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Abstract: Climatic conditions and soil type have significant influence on grape ripening 

and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis 

vinifera L.V)” vineyards located in Xinjiang, a semiarid wine-producing region of China 

during two vintages (2011 and 2012). The results indicate that soil and climate affected 

berry growth and anthocyanin profiles. These two localities were within a distance of 5 km 

from each other and had soils of different physical and chemical composition. For each 

vineyard, the differences of anthocyanin concentrations, and parameters concerning berry 

growth and composition between the two years could be explained by different climatic 

conditions. Soil effect was studied by investigation of differences in berry composition and 

anthocyanin profiles between the two vineyards in the same year, which could be explained 

mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils 

with less water and organic matter produced looser clusters, heavier berry skins and higher 

TSS, which contributed to the excellent performance of grapes. Compared with 2011, the 

increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to 

smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status 

and N level. The explanation for higher anthocyanin concentrations in grape skins from the 

soils with less water and organic matter could be the vine status differences, lighter berry 

weight and heavier skin weight at harvest. In particular, grapes from the soils with less 
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water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated 

anthocyanins, which represented a positive characteristic conferring more stable 

pigmentation to the corresponding wine in the future. The present work clarifies the effects 

of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for 

production of high-quality wine grapes in different regions. 

Keywords: Cabernet Sauvignon; climatic conditons; soil properties; berry growth; 

anthocyanin profiles 

 

1. Introduction 

Anthocyanins are an important group of flavonoids and the predominant pigments in red and black 

grape berries. After veraison, they accumulate in the grape skins via the phenylpropanoid biosynthetic 

pathway [1]. The anthocyanins in grapes are responsible for the colour of the corresponding wines, 

which is an important parameter used to evaluate wine quality [2]. Accumulation of anthocyanins in 

grape skins is influenced by many environmental factors such as light and temperature and nutrient 

supply [3]. In Vitis vinifera L. varieties, they occur mainly as glycosides and acylglucosides of five 

anthocyanidins: malvidin, petunidin, peonidin, delphinidin and cyanidin [4]. Monoglucosides exist as 

3-O-glucosides in V. vinifera L. varieties, and the acylated anthocyanins are formed by the combination 

with coumaric or caffeic acid [5].  

The concept of terroir, including the grape cultivar, always interacts with climatic conditions, soils, 

cultural practices and training systems, all of which influence the grape and wine quality [6]. Generally, 

cultivar, soil and climate are considered to be the three main components of terroir [7]. It is known that 

patterns of anthocyanins are controlled by strict genotype, and the anthocyanin profiles for each variety 

are relatively stable and their distribution varies considerably among different grape cultivars [8]. More 

recently, the wine industry has turned its attention to the factors of soil and climate. They point out the 

soil type may play an important role in determining wine characteristics and quality, resulting in 

different wine styles, even under the same mesoclimate [7]. In addition, other studies show that the 

influence of vintage on grape metabolic profiles is greater than the soil, where climatic characteristics 

such as the temperature and water balance are the main factors [9]. It should be noted that anthocyanin 

synthesis is depressed by excessively high temperatures with considering the specific  

circumstances [7]. Further research has revealed that the inhibition of temperature stress on berry 

secondary metabolites can be attributed to ABA-mediated actions [10]. Moreover, some research has 

determined that moderate temperatures encourage anthocyanin accumulation and alter partitioning, 

while others determined that high temperatures could be inhibitory to accumulation due to the 

differences in gene expression and chemical degradation of metabolites [7,11]. In addition to the effects 

of climate and soil, there is a great need to evaluate the influences of water deficits and berry exposure 

to sunlight on anthocyanin concentrations [12,13]. The water deficits enable anthocyanin concentrations 

to rise by both increasing content per berry and reducing fruit growth [14,15]. Generally, low level of 

light exposure could reduce flavonoids content, but increased light results in increased contents of 
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anthocyanins and other flavonoids [16]. However, some authors have reported no change with different 

light treatments [17], or even that high light resulted in decreased anthocyanin concentrations [18].  

Despite the fact that soil and climate are two important components of terroir, little experimental 

work concerning their influence on wine grape composition has been done in China. Therefore, in this 

work the effects of climate and soil on grape development and anthocyanin profiles were analysed. The 

soil effect was examined in two vineyards with distinct soil types, and climate effect was studied 

through the mesoclimate by inter-annual analysis. Specifically, the effects of soil components and 

climatic conditions were evaluated on: (1) vine water and nutrient status; (2) yield parameters and berry 

characteristics; (3) anthocyanin composition and concentrations. The present work was designed to 

study anthocyanin biosynthesis under different types of soils and climatic conditions. Special emphasis 

was put on the relationship between anthocyanin accumulation and environmental conditions.  

2. Results and Discussion 

2.1. Climatic Conditions  

The wine grape-growing regions of China display unique ecological conditions either from south to 

north or from east to west. The two vineyards in the present study were located in northwest China in a 

region with a semi-arid climate, with high biologically effective day temperatures, a big temperature 

difference between daytime and nighttime and low annual rainfall. All the meteorological data of 2011 

and 2012 were obtained from the local meteorological administration. The two studied vineyards were 

within a radius of 5 km with a uniform mesoclimate. With respect to annual mean temperature and 

average maximum temperature, 2012 was warmer than 2011 (Table 1). With regard to the study period, 

the accumulated heat expressed as growing degree days (GDD, calculated from daily mean 

temperatures, base 10 °C) and sunlight duration in 2011 was lower than in 2012. Total rainfall, 

calculated from April to September, was 180.1 mm in 2011 and 103.6 mm in 2012 (Table 1). Regarding 

the seasonal evolution of temperature and rainfall (Figure 1), rainfall in 2011 was higher than in 2012 

(mainly during 60–90 DAF), although vines did not get any rainfall at harvest (90–120 DAF) in 2011. 

According to the seasonal pattern during berry developmental phases (Figure 1), daily maximum 

temperature exceeded 30 °C for most of the summer period. A higher number of days with extreme 

temperatures (>35 °C) were observed in 2011 than in 2012 (23 and 13 days, respectively), mainly during 

expanding stage and veraison (0–90 DAF). Rainfall was on the rise from veraison (60–90 DAF) to harvest 

in 2012, but reduced gradually in 2011. 

