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Abstract: A chiral bis(oxazoline) bearing CH2OH groups was synthesized from a commercial 

bis(oxazoline) and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry 

and FTIR. The corresponding copper(II) complex was immobilized onto the surface of a 

mesoporous carbonaceous material (Starbon® 700) in which the double bonds had been 

activated via conventional bromination. The materials were characterized by elemental 

analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new 

copper(II) bis(oxazoline) was tested both in the homogeneous phase and once immobilized 

onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, 

enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better 

enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst 

could be separated from the reaction media at the end of the reaction and reused in another 

catalytic cycle, but with loss of product yield and enantioselectivity. 

Keywords: copper(II); bis(oxazoline); homogeneous catalysis; heterogeneous catalysis; 

asymmetric catalysis 
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1. Introduction 

Bis(oxazoline) ligands are chiral, privileged ligands that when coordinated to for example copper 

act as very efficient and enantioselective homogeneous catalysts in several organic transformations, 

such as cyclopropanation of alkenes, aziridination of alkenes, Diels-Alder reactions, etc. [1]. A decade 

ago they were also found to be homogeneous catalysts in the kinetic resolution of 1,2-diols [2]. Despite 

their efficiency, selectivity and enantioselectivity, the work-up of the homogeneous phase reaction is 

cumbersome, since homogeneous catalysts are not easily separated from the products. Although some 

chiral bis(oxazoline) ligands are commercially available, they are expensive, hindering their industrial 

applicability [2]. 

On the other hand, heterogeneous catalysts can be easily separated from the reaction media by 

simple filtration and then the products can be isolated, often without metal contamination. The recovered 

heterogeneous catalyst can also be used in further catalytic cycles improving the cost of the process. 

Therefore, the heterogenization/immobilization of homogeneous catalysts using solid porous supports 

has been a popular strategy to combine the advantages of both homogeneous and heterogeneous 

catalysts [3–6]. Several immobilization strategies have been used; however, covalent attachment of the 

homogeneous catalysts to the surface of the material increases the resistance of the catalyst to  

leaching [3–6]. Due to their availability and low cost, organic polymers have been widely explored as 

supports for homogeneous catalysts and in particular for copper bis(oxazoline) ligands [3–6]. 

Nevertheless, their major drawback has been the lack of porosity and stability upon reuse, especially 

when using chlorinated solvents [3,4]. With the discovery of MCM-41 and later other materials, such 

as, SBA-15, ordered mesoporous silicas have become popular supports for the immobilization of 

homogeneous catalysts [3–12]. Some success has been achieved using this type of material as  

support [3–10], especially using mesocelullar silica foams in the case of the copper  

bis(oxazolines) [11,12]. Nevertheless the immobilization strategies are limited to organosilane 

reagents, which in itself leads to some issues regarding the remaining free silanols requiring extra 

silylanation [11,12] or the use of other less acidic mesoporous silicas [8–10]. 

Porous carbonaceous materials are not as explored, despite the wide use of activated carbons as 

supports in several commercially available heterogeneous catalysts as surfaces rich in oxygen surface 

groups [13] that allow the design of a wider range of immobilization strategies [14–17]. The structure 

of activated carbons is not ordered and is mainly microporous [13]. In 1999, Ryoo et. al., described the 

synthesis of an ordered mesoporous carbon prepared via nanocasting using MCM-48 as a hard  

template [18]. This material, as well as other ordered mesoporous carbons prepared in a one-pot 

synthesis together with the silica precursor, were used as supports for the immobilization of  

aza-bis(oxazoline) and commercial bis(oxazoline) via organosilane reagents [8–10]. These 

heterogeneous catalysts were active and enantioselective in several organic transformations, but with 

inferior performance compared to the corresponding ordered mesoporous silicas supports [8–10]. 

