Supplementary Materials

Contents

Figure S1. ¹ H-NMR (methanol- d_4 , 600 MHz) spectrum of 1	S2
Figure S2. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of 1	S2
Figure S3. ¹ H-NMR (methanol- <i>d</i> ₄ , 600 MHz) spectrum of 2 .	S3
Figure S4. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of 2	S3
Figure S5. ¹ H-NMR (methanol- <i>d</i> ₄ , 600 MHz) spectrum of 3 .	S4
Figure S6. ¹³ C-NMR (methanol- d_4 , 100 MHz) spectrum of 3 .	S4
Figure S7. ¹ H-NMR (methanol- <i>d</i> ₄ , 600 MHz) spectrum of pterosin M	S5
Figure S8. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of pterosin M	S5
Figure S9. ¹ H-NMR (methanol- <i>d</i> ₄ , 600 MHz) spectrum of echinolactone D	S6
Figure S10. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of echinolactone D	S6
Figure S11. ¹ H-NMR (methanol- <i>d</i> ₄ , 600 MHz) spectrum of radulactone	S7
Figure S12. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of radulactone	S7
Figure S13. ¹ H-NMR (methanol-d ₄ , 600 MHz) spectrum of echinolactone A	S8
Figure S14. ¹³ C-NMR (methanol- <i>d</i> ₄ , 100 MHz) spectrum of echinolactone D	S8
Figure S15. ¹ H-NMR (acetone- <i>d</i> ₆ , 600 MHz) spectrum of 1a	S9
Figure S16. ¹ H-NMR (acetone- <i>d</i> ₆ , 600 MHz) spectrum of the (S)-MTPA ester of 1a	S9
Figure S17. ¹ H-NMR (acetone- <i>d</i> ₆ , 600 MHz) spectrum of the (R)-MTPA ester of 1a	S10
Figure S18. ¹ H-NMR (methanol- d_6 , 600 MHz) spectrum of the reaction product of 3 and cyste	eineS10
Figure S19. Structure of $1a(R = OH)$ and the R- and S-MTPA monoesters of $1a(R = R-MTPA)$	A and
R = S-MTPA, respectively).	S11
Table S1. ¹ H-NMR data for compound 1a and the R- and S-MTPA monoesters of 1a (acetone-	<i>d</i> ₆ , 30 °C,
600 MHz)	S11

Figure S1. ¹H-NMR (methanol- d_4 , 600 MHz) spectrum of 1.

Figure S2. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of 1.

Figure S3. ¹H-NMR (methanol- d_4 , 600 MHz) spectrum of 2.

Figure S4. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of **2**.

Figure S6. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of **3**.

Figure S7. ¹H-NMR (methanol- d_4 , 600 MHz) spectrum of pterosin M.

Figure S10. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of echinolactone D.

Figure S12. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of radulactone.

Figure S13. ¹H-NMR (methanol- d_4 , 600 MHz) spectrum of echinolactone A.

Figure S14. ¹³C-NMR (methanol- d_4 , 100 MHz) spectrum of echinolactone D.

Figure S15. ¹H-NMR (acetone- d_6 , 600 MHz) spectrum of 1a.

Figure S16. ¹H-NMR (acetone- d_6 , 600 MHz) spectrum of the (S)-MTPA ester of 1a.

Figure S18. ¹H-NMR (methanol- d_6 , 600 MHz) spectrum of the reaction product of 3

Figure S17. ¹H-NMR (acetone-*d*₆, 600 MHz) spectrum of the (R)-MTPA ester of **1a**.

Figure S19. Structure of 1a (R = OH) and the R- and S-MTPA monoesters of 1a (R = R-MTPA and R = S-MTPA, respectively).

Table S1. ¹H-NMR data for compound **1a** and the R- and S-MTPA monoesters of **1a** (acetone- d_6 , 30 °C, 600 MHz).

pos.	1a	R-MTPA Ester of 1a	S-MTPA Ester of 1a
	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{\rm H}$ (<i>J</i> in Hz)
1	4.87, m	6.47, s	6.54, s
2			
3	6.17, bs	6.5, s	6.41, s
4			
4a			
5			
6			
7			
7a			
8	2.01, bs	1.98, bs	1.82, s
9			
10	2.13, s	2.14, s	2.16, s
11	3.00, m	2.93, m	3.01, m
12	4.09, m	4.00, m	4.11, m
13	2.45, s	1,95, s	2.23, s
14	2.32, s	2.34, s	2.34, s
15			
16	2.00, s	1.95, s	1.99, s