2.2. Soil Chemical and Physical Properties Analysis  

The selected soils from two vineyards presented very different physical and chemical properties 

(Table 2), although both of the soils were classified as “slit loam” according to the texture classes in the 

soil survey manual. The soils from Yuanyi farm were richer in sand than those of Guangdong farm, 

especially in topsoil (0–20 cm). Specifically, the sand percentage was 41.99% at Yuanyi farm, and only 

20.03% at Guangdong farm (Table 2).  
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Table 1. Meteorological parameters for the growing season (April–October) and the ripening period (August–September) in the study area 

(2011 and 2012). 

Year 
Mean Temperature ( °C) 

Average Maximum 

Temperature ( °C) 

Average Minimum 

Temperature ( °C) 
Growing Degree Days ( °C) Sunlight Duration (h) Rain (mm) 

Aug-Sep Apr-Oct Year Aug-Sep Apr-Oct Year Aug-Sep Apr-Oct Year Aug-Sep Apr-Oct Year Aug-Sep Apr-Oct Year Aug-Sep Apr-Oct Year 

2011 22.1 20.3 8.2 28.7 26.8 13.6 16.1 14.6 3.4 740.9 2290.6 2290.6 627.4 2173.7 2899.0 41.2 180.1 217.8 

2012 22.3 20.8 8.8 29.2 27.4 13.9 16.1 14.7 3.1 752.9 2356.2 2367.2 647.3 2235.8 3102.0 29.0 103.6 179.8 

Figure 1. Evolution of mean, maximum and minimum daily temperature and rainfall from flowering to harvest in the study area (2011 and 

2012). R, Rainfall; Tm, mean temperature; Tmax, maximum temperature; Tmin, minimum temperature.  
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Table 2. Physical and chemical properties of the selected soils in two vineyards at different 

depths. Data are mean values of three replications. 

Vineyards 
Depth 

(cm) 

Clay 

(%) 

Slit 

(%) 
Sand (%) Textural Class pH 

EC 

(ms/cm)

CEC 

(cmol/kg)

Organic 

Matter (%) 

Bulk 

Density 

(kg/m3) 

Water 

Content 

(%) 

Yuanyi farm 

0–20 8.59b 49.40b 41.99a Silt loam 7.9a 0.18b 16.40b 1.40b 1.49a 18.82b 

20–40 9.82b 61.66b 28.52a Silt loam 7.8a 0.20b 13.18b 0.99b 1.65a 26.49b 

40–60 11.37a 54.13a 34.50a Silt loam 8.1a 0.19b 12.82b 0.56b 1.41a 26.83b 

60–80 14.63a 49.87b 35.49a Silt loam 8.0a 0.20b 12.46b 0.54b 1.50a 25.61b 

80–100 9.02a 55.72b 35.26a Silt loam 7.9a 0.18b 11.74b 0.41b 1.55a 27.97b 

Guangdong farm 

0–20 15.99a 63.97a 20.03b Silt loam 7.5b 0.39a 23.21a 6.38a 0.98b 29.55a 

20–40 11.45a 63.51a 25.04b Silt loam 7.3b 0.54a 25.36a 8.42a 1.21b 44.04a 

40–60 8.30b 55.69a 36.01a Silt loam 7.4b 0.56a 22.14a 6.85a 1.29b 38.89a 

60–80 9.17b 54.35a 36.48a Silt loam 7.2b 0.98a 19.63a 5.02a 1.47b 36.13a 

80–100 9.68a 58.12a 32.20b Silt loam 7.2b 0.66a 18.55a 3.69a 1.51b 33.74a 

Values within a column followed by different letters differ significantly in the same depth between two 

vineyards (t-test, p < 0.05).  

The soil pH at Yuanyi farm ranged from 7.8 to 8.1, which classified them as slightly alkaline soils, 

while the pH at Guangdong ranged from 7.2 to 7.5, which defined them as very slightly alkaline soils. 

At pH values above 5.0 to 5.5, grapevine performance should not be seriously impeded [19], and none of 

the soils in Yuanyi farm or Guangdong farm showed any signs of sodicity. Soil electrical conductivity 

(EC) is a parameter which represents the amount of salts in soils (soil salinity). In our study, the EC of 

soils from Guangdong farm was significantly higher than at Yuanyi farm at each soil depth (54%–80%). 

According to the classes of salinity and EC in the NRCS Soil Survey Handbook, all the selected soils 

from the two vineyards belonged to the non-saline (0<EC<2) class. The relationship between 

cation-exchange capacity (CEC) and organic matter at the two vineyards showed a positive correlation 

(Figure 2), and both of them decreased as the soil depth deepened (Table 2). As indicated in Table 2, the 

soils from Yuanyi farm had significantly higher bulk density at each depth than the Guangdong farm 

ones, since total pore space in sands is less than is silt or clay soils. For Guangdong farm, bulk density 

typically increased with soil depth since the subsurface layers contained less pore spaces and higher 

organic matter levels. Higher organic material may result in less compact soils. From the survey of 

bulk density, Yuanyi farm had more compact soils than Guangdong farm. Thus, the soils from 

Guangdong farm contained significantly higher percentages of organic matter than those of Yuanyi 

farm. In previous research, the organic matter content of soils in two vineyards located in Catalonia, 

Spain was 0.4%–2.0% [20]. Another report pointed out that soils with 0.7%–0.9% organic matter were 

considered to be poor, whereas those with 1.7%–1.8% organic matter were considered to be rich  

soils [21]. Thus, the organic matter content of soils in Guangdong farm was excessive (3.69%–8.42%) 

considering the general range of a rich soil. Nevertheless, the organic matter content of soils in Yuanyi 

farm was within a reasonable range (0.41%–1.40%). Water content of soils from Guangdong farm was 

significantly higher than at Yuanyi farm at each soil depth (17.2%–39.9%). Those could be attributed to 

organic matter increasing the water holding ability of soils directly and indirectly. On the other hand, 

higher bulk density consequently reduced the water holding capacity of soils.  
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Figure 2. The relationship between cation-exchange capacity (CEC) and organic matter at 

Yuanyi farm and Guangdong farm. Data are mean values of three replications.  