Starbons® are mesoporous carbonaceous materials prepared by the controlled carbonization of 

expanded starch [19] and other polysaccharides. When carbonized at high temperatures they present a 

more graphitized surface than the materials carbonized at lower temperatures [19]. These types of 

materials have never been explored as supports for asymmetric homogeneous catalysts. Herein we 

report on the immobilization of a copper(II) complex with a commercial bis(oxazoline), functionalized 
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with hydroxyl groups that allowed the covalent attachment to the brominated surface of a Starbon® 

carbonized to 700 °C (Scheme 1). The material was subsequently applied as a heterogeneous catalyst 

in the kinetic resolution of a 1,2-diol. 

Scheme 1. Modification and immobilization strategy of the CudiolPhBox complex (S3) 

onto the brominated (S2) Starbon ® 700 (S1). 

 

2. Results and Discussion 

The copper(II) complex with the PhBox bis(oxazoline) was anchored onto the surface of the porous 

carbonaceous material, Starbon® 700, in a three step procedure according to Scheme 1. Initially, to be 

able to anchor the ligand onto the Starbon® 700 carbonaceous material, the central carbon of the 

PhBox ligand bridge was functionalized with CH2OH groups (Scheme 2), by adapting procedures 

described in the literature [20]. To the best of our knowledge this is a new organic molecule and thus it 

was conveniently and completely characterized by 1H- and 13C-NMR, high resolution ESI-mass 

spectrometry and FTIR (see Experimental). This molecule was immobilized onto the surface of the 

carbonaceous material Starbon® 700 (S1), in which the double bonds had been brominated in order to 

make them more reactive with the hydroxyl groups [17,21]. 

Scheme 2. Functionalization of the PhBox ligand with CH2OH groups (diolPhBox). 

 

2.1. Characterization of the Materials 

Table 1 shows the elemental analysis of the starting (S1) and chemically modified materials (S2 and S3). 

As expected, the Starbon® 700 (S1), obtained by the controlled carbonization of starch at 700 °C, has a 

high content of carbon (91%) like other conventional porous carbonaceous materials, such as activated 

carbon [13]. The XPS analysis of this material only shows the presence at the surface of the material of 

carbon in high atomic percentage and oxygen (Table 2). The original Starbon® 700 material possesses 

both high pore volume and a Brunauer, Emmett and Teller (BET) surface area of 508 m2/g, with 

significant micropore surface impact (Table 3). 
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Table 1. Elemental analysis for the starting Starbon® 700 (S1), brominated (S2) and with 

the CudiolPhBox complex anchored (S3). 

Sample %C a %N a %H a %S a %Cu b 
S1 90.90 0.41 1.11   
S2 80.05 0.32 1.24   
S3 84.02 0.36 1.12 0.46 0.53 

Notes: a Obtained by elemental analysis; b Obtained by ICP-OES. 

Table 2. XPS analysis for the starting Starbon® 700 (S1), brominated (S2) and with the 

CudiolPhBox complex anchored (S3). a 

Sample %C %O %Br %N %F %S %Cu 
S1 87.65 12.35      
S2 85.62 13.78 0.60     
S3 88.39 9.98 0.32 0.25 0.81 0.19 0.05 

Notes: a Atomic percentage. 

Table 3. Textural properties for the S1, S2 and S3 samples. 

Sample ABET (m2/g)a
 Amicro (m

2/g) a Aexternal (m
2/g) a VBJH

ads (cm3/g) DBJH
ads (nm) b 

S1 508 296 212 0.654 10.7 
S2 266 86 179 0.571 11.1 
S3 203 38 165 0.508 12.1 

Notes: a Obtained by t-plot method; b Average pore diameter. 

