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Abstract: We aimed to investigate the antioxidant and acetylcholinesterase inhibitory 

activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA) 

neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane) 

dihydrochloride (AAPH)-induced erythrocyte hemolysis and oxidative DNA damage. 

Moreover, GSA decreased reactive oxygen species (ROS) generation in isolated 

mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH) oxidation. In an in vivo 

study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day 

orally for 30 consecutive days. Herein, we demonstrate that GSA administration 

significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. 

Furthermore, GSA inhibited acetylcholinesterase (AChE) in the in vitro assay with an IC50 

value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and 

its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders 

such as Alzheimer’s disease. 

Keywords: anthocyanin; antioxidant; free radicals; DNA damage; mitochondria; 

antioxidant enzyme activity 
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1. Introduction 

Free radicals or reactive oxygen species (ROS) play many important roles in physiological and 

pathological processes. Oxidative stress is a biological phenomenon that results from a biochemical 

imbalance between the formation and clearance/buffering of free radicals [1]. Mitochondria are the 

major source of cellular ROS. The accumulation of ROS induces oxidative damage of mitochondrial 

DNA (mtDNA), proteins, and lipids, and has been shown to contribute to the decline in physiological 

function of cells resulting in a variety of diseases and accelerated aging [2]. 

Enzymatic systems in cells and body fluids regulate the level of ROS, which otherwise might 

generate a cascade of products and lead to assailing oxidants. The main classes of antioxidant enzymes 

in our antioxidant defense system are the superoxide dismutases (SOD), catalases (CAT), and 

glutathione peroxidases (GPx) [3]. Under oxidative stress conditions, antioxidant enzymes modulate 

the activities of these ROS and play a role in vascular function [4]. 

Acetylcholinesterase (AChE) is a hydrolase that plays a key role in cholinergic transmission by 

catalyzing the rapid hydrolysis of the neurotransmitter acetylcholine (ACh) [5]. Natural products might 

slow the progression of Alzheimer’s disease (AD) by simultaneously protecting neurons from 

oxidative stress and acting as cholinesterase inhibitors [6]. 

Antioxidant supplementation is one plausible strategy to maintain redox homeostasis by directly 

quenching excessive ROS and protecting or reinforcing endogenous antioxidative defense systems 

against oxidative stress [7]. At present, many antioxidants are synthetically manufactured. They may 

possess some side effects and toxic properties to human health [8]. Therefore, studies of antioxidant 

substances in foods and natural products have gained increasing interest. 

Anthocyanins are flavonoids, a class of secondary plant metabolites, with phenolic groups in their 

chemical structure that are responsible for the pigmentation in several different fruits. In grapes,  

they are found almost exclusively in the skins, with only a limited number of varieties showing  

these compounds in the pomace [9]. Recently, a great number of researchers have identified and 

characterized various anthocyanins found in grape skin with Liquid chromatography–mass spectrometry 

(LC/MS). The main Vitis vinifera grape anthocyanins, cyanidin, malvidin, delphinidin, petunidin, and 

peonidin, are present as monoglucoside, acetylmonoglucoside, and p-coumaroylmonoglucoside 

derivatives [10]. The most common anthocyanin in V. vinifera is malvidin-3-O-glucoside [11].  

Choi et al. [12] showed that anthocyanins are primarily responsible for the antioxidant activity of this 

grape variety, which was also reported in other grape varieties. Anthocyanins are used in the treatment 

of coronary heart disease and are administered as dietary supplements for the prevention and treatment 

of metabolic disorders, in particular, obesity, diabetes, and osteoarthritis [13]. Anthocyanins also 

possess anticancer and antineurodegenerative properties [14–16]. It has been shown that anthocyanins 

have beneficial effects on memory and cognition, suggesting a clear neuroprotective role [17,18]. 

Therefore, the primary objective of our research was to investigate the antioxidant effects of grape 

skin anthocyanins using various in vitro and in vivo methods. In this study, physiologically relevant 

antioxidant activities of GSA, including erythrocyte membrane protection, DNA protection, and 

mitochondria protection were investigated for the first time. Moreover, we studied the in vivo 

antioxidant activity of GSA in mice serum, liver, and brain. Another major objective was to determine 

potential in vitro anticholinesterase activity of GSA. 
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2. Results and Discussion 

2.1. Radical Scavenging Activity  

GSA’s free radical scavenging activity was evaluated on different free radical species: DPPH and 

ABTS. GSA was able to reduce the stable radical DPPH to the yellow-colored diphenyl picryl 

hydrazine. GSA exhibited a significant concentration-dependent inhibition of DPPH activity, with a 

50% inhibition (IC50) at a concentration of 95.54 µg/mL. The results are presented in Table 1. The IC50 

value of vitamin C was 71.50 µg/mL. These results indicate that GSA might act as an electron or 

hydrogen donator to scavenge DPPH• radicals. 