 

Principal component analysis (PCA) of soil properties from the two vineyards was conducted by 

using the variables including total, effective and readily available elements variables (Figure 3). PC1 

explained 42.9% of total variance, and was characterized by soils of all depths from Guangdong farm on 

the positive side. PC1 separated the soil samples of Yuanyi farm from Guangdong farm, and was mostly 

explained by total N, effective Na and available Fe having positive loadings. Specifically, the 

concentrations of these elements from soil samples were significantly higher in Guangdong farm  

(Table 3). Total K and available Mn had negative loadings, and their concentrations were significantly 

higher in soil samples from Yuanyi farm (Table 3). PC2 explained 30.1% of the variance and separated 

top soils (0–20 cm) of the two vineyards from the middle and bottom soils (40–100 cm). The top soils of 

two vineyards had abundant available elements such as P, Mn, Zn and B (Table 3). 

Table 3. Chemical properties of the selected soils in two vineyards at different depths. Data 

are mean values of three replications. 

Vineyards Depth 

(cm) 

Total Elements (%) Effective Elements (mg/kg) Available Elements (mg/kg) 

N P K Na Ca Mg N P K Cu Fe Mn Zn B 

Yuanyi farm 0–20 0.04b 0.08a 1.83a 21.07b 3494.46b 140.62b 50.86b 10.10b 133.29b 0.75b 1.61b 1.01a 1.40a 0.47b

20–40 0.07b 0.08a 1.85a 33.40b 3689.73b 219.12b 76.93a 3.09b 122.70a 0.85a 1.09b 0.59a 1.29a 0.11b

40–60 0.04b 0.08a 1.80a 31.33b 3811.77a 233.70b 59.05b 1.45b 123.05a 0.75a 0.89b 0.65a 0.66a Nd 

60–80 0.05b 0.07a 1.81a 39.48b 3760.86b 266.62a 53.24b 4.33b 152.14a 0.72b 0.83b 0.65a 0.38a Nd 

80–100 0.07b 0.07a 1.85a 39.77b 3800.32a 295.58a 55.61b 4.36b 134.72a 0.76b 1.10b 0.91a 0.41a Nd 

Guangdong farm 0–20 0.30a 0.11a 1.73b 51.83a 3789.53a 525.98a 61.74a 75.42a 175.10a 0.85a 19.68a 0.58b 1.35b 2.51a

20–40 0.40a 0.10a 1.34b 57.28a 3775.11a 490.15a 69.34b 18.25a 129.57a 0.58b 22.65a 0.45b 0.82b 1.03a

40–60 0.30a 0.06a 1.40b 66.10a 3776.49b 334.47a 91.94a 5.68a 100.67b 0.61b 29.79a 0.41b 0.59b 0.21 

60–80 0.24a 0.06a 1.57b 63.41a 3824.79a 265.22a 86.13a 8.59a 78.92b 0.84a 33.92a 0.40b 0.35b 0.25 

80–100 0.19a 0.08a 1.66b 52.72a 3769.12b 219.11b 90.66a 8.93a 40.57b 0.85a 33.26a 0.39b 0.26b 0.75 

Values within a column followed by different letters differ significantly in the same depth between two 

vineyards (t-test, p < 0.05). Nd, not detected.  
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Figure 3. Discrimination of the soil samples from two vineyards by some kind of elements 

attributes and illustrated by the score (A) and loading (B) plots from principal component 

analysis (PCA).Y, Yuanyi farm; G, Guangdong farm; 1 = 0–20 cm; 2 = 20–40 cm;  

3 = 40–60 cm; 4 = 60–80 cm; 5 = 80–100 cm; T, Total; E, Effective; A, Readily available.  

2.3. Vine Water and Nitrogen Status  

Ambient CO2 contains 98.9% of 12C isotope and 1.1% of 13C isotope. 12C is more easily used by the 

enzymes of photosynthesis in their production of hexoses. Therefore, the sugar produced by 

photosynthesis contains a higher rate of the 12C isotope than ambient CO2. This process is called ‘isotope 

discrimination’. When grapevines are submitted to water deficits, isotope discrimination is reduced due 

to stomatal closure [22]. Therefore, the 12C/13C ratio (so-called δ13C) allows a very sensitive detection 

of grapevine water status during grape ripening [23].  

With respect to vine water deficit thresholds [24], there was no water deficit in vines from Guangdong 

farm during the two seasons (δ13C < −26). However, vines grown in Yuanyi farm showed weak water 

deficit for its higher δ13C values (−24.5 < δ13C < −26) corresponding to its soils with lower 

water-holding capacity compared with Guangdong farm (Table 4). Thus, the water content in soils 

affected the vine water status, which was confirmed by a significant negative correlation between δ13C 

and water content in soils (Table S1). Furthermore, N level was significantly lower in the vines of 

Yuanyi farm than at Guangdong farm. Soubeyrand et al. [3] used the chlorophyll content of the leaves to 

estimate the plant nitrogen status for the positive correlation between them. The chlorophyll content of 

the leaves from vines grown in Guangdong farm was significantly higher than that in Yuanyi farm. In 

addition, there was a positive correlation between N status of the plant-leaf Chlorophyll, N status of the 

plant-organic matter in soils (Table S1). This confirmed that the higher nitrogen content in the soils of 

Guangdong farm led to an increase in nitrogen uptake and assimilation by the vines. Aside from other 

considerations, examination of these results showed the fact that there were differences in vine nitrogen 

and water status between the soils of the two vineyards.  
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Table 4. Differences of vine water and nutrient status between Yuanyi and Guangdong farm 

during two seasons. Data are mean values of three replications at least. 

Year Vineyards δ13C (‰) N (%) Leaf Chlorophyll 

2011 
Yuanyi farm −25.34a 0.47b 45.01b 

Guangdong farm −26.76b 0.54a 46.95a 

2012 
Yuanyi farm −25.06a 0.46b 45.75b 

Guangdong farm −26.51b 0.49a 46.54a 

Values within a column followed by different letters differ significantly between two vineyards in the same 

year (t-test, p < 0.05). 

