 2.71 (q, J = 6.9 Hz, 2H, CH2) and 1.24 (t, J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR (CDCl3) δ 172.0, 149.9, 147.4, 126.2 (2C), 123.9 (2C), 69.2, 61.3, 43.1 and 14.1. 

Ethyl 3-hydroxy-3-(4-metoxyphenyl)propionate (2c) [66] 

 

1H-NMR (CDCl3) δ. 7.29 (d, 2H, J = 7.5 Hz, Ar-H), 6.86 (d, 2H, J = 7.5 Hz, Ar-H), 5.08 (dd, J = 8.8,  

4.0 Hz, 1H, CH), 4.19–4.09 (m, 2H, CH2), 3.80 (s, 3H, OCH3), 2.76–2.69 (m, 2H, CH2) and 1.27 (t,  

J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR (CDCl3) δ 172.3, 159.1, 134.8, 126.9 (2C), 113.8 (2C), 69.9, 60.7, 

55.2, 43.3 and 14.1. 

t-Butyl 3-hydroxy-3-phenylpropionate (2d) [67] 
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1H-NMR (CDCl3) δ 7.39–7.22 (m, 5H, Ar–H), 5.07 (dd, 1H, J = 7.8, 4.2 Hz, CH), 3.42 (bs, 1H, OH), 

2.67 (dd, 1H, J = 16.0, 4.8 Hz, CH2), 2.61 (dd, 1H, J = 16.0, 4.8 Hz, CH2) and 1.43 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.9, 142.6, 128.4 (2C), 127.6, 125.7 (2C), 81.5, 70.4, 44.3 and 28.0. 

t-Butyl 3-hydroxy-3-(4-nitrophenyl)propionate (2e) [68] 

 

1H-NMR (CDCl3) δ 8.20 (d, 2H, J = 8.1 Hz, Ar-H), 7.55 (d, 2H, J = 8.1 Hz, Ar-H), 5.18 (dd, J = 8.3, 

4.1 Hz, 1H, CH), 2.73–2.57 (m, 2H, CH2) and 1.49 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.3, 

150.0, 147.3, 126.5 (2C), 123.6 (2C), 82.1, 69.4, 43.8 and 28.0. IR (neat): v(cm−1) 3438, 2941, 2977, 

2903, 1700, 1510, 1343, 1148, 843. HRMS (ESI, m/z) Calcd for C13H18NO5
+ [M+H+]: 268.1185, 

found: 268.1189. 

t-Butyl 3-hydroxy-3-(4-methoxyphenyl)propionate (2f) [69] 

 

1H-NMR (CDCl3) δ 7.29 (d, 2H, J = 7.5 Hz, Ar-H), 6.86 (d, 2H, J = 7.5 Hz, Ar-H), 5.01 (dd, J = 8.8,  

4.0 Hz, 1H, CH), 3.78 (s, 3H, OCH3), 3.15 (bs, 1H, OH), 2.71–2.54 (m, 2H, CH2) and 1.44 (s, 9H, 3 

CH3). 
13C{1H}-NMR (CDCl3) δ 171.9, 159.1, 134.9, 127.0 (2C), 113.8 (2C), 81.4, 70.0, 55.2, 44.3, 

and 28.0. 

t-Butyl 3-hydroxy-3-(2-naphthyl)propionate (2g) [70] 

 

1H-NMR (CDCl3) δ 7.85–7.81 (m, 4H, Ar-H), 7.50–7.26 (m, 3H, Ar-H), 5.26 (dd, J = 7.3, 5.5 Hz, 1H, 

CH), 2.76–2.74 (m, 2H, CH2) and 1.46 (s, 9H, 3 CH3).
 13C{1H}-NMR (CDCl3) δ 171.9, 140.1, 133.3, 

133.0, 128.3, 128.0, 127.7, 126.1, 125.9, 124.5, 123.9, 81.6, 70.5, 44.3 and 28.1. 

t-Butyl 3-hydroxy-3-(4-chloro)propionate (2h) [69] 
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1H-NMR (CDCl3) δ 7.34–7.31 (m, 4H, Ar-H), 5.09–5.05 (m, 1H, CH), 2.63–2.60 (m, 2H, CH2) and 