The ABTS radical scavenging assay is shown in Table 1. GSA showed scavenging activity in a 

concentration-dependent manner. The concentration for 50% inhibition of GSA and vitamin C were found 

to be 62.74 and 20.32 µg/mL, respectively. These results indicate that GSA has strong scavenging 

power for ABTS radicals and should be explored as a potential antioxidant. Previous studies have 

confirmed the free radical scavenging activity of red grape pomace seeds and skin extracts [19]. 

Table 1. DPPH, ABTS radical scavenging and metal chelating activities of GSA. 

Extract 
DPPH Radical ABTS Radical Metal Chelating 

Scavenging  

Activity (%) 
IC50 Value 

µg/mL 
Scavenging 

Activity (%) 

IC50 Value 

µg/mL 
Scavenging 

Activity (%) 
IC50 Value 

µg/mL 
GSA 95.54 ± 0.43 a 95.14 ± 1.13 a 97.67 ± 1.009 a 62.74 ± 0.43 a 56.26 ± 1.67 a 180.49 ± 19.40 a

Positive 

control 
97.75 ± 0.28 b 

(Vitamin C) 
71.50 ± 1.05 b 

99.78 ± 0.34 b 

(Vitamin C) 
20.32 ± 0.20 b 

89.82 ± 2.69 b 

(EDTA 100 µM) 
7.089 ± 0.78 b 

All data are expressed as mean ± SD (n = 3). Different letters in each column denote statistically significant 

difference compare to the positive control group at p < 0.05. Scavenging activity (%) was determined at 500 µg/mL. 

2.2. Fe2+ Chelation  

Chelation is an important parameter because iron is required for oxygen transport, respiration, and 

the activities of many enzymes. However, iron is an extremely reactive metal and can catalyze 

oxidative changes in lipid, proteins, and other cellular components. Fe2+ ion can trigger a Fenton 

reaction when it encounters H2O2, and the product of this reaction (hydroxyl radical) can cause great 

oxidative damage [20]. Therefore, ferrous ion-chelating activity is considered an important indicator in 

any oxidative stress involving ferrous ion. Fe2+ ion is the most powerful pro-oxidant among the various 

species of metal ions [21]. Ferrozine can quantitatively form complexes with Fe2+. However, in the 

presence of chelating agents, the complex formation is disrupted, resulting in a decrease in the red 

color of the complex. Measurement of color reduction therefore allows for estimation of the metal 

chelating activity of the co-existing chelator. The capacity of GSA to chelate Fe2+ is shown in Table 1. 

We found that GSA could chelate Fe2+ efficiently and therefore reduce the production of free radicals. 

The IC50 value for GSA’s chelating abilities was 180.49 µg/mL. EDTA was used as reference in this 

assay and its IC50 value for Fe2+-chelation was 7.08 µg/mL. 
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2.3. Oxidative Hemolysis Inhibition Assay  

The oxidative hemolysis inhibition assay system is based on the property of erythrocytes that 

renders them susceptible to oxidative damage and utilizes the biologically relevant radical source, 

AAPH-derived peroxyl radicals, to attack the erythrocyte membrane and cause erythrocyte hemolysis [22]. 

The rate of cell lysis can be regarded as an in vitro marker of oxidative damage. As shown in Figure 1, 

inhibition rates of erythrocyte hemolysis were 17.63%, 19.36%, 25.37%, 35.12%, 68.35%, and 68.35% 

for GSA, and 22.54%, 27.47%, 35.70%, 46.85%, and 72.89% for vitamin C at the tested concentrations 

of 31.25, 62.5, 125, 250, and 500 µg/mL, respectively. Our results are in agreement with other studies 

showing that polyphenols are able to protect erythrocytes from oxidative stress or increase their 

resistance to damage caused by oxidants [23,24]. 

Figure 1. Anti- haemolytic activity of GSA on APPH-induced erythrocyte haemolysis  

in vitro. Data are expressed as mean ± SD (n = 3). Columns with different letters are 

significantly different at p < 0.05 level. 