2.4. Some Parameters of Vine, Shoot, Cluster and Berries from Two Vineyards in Two Vintages  

Although there were no significant differences between the two vineyards regarding shoot number, 

yield, yield/pruning weigh and leaf area/yield in 2011 and 2012 (Table 5), vines grown in Guangdong 

farm had significantly longer shoots and less number of clusters per shoot than Yuanyi farm ones  

(Table 5). In addition, Yuanyi farm had significantly lighter and looser clusters compared with 

Guangdong farm (Table 5). From Table S1, there was a positive correlation between cluster 

compactness-organic matter in soils, cluster compactness-water content in soils. Thus, the clusters 

from the soils with less organic matter and lower water content would be characterized by their looser 

clusters, and this conclusion is verified in the discussion about anthocyanins.  

Table 5. Survey of some parameters about yields from two vineyards at harvest in 2011 and 

2012. Data are mean values of three replications at least. 

Years Vineyards 

Survey of Shoots Survey of Clusters 

Yield 

(ton/hectare) 

Yield/Pruning 

Weigh (kg/kg)

Leaf 

Area/Yield 

(m2/kg) 

Average 

Shoot Length 

(cm) 

Shoot 

Number/m 

Cluster 

Number/Shoot

Cluster 

Weight (g) 

Cluster 

Compactness 

(OIV rating) 

2011 
Yuanyi farm 122b 13.85a 1.80a 107.10b 4.00b 9.14a 5.49a 1.98a 

Guangdong farm 127a 14.29a 1.64b 111.22a 5.67a 8.45a 5.32a 2.08a 

2012 
Yuanyi farm 132b 13.55a 1.79a 107.97b 3.67b 10.48a 5.66a 2.03a 

Guangdong farm 136a 15.38a 1.58b 119.20a 5.33a 11.59a 5.78a 2.12a 

Values within a column followed by different letters differ significantly between two vineyards in the same 

year (t-test, p < 0.05). 

Some physical and chemical characteristics of berries were measured for grape samples from the two 

vineyards during different developmental stages (Figure 4). During the grape development in 2011 and 

2012, fresh weight per berry increased until harvest in Yuanyi and Guangdong farm (Figure 4A). During 

the early stages of berry development, berries grew faster at Yuanyi farm than at Guangdong farm 

between 4 and 11 weeks after flowering (WAF). At harvest, fresh weight per berry in Guangdong farm 

was higher than Yuanyi farm in the two-year study. Overall, berries had a heavier weight in 2011 than in 

2012. Skin weight per berry showed an increasing trend from 4 to 11 WAF, then decreased from  

13 WAF to harvest (Figure 4B).  
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Figure 4. Some physical and chemical characteristics of berry changed with the grape 

development in two vineyards in 2011 and 2012. Data are mean values of three replications. 

Error bars show standard error (SE). Light grey background represents the phase of bunch 

turning colour (veraison) from 10% to 100% of coloured berries.  

 

Low nitrogen would be expected to cause a lower rate of shoot growth and chlorophyll  

formation [25]. The growth of the shoots is strongly affected by soil conditions and they grow longer 

where soils are more fertile and can hold more water [26]. In a previous report, cluster weight showed a 

negative correlation with the number of clusters per grapevine, because of the increasing berry numbers 

per cluster and weight caused by the decreasing cluster number [27]. Thus similar result patterns were 

seen in the two vineyards regarding shoot and cluster parameters as in previous research. Berry weight at 

Yuanyi farm was lighter in the soils with lower water content and weak water deficit for vines, which 

was consistent with a low water supply causing a reduction in berry weight [28]. In each vintage, the 

value of skin weight for Yuanyi farm was higher than for Guangdong farm. Previous research on deficit 

irrigation has shown an increase in skin weight [29], and a significant negative correlation between 

skin fresh weight and leaf Chlorophyll in our study (Table S1). Thus, the differences in the soil and 

vine parameters at Yuanyi and Guangdong farm make it easy to draw conclusions on the basis of 

these results.  

TSS exhibited a continuous increase from 4 to 15 WAF (Figure 4C). The maximum values of TSS for 

Yuanyi farm and Guangdong farm were 23.0 and 23.2 °Brix in 2011, but 26.8 and 25.9 °Brix in 2012. 

On the other hand, the changes of TA in juice of grapes from two vineyards in 2011 and 2012 are shown 

in Figure 4D. Grapes from the two vineyards in 2012 had higher TA than in 2011, and for each year, 

Guangdong farm had more TA in grape juice compared with Yuanyi farm.  

Adequate ripening may also be problematic in soils that are too wet [19]. While, in this study, TSS 

was equivalent in the two vineyards at harvest in 2011, the TSS of grapes from Yuanyi farm was higher 
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than at Guangdong farm in 2012. A higher TA in the grapes from Guangdong farm was consistent with 

the other findings where canopies with excessive soil moisture had higher TA [30]. On the other hand, 

grapes with lower TSS and higher TA at the Guangdong farm were attributed to wetter soils, but this 

could also have been an effect of excessive organic matter. 

2.5. The Concentrations of Anthocyanins in Grape Skins from Two Vineyards in 2011 and 2012  

The anthocyanins extracted from the grape skins during crushing, pressing, and fermentation are the 

major components responsible for red wine color [31]. The total concentration of anthocyanins (TCA) 

and each kinds of anthocyanin with different modifications showed continuous increases from 8 to  

15 WAF (Figure 5A). The late stage of veraison (9 to 11 WAF) was a period of rapid accumulation for 

anthocyanin compounds. The maximum TCA values for Yuanyi farm were 873.3 mg/kg at harvest in 

2011 and 880.4 mg/kg in 2012, but those for Guangdong farm were 568.9 mg/kg in 2011 and  

695.2 mg/kg in 2012 (Figure 5A). In 2011 and 2012, grapes harvested from Yuanyi farm accumulated 

35% and 21% more anthocyanins, respectively, than those from Guangdong farm, if anthocyanin 

content was expressed as concentration in fresh berry (mg/kg of berry fresh weight). This indicated that 

the effect of vintage was more significant in Guangdong farm when discussing TCA during the two 

seasons, while the regional differences always illustrated that grapes from Yuanyi farm could 

accumulate much more TCA. Meanwhile, TCA in grape skins is more variable than TSS (Figure 4C) 

between the two vineyards at each sampling point, although the evolution of anthocyanins was 

parallelled by the accumulation of sugars.  