1.45 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.7, 141.1, 133.3, 128.6 (2C), 127.1 (2C), 81.7, 69.7, 

44.1 and 28.0. 

t-Butyl 3-hydroxy-3-(2',6'-dichlorophenyl) propionate (2i) 

 

1H-NMR (CDCl3) δ 7.32–7.12 (m, 3H, Ar-H), 5.90 (dd, 1H, J = 10.5, J = 4.2 Hz, 1H, CH), 3.23–2.62 

(m, 2H, CH2) and 1.46 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 170.5, 136.2, 134.6, 129.4 (2C), 

129.2 (2C), 81.3, 68.2, 40.7 and 28.0. IR (neat): v(cm−1) 3514, 2987, 2938, 1700, 1561, 1144, 766. 

HRMS (ESI, m/z) Calcd for C13H17Cl2O3
+ [M+H+]: 291.0555, found: 291.0551. 

3.3. General Procedure for the Kinetic Resolution 

3.3.1. Selectivity Factor for the KR of 2a–i after 3 h 

Catalyst (−)-1 (2.0 mg, 0.003 mmol), β-hydroxy ester 2a–i (0.15 mmol) and t-amyl alcohol  

(0.6 mL) were sequentially added to a vial. The vial was capped and stirred at room temperature to 

help dissolve the catalyst. The reaction mixture was cooled to 0 °C in an ice-water bath and stirred for 

15 min. Then, acetic anhydride (11 μL, 0.11 mmol) was added. After 3 h, a sample (0.2–0.3 mL) was 

quenched by the addition of methanol. The resulting solution was filtered through a short plug of silica 

using ether as eluent and then it was concentrated. The enantiomeric excess of the unreactive alcohol 

and the acetate were determined by HPLC (Table 1) using the appropriate chiral column and 

conditions. The chromatograms are attached in Supplementary section 1. 

The selectivity s was calculated using the Equation (1), where C is the conversion (calculated using 

the Equation (2), eeROH and eeROAc are the enantiomeric excess for the unreactive alcohol and the 

resulting acetate respectively determined by HPLC [47]: 

S =
ln[(1 − C)(1 − ee

ROH
)]

ln[(1 − C)(1 + ee
ROH

)]
=

ln[1 − C(1 + ee
ROAc

)]

ln[1 − C(1 − ee
ROAc

)]
 (1)

C =
 ee

ROH

 ee
ROH

+ ee
ROAc

 (2)

3.3.2. Synthesis of Optically Pure Alcohols 

Catalyst (−)-1 (3.3 mg, 0.005 mmol), β-hydroxy ester 2a–i (0.25 mmol) and t-amyl alcohol (1.0 mL) 

were sequentially added to a vial. The vial was capped and stirred at room temperature to help dissolve 

the catalyst. The reaction mixture was cooled to 0 °C, and then acetic anhydride (18 μL, 0.19 mmol) 

was added. After the appropriate amount of time, the reaction mixture was quenched by the addition of 

a large excess of methanol. The resulting solution was concentrated, and the unreactive alcohol, the 

acetate and the catalyst were separated by flash chromatography using increasing polarity mixtures of 



Molecules 2014, 19 14285 

 

 

pentane/ethyl acetate as eluent. The enantiomeric excess of the unreactive alcohol and the acetate were 

determined by HPLC (Table 2). The chromatograms are attached in Supplementary section 2. 

Chemical shifts and literature NMR shifts were used as references in identification and 

characterization of the optically pure synthesized compounds 2a–i. The 1H and 13C{1H}-NMR spectra 

are attached in Supplementary section 3. 