The surface of Starbon® 700 that is rich in double bonds was then activated with bromine, better 

leaving group when reacted with hydroxyl groups (Scheme 1) [17,21]. Elemental analysis shows that 

there is a drastic decrease in the S2 carbon content (more than 10%), showing that bromine was 

introduced at the surface of the S1 material. This decrease in carbon content agrees well with the first 

weight loss observed during the thermogravimetric experiments with S2, verifying the presence of 

bromine (Scheme 1). The derivative of this thermogravimetric curve shows a peak centered around 

215 °C (Figure 1). This is corroborated by the XPS analysis showing the presence of bromine 

corresponding to 463 µmol/g (Table 2). The binding energy of the Br 3p3/2 and Br 3d5/2 peaks are 

184.2 (Figure 2a) and 70.8 eV (Figure 2b), respectively, which are consistent with reported values for 

Br atoms covalently bonded to carbon atoms [21,22]. Nevertheless, the presence of a smaller peak due 

to bromide anions can be detected in the XPS spectra (Figure 2) at 182.5 and 68.5 eV, respectively, 

due to Br 3p3/2 and Br 3d5/2 peaks, probably due to some hydrolysis of the C-Br bonds [22]. Thus it 

may be concluded that the bromination of the Starbon® 700 double bonds was achieved, similar to 

other carbon materials [17,21,22]. After bromination the sample pore volume was also reduced in 10% 

demonstrating success in bromination. It is interesting to note that the surface area decreases mainly in 

the micropore area region (Table 3), showing that the bromine molecule is able to diffuse through the 

porous structure of the Starbon® 700 and react even at the surface of the smaller micropores, which are 

in larger amount when compared to the mesopores. 
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Figure 1. Derivative of thermogravimetric curves for samples S1 and S2. 

 

Figure 2. High resolution XPS spectra for the S2 and S3 samples in the regions: (a) Br 3p 

and (b) Br 3d. 

 

The S3 material elemental analysis shows an increase in the carbon content relative to S2, due to the 

introduction of the bis(oxazoline) ligand rich in carbon (Scheme 1) and the presence of sulfur from the 

triflate anion coordinated to the copper. From this sulfur content the quantity of copper can be 

calculated corresponding to 72 µmol/g, which matches well with the quantity of copper directly 

determined by ICP-OES of 84 µmol/g (Table 1). Although the parent samples S1 and S2 also present 

some nitrogen, there is also a slight increase in the nitrogen content of the S3 sample, corresponding to 

12 µmol/g of the bis(oxazoline) ligand [7–9]. Since elemental analysis provides an overall composition 

of the samples, it may be concluded that S3 contains a large excess of Cu(II) triflate over 

bis(oxazoline). When compared to S2, a decrease in the bromine content can be seen by XPS (Table 2, 

Figure 2). A weight loss associated with the peak centered at 215 °C in the derivative of the TG curve 

can be seen. This all indicates that the reaction between the hydroxyl groups from the CudiolPhBox 

complex and the reactive bromines introduced at the surface of the Starbon® 700 (Scheme 1) took 
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place. Furthermore, by XPS nitrogen can also be detected confirming the presence of the 

bis(oxazoline) ligand, as well as copper, fluorine and sulfur from the copper(II) triflate (Table 2). 

However, in contrast to the elemental and ICP-OES analysis, from the values in Table 3 a higher 

amount of bis(oxazoline) (98 µmol/g) compared to copper (39 µmol/g) can be calculated. This 

indicates that there is more chiral ligand at the surface of material than copper. The binding energy for 

the Cu 3p3/2 peak is 933.2 eV and is typical of Cu(II) complexes with bis(oxazoline)-type ligands [23,24] 

A further decrease in pore volume and surface area can be observed after modification of the surface 

with the CudiolPhBox complex, also confirming the presence of the complex at the surface of the 

Starbon® 700 (Table 3). 

2.2. Catalytic Experiments 

The copper(II) complexes with bis(oxazoline) ligands act as efficient homogeneous catalysts in several 

asymmetric organic transformations [1]. In particular, it has been reported that copper(II) complexes 

with ligand PhBox act as efficient homogeneous catalysts in the kinetic resolution of 1,2-diols [2]. 