In previous studies, some reported vintage variation [32], whereas others reported minimal influence 

of the season on anthocyanin accumulation [31]. Anthocyanin accumulation in grapes is light and 

temperature sensitive [32], so air temperatures might also have an influence on anthocyanin 

accumulation. Considering the climatic parameters such as mean temperature, the maximum and 

minimum temperature and growing degree days, 2011 was a cooler year with shorter sunlight duration 

and more rainfall compared with the same period in 2012 (Table 1), but extreme temperatures (>35 °C) 

were more frequent in 2011 than in 2012 (Figure 1). Although the lowest anthocyanin content was 

detected during the hottest year [20], this conclusion could not be verified in our study in each vineyard 

over two consecutive seasons. The total concentrations of anthocyanins at harvest in 2012 were higher 

than in 2011, especially in Guangdong farm, and their concentration increased by 22% (Figure 5). 

Furthermore, the concentrations of anthocyanins expressed in mg/kg grapes were positively related 

to berry number and total skin surface per kilogram of grapes, resulting in the smallest berries being 

characterized by the highest content of anthocyanins [33]. In fact, exceedingly high temperatures  

(>35 °C) are particularly inhibitory to anthocyanin synthesis [32], so the increase of TCA in 2012 for 

each vineyard could be attributed to the decrease of berry fresh weight at harvest time  

(Figure 5), and less number of extreme temperature (>35 °C) days. Moreover, there was a significant 

positive correlation between TCA and δ13C, but negative correlation between TCA and N (Table S1). 

Thus, higher vine water status and N levels were also major causes for the low coloration of grapes 

in 2011.  
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Figure 5. The concentration of total anthocyanins, 3′5′-substituded and 3′-substituded 

anthocyanins, non-acylated, acetylated and cinnamylated anthocyanins, non-methoxylated 

and methoxylated anthocyanins changed with the grape development in two vineyards in 

2011 and 2012. Data are mean values of three replications. Error bars show standard error 

(SE). Light grey background represents the phase of bunch turning colour (veraison) from 

10% to 100% of coloured berries.  

 

In this survey, the effect of the soils on vine behaviour was mediated through varying water content 

and nitrogen levels of the grapevines. With regard to the effect of water status, moderate and not severe 

water stress or drought stress have been reported to increase anthocyanin concentrations [34]. For the 

different growth rate of the skins and flesh responses to the change of water conditions, the mild water 

deficits increase the concentrations of skin tannins and anthocyanins through increasing skin weight, 

relative skin weight per berry, and therefore amounts of skin-localised solutes [35]. In the present 

study, Yuanyi farm had higher value of berry skins than Guangdong farm at harvest in each 

experimental season (Figure 4B). Furthermore, there was a significant positive correlation between 

TCA and skin fresh weight (Table S1). Research on terroir shows that a moderate nitrogen deficiency 
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(like a mild water deficit) has been correlated with improved grape quality [36]. For the experimental 

samples, not only did Yuanyi farm have a faster speed of anthocyanin accumulation during berry 

development, but also a higher TCA at harvest in the two years (Figure 5). The above conclusions 

were also associated with lower water content of soils and vine water status at Yuanyi farm (Table S1). 

F3′H (flavonoid 3′-hydroxylase) and F3′5′H (flavonoid 3′5′-hydroxylase) are involved in the 

biosynthetic pathway of cyanidin- and delphinidin-based anthocyanins, respectively. 3′5′-Substituted 

anthocyanins contain delphinidin, petunidin, malvidin anthocyanins and their derivatives. A higher 

accumulation of delphinidin-based anthocyanins in grape skins is expected to produce more intensely 

purple coloured berry and dark-colored red wine [37,38]. The concentrations of 3′5′-substituded 

anthocyanins showed an increasing trend during the developmental phase as well as TCA for each 

vineyard (Figure 5B). However, the concentration of 3′5′-substituded anthocyanins at Guangdong farm 

was 511 mg/kg, only 64% and 80% of that at Yuanyi farm at harvest in 2011 and 2012. On the other 

hand, the concentrations of 3′-substituded anthocyanins increased from veraison to harvest, although 

they remained at low ranges compared with 3′5′-substituded anthocyanins (Figure 5C). Additionally, 

2012 showed higher concentrations of 3′5′- substituted anthocyanins than 2011. It was worth noting that 

the concentration of 3′-substituded anthocyanins in grape skins from Yuanyi farm in 2012 was the 

highest among all the developmental phases. From the analysis of correlation coefficients between 

variables, both of 3′5′-substituded and 3′-substituded anthocyanins showed significant positive 

correlations with skin fresh weight or δ13C, but significant negative correlations with vine N status 

(Table S1). 

Considering further modification, two types of acylated anthocyanins are produced by acylation and 

cinnamylation in the grape skins of ‘Cabernet Sauvignon’. The concentrations of non-acylated, 

acetylated and cinnamylated anthocyanins accumulated and peaked at harvest stage for each vineyard 

(Figure 5D–F). For non-acylated and acetylated anthocyanins, the concentrations in the two vineyards in 

2012 were higher than those in 2011 (Figure 5D–E), but the opposite was true for the concentrations of 

cinnamylated anthocyanins in each vineyard in 2011 and 2012 (Figure 5F). The concentration of each 

class of anthocyanins at Yuanyi farm was higher than at Guangdong farm at harvest, which could be 

associated with vine N status, cluster compactness and skin fresh weight (Table S1). 

In addition, O-methylation of the 3′ position of the anthocyanidins cyanidin and delphinidin leads to 

the formation of peonidin and petunidin. Finally, O-methylation of positions 3′ and 5′ of delphinidin, 

leads to the formation of petunidin and malvidin. The methylated anthocyanins included peonidin, 

petunidin, malvidin anthocyanins and their derivatives. Because of their phenolic B ring substitution, 

peonidin and malvidin are relatively stable and represent the major anthocyanin pools in mature  

grapes [39]. The concentrations of methylated anthocyanins were 772 and 495 mg/kg in Yuanyi and 

Guangdong farm at harvest time in 2011, and 762 and 584 mg/kg in 2012, respectively (Figure 5G–H). 