Ethyl (S)-3-hydroxy-3-phenylpropanoate ((S)-2a) [43]. Colorless oil (21.8 mg, 41% yield); ee 95%, 

Kromasil 5-CellCoat, n-hexane/i-PrOH = 95:05, 0.5 mL/min, 220 nm, tR[(S)/(R)] = 20.5/28.5 min;  

[α]25 
D : −45.3 (c 3.7, CDCl3) (Lit. [71] [[α]25 

D : = −46.5 (c 1.04, CHCl3)). 
1H-NMR (CDCl3) δ 7.28–7.17 

(m, 5H, ArH), 5.04 (dd, J = 7.8, 4.2 Hz, 1H, CH), 4.10 (m, J = 6.9 Hz, 2H, CH2), 3.22 (bs, 1H, OH), 

2.64–2.50 (m, 2H, CH2), and 1.17 (t, J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR (CDCl3) δ 172.6, 142.8, 

128.8 (2C), 128.0, 125.9 (2C), 70.6, 61.1, 43.6 and 14.4. 

Ethyl (S)-3-hydroxy-3-(4-nitrophenyl)propanoate ((S)-2b) [43]. Colorless oil (13.8 mg, 23% yield);  

ee 99%, Chiralpack AD, n-hexane/i-PrOH = 90:10, 0.5 mL/min, 220 nm, tR[(S)/(R)] = 26.6/28.4 min. 

[α]20 
D : −58.0 (c 0.23, CHCl3) (Lit. [64] [α]25 

D : −59.5 (c 1.5, CHCl3)). 
1H-NMR (CDCl3) δ 7.87 (d, 2H, 

ArH), 7.46 (d, 2H, ArH), 5.25 (dd, J = 7.8, 4.2 Hz, 1H, CH), 4.29–4.11 (m, 2H, CH2), 3.62 (bs, 1H, 

OH), 2.71 (q, J = 6.9 Hz, 2H, CH2) and 1.24 (t, J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR (CDCl3)  

δ 172.0, 149.9, 147.4, 126.2 (2C), 123.9 (2C), 69.2, 61.3, 43.1 and 14.1. 

Ethyl (S)-3-hydroxy-3-(4-methoxyphenyl)propanoate ((S)-2c) [66]. Yellow oil (18.0 mg, 32% yield); 

ee 99%, Reprosil chiral NR, n-hexane/i-PrOH = 80:20, 0.5 mL/min, 220 nm, tR[(S)/(R)] = 15.9/18.7 min. 

[α]20 
D : −45.9 (c 0.75, CHCl3) (Lit. [71] [α]26 

D : −28.6 (c 1, CHCl3)). 
1H-NMR (CDCl3) δ 7.29 (d, 2H,  

J = 7.5 Hz, ArH), 6.86 (d, 2H, J = 7.5 Hz, ArH), 5.08 (dd, J = 8.8, 4.0 Hz, 1H, CH), 4.19–4.09 (m, 2H, 

CH2), 3.80 (s, 3H, OCH3), 2.76–2.69 (m, 2H, CH2) and 1.27 (t, J = 6.9 Hz, 3H, CH3). 
13C{1H}-NMR 

(CDCl3) δ 172.3, 159.1, 134.8, 126.9 (2C), 113.8 (2C), 69.9, 60.7, 55.2, 43.3 and 14.1. 

tert-Butyl (S)-3-hydroxy-3-phenylpropanoate ((S)-2d) [67]. Pale yellow oil (21.6 mg, 39% yield); ee 

95%, Reprosil Chiral NR, n-hexane/i-PrOH = 99:01, 1.0 mL/min, 220 nm, tR[(S)/(R)] = 11.4/15.6 min. 

[α]20 
D : −85.0 (c 0.1, CHCl3) (Lit. [71] [α]25 

D : −37.7 (c 1.2, CHCl3)). 
1H-NMR (CDCl3) δ 7.39–7.22 (m, 

5H, ArH), 5.07 (dd, 1H, J = 7.8, 4.2 Hz, CH), 3.42 (bs, 1H, OH), 2.67 (dd, 1H, J = 16.0, 4.8 Hz, CH2), 

2.61 (dd, 1H, J = 16.0, 4.8 Hz, CH2) and 1.43 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.9, 142.6, 

128.4 (2C), 127.6, 125.7 (2C), 81.5, 70.4, 44.3 and 28.0. 

tert-Butyl (S)-3-hydroxy-3-(4-nitrophenyl)propanoate ((S)-2e) [68]. Yellow oil (18.0 mg, 32% yield); 

ee 99%, Reprosil Chiral NR, n-hexane/i-PrOH = 90:10, 0.5 mL/min, 220 nm, tR[(S)/(R)] = 14.5/15.5 min. 