Hence, it was decided to test the S3 material as a heterogeneous catalyst in the asymmetric 

benzoylation of hydrobenzoin (Scheme 3). The results are compiled in Table 4 together with the 

homogeneous phase reactions with the reference PhBox and diolPhBox ligands. 

Scheme 3. Kinetic resolution of 1,2-diphenylethane-1,2-diol (3) with the S3 material. 

 

Table 4. Kinetic resolution of 1,2-diphenylethane-1,2-diol by the S3 material and CuPhBox, 

CudiolPhBox in homogeneous phase (Scheme 1). a 

Catalyst Cycle 
mol b (%) 

%yield c %ee d S e TON f 
Cu diolPhBox 

[Cu(OTf)2] 1st 0.7  33 0  50 
[Cu(OTf)2] + PhBox 1st 1.0 1.0 46 84 27 46 

[Cu(OTf)2] + diolPhBox 1st 1.1 1.1 47 84 26 43 
S3 1st 0.7 0.1 38 38 3 55 
 2nd 0.7 0.1 20 9 1 30 

Notes: a Reactions performed for 24 h at 0 °C using 0.48 mmol (R,R)-3, 0.48 mmol (S,S)-3, 1.00 mmol 

DIPEA, 1.0% mol based on Cu and 0.50 mmol of benzoyl chloride in 5.0 mL of CH2Cl2; 
b % of copper and 

diolPhBox ligand in the catalyst in relation to 1 (see Table 1 and Figure 2); for the recycling experiments 

corrected for the loss of heterogeneous catalyst weight; c Isolated yield of 4 (Scheme 3); d Enantiomeric 

excess of 4, determined by HPLC; e Selectivity (S) = ln[1 − yield (1 + ee)]/ln[1 − yield (1 − ee)];  
f TON = moles of isolated 4 /moles of Cu. 
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The S3 material acts as a heterogeneous catalyst in the kinetic resolution of hydrobenzoin with 38% 

isolated yield of the monobenzoylated product, in a maximum of 50% yield, and 38% 

enantioselectivity, confirming the presence of the CudiolPhBox at the surface of the carbonaceous 

material. Higher catalytic activity was obtained than in all the homogeneous phase reactions. Since the 

modified CudiolPhBox complex (Scheme 2) behaves as an efficient, enantioselective and selective 

homogeneous catalyst as the original CuPhBox, the significantly lower enantioselectivity obtained in 

heterogeneous phase must be due to the low content in the chiral bis(oxazoline) ligand of the S3 

material (Table 1). The yield was lower than the homogeneous phase reactions, but slightly higher than 

the homogeneous phase reaction run with [Cu(OTf)2]. The CuPhBox has also been immobilized onto 

the surface of other mesoporous carbonaceous materials, CMK-3 and SPC, using a different strategy. 

The monobenzoylated product yield obtained herein is comparable to the one obtained with CMK-3 

and higher than the one with SPC as support, but the enantioselectivity is significantly lower. Again 

this may be attributed to the low content of chiral bis(oxazoline) ligand of the S3 material, whereas the 

other heterogeneous catalysts present similar quantities of Cu(II) and chiral PhBox essential to obtain 

good enantioselectivites. The higher copper content obtained by ICP-OES than nitrogen by elemental 

analysis also suggests that there might be Cu(II) triflate that is directly coordinated to the surface of the 

Starbon® 700. This would be a non enantioselective way to obtain monobenzoylated product, which 

may also be contributing to the lowering of the overall S3 heterogeneous catalyst enantioselectivity. 

At the end of the reaction with the S3 material, it was removed by vacuum filtration, washed and 

dried. Then it was used in another cycle of the kinetic resolution of hydrobenzoin, but with reduced 

monobenzoylated yield and enantioselectivity (Table 4). This may be due to the instability 

immobilized active species, the copper(II) complex formed with diolPhBox, as found for other 

immobilized copper(II) bis(oxazoline) systems [5,6,8–10]. 