Thus, the modification of anthocyanins influences their resulting wines by the colour, and grapes from 

the soils with less water content and organic matter are expected to produce more dark-colored red wine 

in the future (Table S1).  

2.6. Principal Component Analysis (PCA) of the Grape Samples from Two Vineyards at Harvest 

Previous research suggested that the anthocyanin fingerprint of grapes was related to cultivar and 

weather conditions of the growing season according to PCA [40]. In the present study, PCA was used to 
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examine the effects of soil and vintage on the composition of anthocyanins (Figure 6). Nineteen 

different anthocyanins detected at harvest in two vintages were used as the variables, and each result 

contained three replicates, although malvidin-3-O-(6-O-caffeoyl)-glucoside was not detected in grape 

skins from Guangdong farm (Table 6). PC1 explained 59.6% of total variance, and characterized all 

grape samples from Yuanyi farm on the positive side. PC1 separated all the grape samples of Yuanyi 

farm from Guangdong farm, and could be mostly explained by malvidin-3-O-glucoside and 

malvidin-3-O-(6-O-acetyl)-glucoside having positive loadings. It is worth noting that 

malvidin-3-O-glucoside was the most prevalent anthocyanin and malvidin-3-O-(6-O-acetyl)-glucoside 

was the major acylated anthocyanin in all the grape samples from the two vineyards. Some similar 

observations are obtained from research conducted on ‘Merlot’ grape clusters in Prosser [41]. While 

petunidin-3-O-(6-O-caffeoyl)-glucoside and cyanidin-3-O-(6-O-coumaryl)-glucoside had negative 

loadings, and their concentrations were higher in grape samples from Guangdong farm (Table 6). PC2 

explained 22.7% of the variance and separated grape samples of 2011 from 2012. In previous research, 

the percentages of dephinidin-3-O-glucoside in warm years was lower than in a relatively cool year [40]. 

In the present study, the grape samples of 2012 were abundant in dephinidin-3-O-glucoside, 

cyanidin-3-O-glucoside, dephinidin-3-O-(6-O-acetyl)-glucoside, cyanidin-3-O-(6-O-acetyl)-glucoside, 

and those of 2011 had higher concentrations of petunidin-3-O-(6-O-coumaryl)-glucoside,  

peonidin-3-O-(trans-6-O-coumaryl)-glucoside, malvidin-3-O-(cis-6-O-coumaryl)-glucoside and 

malvidin-3-O-(trans-6-O-coumaryl)-glucoside (Table 6). Most anthocyanins in grape skins from 

Yuanyi farm showed higher concentrations at harvest in each year, and for each vineyard, 2011 had higher 

concentrations of coumarylated anthocyanins than 2012, so by using the concentrations of individual 

anthocyanin detected at harvest we could clearly discriminate the effects of vineyard and vintage.  

Figure 6. Discrimination of the grape samples from two vineyards by the concentration of 

individual anthocyanin detected at harvest in two vintages, and illustrated by the score (A) 

and loading (B) plots from principal component analysis (PCA). Each point means a 

biological replicate in plot A. Y, Yuanyi farm; G, Guangdong farm.  
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Table 6. The concentration of individual anthocyanin (mean ± se; n = 3) detected in grape 

skins of “Cabernet Sauvignon” from two vineyards at harvest in 2011 and 2012. 

Anthocyanins 

2011 2012 

Yuanyi farm 

(mg/kg berry FW)

Guangdong farm 

(mg/kg berry FW)

Yuanyi farm 

(mg/kg berry FW) 

Guangdong farm 

(mg/kg berry FW)

dephinidin-3-O-glucoside (A1) 52.31 ± 3.7 37.65 ± 1.28 66.83 ± 0.86 63.20 ± 2.48 

cyanidin-3-O-glucoside (A2) 6.97 ± 0.52 6.24 ± 0.27 8.49 ± 0.75 7.31 ± 0.21 

petunidin-3-O-glucoside (A3) 42.36 ± 3.09 31.94 ± 1.61 43.40 ± 1.35 38.92 ± 1.29 

peonidin-3-O-glucoside (A4) 28.71 ± 2.22 23.47 ± 1.39 39.28 ± 2.22 25.05 ± 1.44 

malvidin-3-O-glucoside (A5) 302.77 ± 14.46 201.11 ± 6.17 332.49 ± 10.28 259.38 ± 10.72 

dephinidin-3-O-(6-O-acetyl)-glucoside (A6) 24.94 ± 5.45 17.73 ± 5.19 28.22 ± 4.10 27.84 ± 3.43 

cyanidin-3-O-(6-O-acetyl)-glucoside (A7) 5.45 ± 0.95 2.45 ± 0.18 7.91 ± 0.51 6.13 ± 0.65 

petunidin-3-O-(6-O-acetyl)-glucoside (A8) 17.74 ± 1.76 12.51 ± 1.01 18.24 ± 0.49 17.95 ± 0.92 

dephinidin-3-O-(6-O-coumaryl)-glucoside (A9) 7.67 ± 1.42 4.18 ± 0.40 4.98 ± 0.67 4.88 ± 0.47 

peonidin-3-O-(6-O-acetyl)-glucoside (A10) 18.20 ± 0.86 13.99 ± 0.51 19.32 ± 0.34 12.58 ± 0.58 

malvidin-3-O-(6-O-acetyl)-glucoside (A11) 234.36 ± 8.87 148.40 ± 2.63 221.82 ± 3.50 174.58 ± 5.01 

petunidin-3-O-(6-O-caffeoyl)-glucoside (A12) 0.49 ± 0.15 1.07 ± 0.28 0.55 ± 0.00 0.31 ± 0.01 

cyanidin-3-O-(6-O-coumaryl)-glucoside (A13) 2.05 ± 0.21 4.39 ± 0.54 2.00 ± 0.74 2.00 ± 0.76 

malvidin-3-O-(6-O-caffeoyl)-glucoside (A14) 0.38 ± 0.10 Nd 1.21 ± 0.05 Nd 

petunidin-3-O-(6-O-coumaryl)-glucoside (A15) 6.28 ± 0.43 3.75 ± 0.23 4.36 ± 0.07 3.60 ± 0.17 

peonidin-3-O-(cis-6-O-coumaryl)-glucoside (A16) 0.65 ± 0.05 0.41 ± 0.01 0.64 ± 0.03 0.38 ± 0.01 

peonidin-3-O-(trans-6-O-coumaryl)-glucoside (A17) 12.88 ± 1.99 6.85 ± 0.39 8.95 ± 0.32 4.85 ± 0.19 

malvidin-3-O-(cis-6-O-coumaryl)-glucoside (A18) 4.88 ± 0.41 2.62 ± 0.16 3.65 ± 0.22 2.31 ± 0.09 

malvidin-3-O-(trans-6-O-coumaryl)-glucoside (A19) 102.01 ± 16.81 47.64 ± 2.77 68.04 ± 0.60 43.95 ± 1.22 

Each value represents the mean of three replicates and their standard. Nd, not detected. 