 

2.4. Oxidative DNA Damage Prevention 

ROS, such as superoxide anion (O2
−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) can 

cause damage to biological macromolecules leading to lipid peroxidation, protein oxidation, and DNA 

base modification and strand breaks [21]. Permanent modification of DNA as a result of oxidative 

damage is the first step in several pathological and physiological conditions such as cancer and aging, 

respectively. The inhibition of H2O2-induced DNA strand breakage by GSA was assessed by 

measuring the conversion of the supercoiled pBR322 plasmid DNA to open circular and linear forms 

by gel electrophoresis. Because hydroxyl radical (•OH) modifies and destroys DNA in a nonspecific 

manner, protection capacity against •OH-induced oxidation of DNA was also measured to evaluate an 

antioxidant. Figure 2, shows the inhibitory effect of GSA on pBR322 plasmid DNA cleavage caused 

by H2O2. Conversion of the supercoiled form of this plasmid DNA to the open-circular and further 

linear forms has been used as an index of DNA damage. The plasmid DNA was mainly in the 

supercoiled form in the absence of Fe2+ and H2O2 (lane 1, control). After the addition of Fe2+ and H2O2, 

the quantity of supercoiled DNA decreased due to conversion into the relaxed circular and linear 

forms. However, further fragmentation of linear form decreased in the presence of GSA (125–500 µg/mL). 
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Both GSA and vitamin C were concentration–dependent for preventing DNA damage. The observed 

scission-inhibition could be due to the scavenging of hydroxyl radicals by GSA. Devasagayam et al. [25] 

studied the ability of natural antioxidants, such as carotenoids and flavonoids to protect the pBR322 

plasmid DNA against ROS. In a previous study Noroozi et al. [26] reported that flavonoids  

and vitamin C were effective against hydrogen peroxide initiated oxidative DNA damage to  

human lymphocytes. 

Figure 2. Protective effect of GSA on hydroxyl radical-mediated pBR322 DNA strand 

breaks. (A) GSA (B) Vitamin C. Lane 1: normal DNA control; lane 2: FeSO4 + H2O2 

(DNA damage control); lane: 3–5: FeSO4 + H2O2 + DNA in the presence of GSA (125, 

250 and 500 µg/mL, respectively). 

 

2.5. Evaluation of Antioxidation of GSA Using a Mitochondria-Based Assay 

Approximately 90% of cellular ROS are produced in the mitochondria [27]. ROS levels are thought 

to increase with age owing to the accumulation of damaged mitochondria in a self-perpetuating cycle. 

ROS-induced impairment of mitochondria results in increased ROS production, which in turn leads to 

further mitochondrial damage [28]. Measurement of ROS in living organisms has been a significant 

analytical challenge. Most ROS are highly reactive and short lived and therefore are difficult to detect 

in complex biological matrices. Additionally, ROS are often produced and/or neutralized in subcellular 

compartments, which requires detection methods specific to subcellular localization [29]. 

A physiologically relevant mitochondria-based assay was used to assess the antioxidant capability 

of GSA against oxidative stress in mitochondria. Ascorbic acid was used as the reference antioxidant. 

GSA could inhibit DCFH oxidation by scavenging ROS, thus resulting in decreased fluorescence 

intensity. As illustrated in Figure 3, the tested sample and ascorbic acid standard exhibited strong 

antioxidant capacity in a concentration-dependent manner. Inhibition of DCFH oxidation was 29.59%, 

32.78%, 38.73%, 46.22%, and 65.62% for GSA, and 31.40%, 38.46%, 40.40%, 47.61%, and 68.95% 

for vitamin C at the tested concentrations of 31.25, 62.5, 125, 250, and 500 µg/mL, respectively 
(Figure 3). GSA did not show any significant difference compared to vitamin C (p < 0.05). The 

method for monitoring H2O2 generation in isolated mitochondria by DCFH-DA chemical probe was 

first introduced in 1983 [30]. It is known that once DCFH-DA enters the cell, the acetyl moiety is 

cleaved by intracellular esterases; subsequent oxidation by ROS, particularly H2O2 and hydroxyl 
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radical, yields the fluorescent product, DCF. The principle of this method is that antioxidants can 

scavenge ROS generated in mitochondria, thus inhibiting DCFH oxidation. 