[α]20 
D : −31.4 (c 0.19, CHCl3). 

1H-NMR (CDCl3) δ 8.20 (d, 2H, J = 8.1 Hz, ArH), 7.55 (d, 2H,  

J = 8.1 Hz, ArH), 5.18 (dd, J = 8.3, 4.1 Hz, 1H, CH), 2.73–2.57 (m, 2H, CH2) and 1.49 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.3, 150.0, 147.3, 126.5 (2C), 123.6 (2C), 82.1, 69.4, 43.8 and 28.0. IR 

(neat): v(cm−1) 3438, 2941, 2977, 2903, 1700, 1510, 1343, 1148, 843. HRMS (ESI, m/z) Calcd for 

C13H18NO5
+ [M+H+]: 268.1185, found: 268.1189. 
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tert-Butyl (S)-3-hydroxy-3-(4-methoxyphenyl)propanoate ((S)-2f) [69]. Yellow oil (26.0 mg, 41% 

yield); ee 99% after acetylation with DMAP, Chiralpak AD, n-hexane/i-PrOH = 90:10, 0.5 mL/min, 

220 nm, tR[(S)/(R)] = 24.8/11.9 min. [α]20 
D : −34.5 (c 1.6, CHCl3) (Lit. value for the (R)-enantiomer [46]  

[α]20 
D : +28.0 (c 0.15, CHCl3)). 

1H-NMR (CDCl3) δ 7.29 (d, 2H, J = 7.5 Hz, ArH), 6.86 (d, 2H, J = 7.5 Hz, 

ArH), 5.01 (dd, J = 8.8, 4.0 Hz, 1H, CH), 3.78 (s, 3H, OCH3), 3.15 (bs, 1H, OH), 2.71–2.54 (m, 2H, 

CH2) and 1.44 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.9, 159.1, 134.9, 127.0 (2C), 113.8 (2C), 

81.4, 70.0, 55.2, 44.3, and 28.0. 

tert-Butyl (S)-3-hydroxy-3-(2-naphthyl)propanoate ((S)-2g) [70]. Yellow oil (30.3 mg, 45% yield); ee 

96%, Kromasil 5-CellCoat, n-hexane/i-PrOH = 99:01, 1.0 mL/min, 220 nm, tR[(S)/(R)] = 26.4/29.6 min. 

[α]20 
D : −36.9 (c 0.42, CHCl3) (Lit. [21] [α]20 

D : −24.8 (c 1.1, CHCl3)). 
1H-NMR (CDCl3) δ 7.85–7.81 (m, 

4H, ArH), 7.50–7.26 (m, 3H, ArH), 5.26 (dd, J = 7.3, 5.5 Hz, 1H, CH), 2.76–2.74 (m, 2H, CH2) and 

1.46 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.9, 140.1, 133.3, 133.0, 128.3, 128.0, 127.7, 126.1, 

125.9, 124.5, 123.9, 81.6, 70.5, 44.3 and 28.1. 

tert-Butyl (S)-3-(4-chlorophenyl) 3-hydroxypropanoate ((S)-2h) [69]. Colorless oil (22.0 mg,  

33% yield); ee 99%, Reprosil Chiral NR, n-hexane/i-PrOH = 90:10, 0.5 mL/min, 220 nm, tR[(S)/(R)] = 

10.7/12.2 min. [α]20 
D : −34.1 (c 1.9, CHCl3) (Lit. [21] [α]23 

D : −25.4 (c 2.0, CHCl3)). 
1H-NMR (CDCl3)  

δ 7.34–7.31 (m, 4H, ArH), 5.09–5.05 (m, 1H, CH), 2.63–2.60 (m, 2H, CH2) and 1.45 (s, 9H, 3 CH3). 
13C{1H}-NMR (CDCl3) δ 171.7, 141.1, 133.3, 128.6 (2C), 127.1 (2C), 81.7, 69.7, 44.1 and 28.0. 

tert-Butyl (S)-3-(2,6-dichlorophenyl) 3-hydroxypropanoate ((S)-2i). Colorless oil (23.0 mg, 31% yield); ee 

99%, Kromasil 5-CellCoat, n-hexane/i-PrOH = 99.5:0.5, 1.0 mL/min, 220 nm, tR[(S)/(R)] = 10.7/16.1 min. 