3. Experimental Section 

3.1. The Experimental Site and Plant Material 

The field experiments were performed at two commercial “Cabernet Sauvignon” vineyards (Yuanyi 

farm and Guangdong farm) over two seasons (2011 and 2012). They are both located in Manas County 

(belonging to Shihezi City), the wine-producing region of Xinjiang, China. Yuanyi farm is located at 

44°17′55′′ North, 86°12′2′′ East and at a altitude of 475 m, and Guangdong farm is located at 44°18'58′′ 

North, 86°13′1′′ East and at a altitude of 470 m. The growth area of ‘Cabernet Sauvignon’ was 2000 

hectares, which accounted for around 80% of the wine grape cultivation in this county. The vines were 

planted in 2000, furrow irrigated, and grown on their own roots in a north–south row orientation. All the 

vines were trained to a slope trunk with a vertical shoot positioning trellis system, which we called 

Modified VSP (M-VSP) spaced at 2.5 m × 1.0 m (Figure S1), with a spur-pruned cordon retaining 15 

nodes per linear metre. Crop load was normalized to approximately 30 bunches per plant. Grapevines in 

each vineyard were replicated on 45 vines, arranged in three consecutive rows. 

The vines were managed according to industry standards for nutrition and pest management in the 

two vineyards. As in the preceding years, no nitrogen fertiliser was added in 2011 and 2012, hence vine 

nitrogen uptake was mainly from mineralization of organic matter. Pests and diseases were managed 

with application of lime sulphur, potassium dihydrogen phosphate and fertilizer containing iron and zinc 
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in May and June, but diniconazole, mancozeb, and imidacloprid were used in July and August. In either 

vineyard, the management was the same, and there were no artificially induced differences between the 

two vineyards.  

3.2. Meteorological Survey  

All the meteorological datas of 2011 and 2012 were obtained from the local meteorological 

administration. Sunlight duration (h), temperature (°C) and rainfall (mm) were recorded daily. Both of 

the studied plots had a similar mesoclimate, since these two localities were within a distance of 5 km 

from each other and they had very similar topographic characteristics (altitude, slope and orientation).  

3.3. Soil Sampling and Analysis  

The chosen soils belonging to the two vineyards were collected from five different depths: 0–20 cm, 

20–40 cm, 40–60 cm, 60–80 cm, 80–100 cm. The 10 soil sampling points were in a Z-shape, and 500 g 

of soil was collected from each depth and point, maintaining a distance of 100 cm away from the trunk. 

Then, all the soils from the same depth were mixed and 1 kg was retained for every sample based on 

“quartering”. A Mastersizer 2000E laser particle size analyzer was used in the determination of physical 

properties of the soil samples from the two vineyards. The soil texture sorting method followed the 

criteria of the Soil Survey Manual [42]. The soil bulk density and water content were measured and 

calculated by the cutting ring method, air-dried and then heated at 105 °C till they reached constant 

weight. The bulk density was obtained from the ratio between the dried mass and the volume of the 

cylinder, and more compacted soils with less pore space will have much higher bulk density .While 

water content of soils was calculated by the difference between the fresh and dried mass. Organic matter, 

cation exchange capacity (CEC) and pH of soil samples were measured by the potassium dichromate 

volumetry, EDTA-ammonium salt and potentiometry methods, respectively. On the other hand, nutrient 

elements in soils were determinated by plasma spectrometry (Vista-AX, Varian, Palo Alto, CA, USA) 

after extraction and digestion.  

3.4. Vine Water and Nutrient Status  

For each vineyard, δ13C measurements were carried out on three individual samples of grape at 

harvest using an Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

The 12C/13C ratio in the sample is compared to that in an international standard, the so-called PDB 

standard which is a rock in which this ratio is particularly stable. The results vary from −20‰ (severe 

water deficit stress) to −27‰. δ13C are well-correlated to stem water potential [24].  

Berry total nitrogen content can be used as a physiological indicator of vine nitrogen status [36]. Vine 

nutrient status was assessed on berries collected from the target vines at harvest time in the 2011 and 

2012 vintages. The total nutrient contents were analysed using an elemental analyzer (Flash EA1112 

HT, Thermo Fisher Scientific Inc., Waltham, MA, USA). Previous research has revealed that the 

chlorophyll content of the leaves is closely related to the N status of the plant [3]. Thus, the leaf 

chlorophyll content was measured non-destructively on leaves using a Minolta-502 dual wavelength 

chlorophyll (SPAD) meter (Minolta Co. Ltd, Osaka, Japan). In addition, thirty random measurements 

were made across each farm to give an average value used to indicate the vine N status. 
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3.5. Yield and Grape Composition 

The berries were collected from 4 weeks after flowering till commercial harvest, and the sampling 

dates were scheduled at 2 week intervals. Forty five vines were selected on the basis of uniformity of 

shoot growth and cluster development in each vineyard, and the same plants were used at each 

sampling point. At veraison, the sampling points were increased at the stages of 10%, 50% and 100% 

coloured berries in both seasons. The sampling schedule in 2012 spanned the same developmental stages 

as in 2011. Harvest dates were determined by the cooperating winery. All the grape samples were 

harvested at technological ripeness, 23th and 24th Sep for Yuanyi farm and Guangdong farm in 2011, 

and 20th and 24th Sep for Yuanyi farm and Guangdong farm in 2012. For all the shoots from 10 vines, 

leaves were counted and the main and lateral leaves in each vineyard were measured by the portable leaf 

area meter (Yaxin-1242, Beijing, China) at veraison in the two seasons. On the commercial harvest day, 

average shoot length, shoot number per meter, cluster number per shoot were recorded for description of 

growth potential. Each survey was carried on 10 vines as parallel experiments. In each year, at the end of 

October, canes from 45 representative vines per vineyard were pruned and weighed to estimate the 

annual vine growth. These data was then used to calculate the yield-to-pruning weight ratio (kg/kg). 