3. Experimental Section 

3.1. General Information 

Copper(II) trifluoromethanosulfonate (copper triflate, [Cu(OTf)2], 98%), (S)-(−)-2,2'-isopropylidenebis(4-

phenyl-2-oxazoline) (1, PhBox, 97%), paraformaldehyde (95%), triethylamine (Et3N, ≥99%), dry 

tetrahydrofuran (THF, ≥99.9%), bromine (reagent grade%), and potassium bromide (FT-IR grade, ≥99%) 

were purchased from Aldrich and used as received. Ethanol (p.a.), methanol (p.a.) were from Riedel de 

Häen. 1,4-dioxane was from Fisher Scientific and n-pentane from VWR. Dichloromethane, acetonitrile,  

n-hexane, isopropanol and ethyl acetate were HPLC grade and from Romil. Elemental analysis and 

copper ICP-OES were performed in duplicate by CACTI Vigo, University of Vigo (Vigo, Spain). Low 

resolution ESI-MS was performed at QOPNA of the University of Aveiro (Aveiro, Portugal) and high 

resolution ESI-MS was performed by CACTI Vigo, University of Vigo. 1H- and 13C-NMR was performed 

using a Bruker Avance 300 instrument. FTIR spectra were collected in the range 400–4000 cm−1 at 

room temperature using a resolution of 4 cm−1 and 256 scans as KBr pellets with a FT Mattson 7000 

galaxy series spectrophotometer; the samples were previously dried in an oven at 100 °C for 6 h. 

Thermogravimetry analyses (TGA) were performed under nitrogen flow with a ramp of 5 °C/min in a 

TGA apparatus, model Shimadzu TGA-50. X-ray photoelectron spectroscopy was performed at “Centro de 
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Materiais da Universidade do Porto” (CEMUP, Porto, Portugal), in a KRATOS AXIS Ultra HSA -VISION 

spectrometer using a nonmonochromatized MgKα radiation (1,253.6 eV). All the materials were 

compressed into pellets prior to the XPS studies. In order to correct possible deviations caused by 

electric charge of the samples, the C 1s line at 285.0 eV was taken as internal standard. The elemental 

contents of the various samples were calculated from the areas of the relevant bands in the high 

resolution XPS spectra, which were also curve fitted using symmetric Gaussian curves, after fitting to 

a Shirley background, using XPSpeak version 4.1. Nitrogen adsorption isotherms at −196 °C were 

measured in an automatic apparatus (Gemini V 2.00 instrument model 2,380; Micromeritics). Before 

the adsorption experiments the samples were outgassed under vacuum overnight at 120 °C to an 

ultimate pressure of 1,024 mbar and then cooled to room temperature prior to adsorption. 

3.2. Synthesis of the Diolphbox 

To PhBox (0.0953 g, 0.311 mmol) and paraformaldehyde (0.0254 g, 0.846 mmol, 2.7 eq), 

dichloromethane (2.5 mL) and 1,4-dioxane (0.6 mL) were added. To this mixture a solution of 

triethylamine (0.2 mL) in tetrahydrofuran (1.6 mL) was slowly added over a period of 1 h and the 

solids dissolved gradually during this period. The resulting solution was stirred for 3 days at room 

temperature and then poured into 8 mL of n-pentane. A precipitate appeared immediately which was 

isolated by vacuum filtration. The solution was evaporated under vacuum and a white foam was 

obtained (0.052 g, 46% yield). 1H-NMR (300 MHz, CDCl3), δ/ppm: 7.38–7.25 (m, 10 H), 5.30–5.24 

(dd, 2 H, J = 10.2 Hz, J = 7.9 Hz), 4.74–4.67 (dd, 2 H, J = 10.2 Hz, J = 8.5 Hz), 4.25–4.15 (m, 6 H). 
13C-NMR (75 MHz, CDCl3), δ/ppm: 166.6, 141.6, 128.8, 127.8, 126.6, 75.0, 69.1, 52.7, 49.9.  