Figure 3. Protective efffect of GSA against oxidative damage on isolated mouse liver 

mitochondria. ROS generation was assayed as inhibition of DCFH oxidation. Values 

represent the mean ± SD (n = 3). Columns with different letters are significantly different 

at p < 0.05 level. 

 

2.6. Antioxidant Activities in Vivo 

The cooperative defense systems that protect the body from free radical damage include antioxidant 

nutrients and enzymes. As shown in Figure 4, after administration of GSA (50 mg/kg) SOD, CAT, and 

GPx activities were noticeably increased in mice serum, liver, and brain than those in the control group 

(p < 0.05). In most of the cases, compared with the control group, levels of antioxidant enzymes were 

not significantly elevated for the GSA extract at 12.5 and 25 mg/kg (p < 0.05). Administration of 

ascorbic acid (50 mg/kg) also showed significant increase in SOD, CAT, and GPx levels. These data 

suggest that GSA has significant effects on the levels of antioxidant enzymes in mice. 

Regarding the in vivo study, evidence has shown that ethanolic extract of white button mushroom 

(Agaricus bisporus)-fed mice led to a significantly higher level of antioxidant enzymes (SOD, GsH-Px, 

and CAT) in mice serum, liver, and heart [31]. Grape skin anthocyanin activates the antioxidant 

enzymes SOD, CAT, and GPx in H2O2 treated retinal cells [32]. Puiggros et al. [33] provided evidence 

that grape seed procyanidin extract increased the Cu/Zn-SOD activity in rats and Fao cell line 

hepatocytes. In in vivo assay, numerous factors such as bioavailability, digestibility, and metabolism of 

the compound may influence biological potentials. Previous studies indicated that anthocyanin can 

rapidly reach the plasma after oral administration. [34,35]. Two previous works reported the capacity 

of dietary anthocyanins from grapes and berries to reach the brain [36,37]. Moreover, the results of a 

previous clinical study suggested that antioxidative anthocyanins are obviously absorbed from grape 

juice and wine [38]. 
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Figure 4. Effects of GSA on level of catalase (CAT) (A) SOD (B) and GPx (C) in serum, 

liver and brain of mice. Values are the mean ± SD (n = 5); * p < 0.05 compared with normal 

control group. All activities were expressed as unit per milligram of protein (U/mg protein). 

(A) 

 
(B) 

 
(C) 
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2.7. In Vitro Cholinesterase Inhibition 

Acetylcholinesterase (AChE) is a hydrolase that plays a key role in cholinergic transmission by 

catalyzing the rapid hydrolysis of the neurotransmitter acetylcholine (ACh) [5]. The use of 

acetylcholinesterase inhibitors elicits numerous responses, which mediate the symptoms of 

Alzheimer’s disease [39]. When studied for its possible inhibitory effect in the in vitro assay, GSA 

showed AChE inhibitory activity in a dose-dependent manner. As illustrated in Figure 5, at tested 

concentrations of GSA (31.25–500 µg/mL), acetylcholinesterase inhibitory activities were 17.94%, 

21.47%, 29.16%, 45.57%, and 55.58%, respectively (IC50 = 363.61 µg/mL). Tacrine was used as a 

reference inhibitor and was more active than GSA (p < 0.05). At 10 µM tacrine showed a 66.30% 

inhibition of AChE. Several studies recently supported that different plant extracts and active 

compounds, including anthocyanins (pelargonidin, delphinidin and cyanidin), terpenoids, also have 

anticholinesterase activity [40–42]. The leaves of pomegranate and grapes exhibited considerable 

acetylcholinesterase inhibitory activity [43,44]. Several studies showed that grape and blueberry 

anthocyanin have clear neuroprotective roles [16,18,45]. 

Figure 5. Acetylcholinesterase inhibitory activity of GSA. Values represent the mean ± SD 

(n = 3). * p < 0.05, compare to the positive control group.  

 

3. Experimental Section  

3.1. Samples and Chemicals 

Anthocyanin rich grape skin extract was manufactured by Kitolife (Pyeong-Teak, Korea). The 

anthocyanin content of grape skin (Vitis vinifera L.) extract was standardized at 80% (w/w) by  

high-performance liquid chromatography (HPLC) system. These products were manufactured according to 

a previously described method [32]. In brief, grap skin (V. vinifera L. cv. Aglianico) were collected 

and extracted in methanol (0.75% HCl) solution for five days at room temperature. Anthocyanins 

extracted from skins of grape contain the following four major compounds: malvidin 3-O-glucoside, 

petunidin 3-O-glucoside, delphinidin 3-O-glucoside, and cyaniding 3-O-rutinoside [13,32,46]. 