Vine balance was also assessed by calculating the total leaf area-to-yield ratio in both vineyards. 

Yield data were collected by hand-harvesting fruit from vines of each replicate on the commercial 

harvest day (18th Sep, 2011 and 20th Sep, 2012) in the two years. Bunches per vine and yield per vine 

were recorded, from which average bunch weights were determined. After clusters were weighed and 

compactness described according to OIV rating [43], 300 berries (100 per replicate) were then randomly 

separated from the pedicle of each vineyard using scissors, ensuring that berries were taken from all 

parts of the clusters. Berry samples (150, 50 per replicate) were used for determination of berry weight, 

then another 150 berry samples (50 per replicate) were crushed in a hand press through  

two layers of cheesecloth. Berry skins were obtained by carefully removing seeds and mesocarp. Berry 

skins were rinsed in deionised water, then were weighed after blotting excess water. Total soluble solids 

(TSS) was measured using a PAL-1 Digital Hand-held "Pocket" Refractometer (Atago, Tokyo, Japan). 

Titratable acidity (TA) was measured by titration with NaOH to the end point of pH 8.2 and expressed as 

tartaric acid equivalent. Each experiment was carried out in triplicate for berry and cluster samples from 

the two vineyards. 

3.6. Extraction of Anthocyanins in Grape Skins  

Anthocyanin analyses were done on frozen grapes after removing the stems. Three replicates of 

samples of grapes (80 berry per replicate) were selected for each developmental stage. While the grapes 

were still frozen, skins were separated from the pulp. Berry skins were frozen, crushed and then 

freeze-dried at −40 °C. Both the wet and dry weights were recorded. 

The extraction of anthocyanins in grape skins was carried out according to the previously published 

method of He et al. [44]. Grape skin powder (0.50 g) was immersed in methanol (10 mL) containing 2% 

formic acid. This extraction was performed with the aid of ultrasound for 10 min, and then the mixture 

was shaken in the dark at 25 °C for 30 min at a rate of 150 rpm. The homogenate was centrifuged at 

8,000× g for 10 min and the supernatant was collected. The residues were re-extracted four times. All the 

supernatants were mixed, concentrated to dryness using a rotary evaporator and then redissolved in  
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10 mL of solvent mixed with 90% mobile phase A and 10% mobile phase B (see below). The  

resulting suspensions were filtered through 0.22 μm filters (Micro Pes, Membrana, Wuppertal, 

Germany) prior to HPLC-MS analysis. Each sample was subjected to three independent extractions 

from three biological repeats. 

3.7. Chemicals and Standards  

The standard, malvidin-3-O-glucoside was purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). HPLC grade methanol, formic acid and acetonitrile were purchased from Fisher (Fairlawn, NJ, 

USA). Analytical grade methanol and formic acid were purchased from the Beijing Chemical Reagent 

Plant (Beijing, China).  

3.8. HPLC-MS Analyses of Anthocyanins  

An Agilent 1100 series LC-MSD trap VL (Agilent, Santa Clara, CA, USA), equipped with a G1379A 

degasser, a G1312BA QuatPump, a G1313A ALS, a G1316A column, a G1315A DAD and a Kromasil 

100–5 C18 column (250 × 4.6 mm, 5 μm) was used for anthocyanins detection. A flow rate of l mL/min 

at ambient temperature was used. Solvent A was 2% (v:v) formic and 6% acetonitrile in water, and 

solvent B was acetonitrile containing 2% formic acid and 44% water. Proportions of solvent B varied as 

follows: 1–18 min, 10% to 25%; 18–20 min, 25%; 20–30 min, 25% to 40%; 30–35 min, 40% to 70% and 

35–40 min, 70% to 100%. Injection volumes were 30 μL, and the detection wavelength was 525 nm. The 

column temperature was 50 °C. MS conditions were as follows: Electrospray ionisation (ESI) interface, 

positive ion model, 30 psi nebulizer pressure, 12 mL/min dry gas flow rate, 300 °C dry gas temperature, 

and scans at m/z 100–1500. Anthocyanins were quantified at 525 nm as malvidin-3-O-glucoside using 

calibration curves obtained within a concentration range between 0.5 and 500 mg/L, with linear 

correlation coefficients greater than 0.999 in the two years. Both standards and samples were determined 

in triplicate. 

3.9. Statistical Analysis  

Significant differences were determined at p < 0.05, according to independent t-test. Principal 

component analysis (PCA) of soil elements and anthocyanins in grape skins was used to achieve a 

obvious discrimination of different soil depths, regions and vintages. Statistical analysis was performed 

by SPSS (SPSS Inc., Chicago, IL, USA) for Windows, version 20.0. All the figures were drawn using 

the Origin 8.0 software.  

4. Conclusions 

In the present research,, the effects of soil and climatic conditions were studied on ‘Cabernet 

Sauvignon’ grapes in two vintages (2011 and 2012). The results showed that the soils with less water 

and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to 

the excellent performance of the grapes. Compared with 2011, the increased anthocyanin 

concentrations in 2012 for each vineyard could be attributed to a lesser number of extreme temperature 

(>35 °C) days and rainfall, lower vine water status and N level. The higher anthocyanin concentrations 
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in grape skins from the soils with less water and organic matter were explained by vine status 

differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils 

with less water and organic matter had higher levels of 3′5′-substituted-O-methylated- and acylated 

anthocyanins, which represented a positive characteristic responsible for more stable pigments in the 

corresponding wine in the future. In summary, the soils with less water and organic matter produce 

"Cabernet Sauvignon" grapes with much better quality in some important aspects of winemaking 

quality, such as berry characteristics and anthocyanin profiles. 
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