ESI-HRMS, m/z: calculated (C21H23N2O4
+) 367.16523, experimental 367.16575. FTIR, ν/cm−1: 2,983 m, 

2923 m, 2,853 m (propyl C-H stretching), 1,650 (C=N stretching). 

3.3. Bromination of the Starbon® 700 

To Starbon® 700 (0.5 g), previously dried at 150 °C under vacuum, tetrahydrofuran (THF, 10 mL) and 

bromine (60 μL) were added. The mixture was stirred at room temperature for 24 h and the red color 

of the solution faded. The material was isolated by vacuum filtration using 45 μm nylon membranes, 

washed with THF and dried in an oven at 100 °C under vacuum. 

3.4. Immobilization of the Cu(II) Complex with Diolphbox Onto the Brominated Starbon® 700 

To diolPhBox (0.0279 g, 0.076 mmol) and [Cu(OTf)2] (0.0279 g, 0.076 mmol), dichloromethane 

(60 mL) was added. A blue solution was obtained, but after some minutes stirring it turned green and 

was left stirring for more 2 h. The brominated Starbon® 700 was added to this solution and refluxed for 

36 h. The material was filtered and washed under reflux with fresh dichloromethane (20 mL) in order 

to remove any physisorbed complex. Finally, the materials were isolated by filtration and dried  

under vacuum. 
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3.5. Catalysis Experiments 

All the catalytic reactions of the prepared materials were performed in batch reactors at atmospheric 

pressure and with constant stirring. The kinetic resolution of 1,2-diphenylethane-1,2-diol (1) was 

performed at 0 °C using 0.48 mmol (R,R)-1,2-diphenylethane-1,2-diol, 0.48 mmol (S,S)-1,2-

diphenylethane-1,2-diol, 1.00 mmol DIPEA (170 µL), amount of heterogeneous catalyst containing  

0.7% mol Cu and 0.50 mmol of benzoyl chloride (58 µL) in dichloromethane (5.00 mL) [2,9].  

The mixture was stirred for 24 h and after filtration of the heterogeneous catalyst the solvent was 

evaporated from the filtrate and the monobenzoylated product (2, Scheme 3) isolated by column 

chromatography over silica gel using n-hexane/ethyl acetate 3:1 as eluent. The 2 enantiomeric excess 

was determined by HPLC at 254 nm using a Chiralcel OD column (250 mm × 4.6 ID, 5 µm) and  

n-hexane/isopropanol 9:1 as eluent at 1 mL/min. The retention times of the (R)-2 and (S)-2 

enantiomers were identified by comparison with those of a racemic 2. The reaction selectivity (S) was 

calculated based on the isolated yields of 2 and respective enantiomeric excess by using the formulae: 

ln[1 − yield (1 + ee)]/ln[1 − yield (1 − ee)]. The isolated materials at the end of the reactions were 

washed extensively with the appropriate solvent, dried under vacuum and reused in another cycle using 

the same experimental procedure. Control experiments were also performed using the same 

experimental procedure in homogeneous phase with equimolar quantities of [Cu(OTf)2] plus PhBox or 

diolPhBox in order to compare with the heterogeneous ones. 

4. Conclusions 

A copper(II) complex with a commercial bis(oxazoline) ligand functionalized with CH2OH groups 

was successfully reacted with the brominated surface of a mesoporous carbonaceous material.  

The material acted as a selective and enantioselective heterogeneous catalyst in the kinetic resolution 

of hydrobenzoin, with high catalytic activity. Due to the low chiral bis(oxazoline) ligand content the 

enantioselectivity was reduced in comparison to the homogeneous phase reactions. Upon reuse of the 

material a further decrease in the product yield and enantioselectivity was observed, probably due to 

the instability of the copper(II) complex. Further work is being undertaken in order to improve the 

performance of the immobilized homogeneous catalyst onto porous carbonaceous materials in 

asymmetric transformations. 
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