[α]20 
D : +21.8 (c 2.0, CHCl3). 

1H-NMR (CDCl3) δ 7.32–7.12 (m, 3H, ArH), 5.90 (dd, 1H, J = 10.5,  

J = 4.2 Hz, 1H, CH), 3.23–2.62 (m, 2H, CH2) and 1.46 (s, 9H, 3 CH3).
 13C{1H}-NMR (CDCl3) δ 170.5, 

136.2, 134.6, 129.4 (2C), 129.2 (2C), 81.3, 68.2, 40.7 and 28.0. IR (neat): v(cm−1) 3514, 2987, 2938, 

1700, 1561, 1144, 766. HRMS (ESI, m/z) Calcd for C13H17Cl2O3
+ [M+H+]: 291.0555, found: 291.0551. 

3.3.3. Methods Used to Determine Enantiomeric Excess 

The enantiomeric separations of β-hydroxy esters 2a–i were performed by high performance liquid 

chromatography (HPLC) with a Young Lin 9100 instrument using the appropriate chiral column at 25 °C 

with n-hexane and isopropanol as eluents. The enantiomeric separation of 2f was achieved converting 

the alcohol to the corresponding acetate using DMAP and triethylamine in DCM. The selectivity  

(S)-factors were calculated with the equation: S = ln[(1 − c)(1 − eeROH)]/ln[(1 − c)(1 + eeROH)]. 

3.4. Synthesis of (S)-3-Hydroxy-N-methyl-3-phenylpropanamide ((S)-4) 

Catalyst (−)-1 (37 mg, 0.0056 mmol), racemic substrate 2a (2.8 mmol) and tert-amyl alcohol (11 mL) 

were sequentially added to a vial. The vial was capped and stirred at room temperature to help dissolve 

the catalyst. The reaction mixture was cooled to 0 °C, and then acetic anhydride (200 μL, 2.1 mmol) 

was added. After 24 h, the reaction mixture was quenched by the addition of a large excess of 

methanol. The resulting solution was concentrated, and the unreactive alcohol was separated from the 

acetate and the catalyst by flash chromatography using increasing polarity mixtures of pentane/ethyl 
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acetate as eluent (175 mg, 32% yield, 99% ee). The β-hydroxy ester (S)-2a was treated with a 40% 

aqueous solution of methylamine (1.56 mL, 18 mmol) at r.t. during 3 h. Beige solid was obtained 

(137.8 mg, 85.3% yield, 99% ee). Chemical shifts and literature NMR shifts were used as references in 

identification and characterization of the optically pure synthesized compound (S)-4 [36]. Beige solid 

(138 mg, 85% yield); ee 99%, Chiralpak AD, n-hexane/i-PrOH = 98:02, 1.0 mL/min, 220 nm, 

tR[(R)/(S)] = 41/51 min. [α]20 
D : −26.7 (c 1.0, CH3OH) (Lit. [36] [α]23 

D : −26.2 (c 1.25, CH3OH)).  
1H-NMR (CDCl3) δ 7.49–7.14 (m, 5H, ArH), 5.82 (br s, 1H, NH), 5.16-5.05 (m, 1H, CHOH), 2.82 (d, 

J = 4.5 Hz, 3H, NHCH3), 2.59–2.52 (m, 2H, CH2). 
13C{1H}-NMR (CDCl3) δ 172.56, 143.16, 128.67, 

127.84, 125.71, 71.07, 44.72, 26.37. 

4. Conclusions 

In summary, we have demonstrated that the planar-chiral DMAP derivative catalyst (−)-1 catalyzes 

the kinetic resolution for a range of aromatic β-hydroxy esters with excellent selectivities (selectivity 

factor up to 107) and high enantiomeric excess (up to 99% ee) of the remaining alcohol. To the best of 

our knowledge, these results represent the first example of the kinetic resolution of this family of 

substrates employing a chiral DMAP derivative as catalyst. 
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