2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) 

diammonium salt (ABTS), gallic acid, sodium nitrite, Folin–Ciocalteu reagent (FC reagent), butylated 
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hydroxyluene (BHT), ascorbic acid (AA), α-tocopherol, potassium persulphate, ferrous chloride, 

ammonium thiocyanate, ethylene-di-amino-tetraacetic acid (EDTA), linoleic acid, anhydrous sodium 

phosphate (dibasic), anhydrous sodium phosphate (monobasic), 5,5'-dimethyl-pyrroline-1-oxide 

(DMPO), pyrogallol and ferrous sulphate (FeSO4), ethylene-bis-(oxyethylenenitrilo)-tetraacetic acid 

(EGTA), HEPES, glutamate, succinate, and 2',7'-dichlorofluorescin diacetate (DCFH-DA) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium hydroxide and ferric chloride were 

obtained from Wako Pure Chemical Industries Ltd. (Osaka, Japan). The catalase assay kit and SOD 

assay kit were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). The pBR322 

DNA and 6× DNA loading dye were purchased from Fermentas Inc. (Cromwell Park, Glen Burnie, 

USA). All other reagents were of analytical grade. 

3.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activities 

Free radical scavenging activity on DPPH by GSA was assessed by a previously described 

colorimetric method [20]. In brief, an 80 μL aliquot of sample solution at different concentrations 

(31.25–500 µg/mL) was mixed with 80 μL DPPH solution (0.3 mM in methanol). The reaction 

mixture was incubated for 30 min in the dark at room temperature. The absorbance of the resulting 

solution was measured at 517 nm with a spectrophotometer (Sunrise-Basic Tecan, Salzburg, Austria). 

Controls were prepared in a similar manner using the corresponding extraction solvent in place of the 

sample solution. The radical scavenging capacity of the tested samples was measured using the following 

equation:  

Scavenging activity (%) = (1 − Absorbance of sample/Absorbance of control) × 100 

3.3. 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical-Scavenging Activity 

Free radical scavenging activity on ABTS by GSA was determined using the method described by 

He et al. [47] with slight modifications. The ABTS•+ radical was generated by the reaction of 7 mM 

2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS, 5 mL) with 2.45 mM 

of potassium persulphate (88 µL). The mixture was left to stand for 12–16 h in the dark at room 

temperature. Absorbance of the reactant was later adjusted to 0.70 ± 0.02, at room temperature, at a 

wavelength of 734 nm. Different concentrations of tested extract were mixed with 0.7 mL of ABTS•+ 

solution and the mixture was shaken for 5 min. The reduction of the ABTS•+ radical was determined 

by reading the absorbance at 734 nm using a UV spectrophotometer (Pharmaspec UV-1700, 

Shimadzu, Kyoto, Japan). The controls contained the extraction solvent instead of the test sample. The 

scavenging activity of ABTS free radical was calculated as: 

Scavenging activity (%) = (1 − Absorbance of sample/Absorbance of control) × 100 

3.4. Fe2+ Chelation Assay 

The ferrous ion-chelating activity of GSA was estimated in accordance with the method described 

by Cheng et al. [20]. GSA (31.25–500 µg/mL). Each sample was incubated with 50 µL of 2 mM FeCl2 

for 5 min. The reaction was initiated by adding 200 µL of 5 mM ferrozine. After incubation for 5 min 

at room temperature, the absorbance of the mixture was measured at 562 nm against the blank, which 
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was performed in the same way using FeCl2 and water. EDTA (3.12–100 µg/mL) served as the 

positive control, and a sample without the sample or EDTA served as the negative control.  

The Fe2+-chelating activity was calculated using the equation below: 

Chelating activity (%) = (1 − Absorbance of sample/Absorbance of control) × 100 

3.5. Oxidative Hemolysis Inhibition Assay  

Anti-hemolytic activity was assayed according to the method described by Carvalho et al. [23]. 

Blood was collected from female BALB/c mice (weighing 20 ± 2 g). RBCs were separated from 

plasma by centrifugation at 1500 g for 20 min. The crude RBC was then washed five times with five 

volumes of phosphate-buffered saline (PBS, pH 7.4). The RBC was suspended in four volumes of PBS 

solution for hemolysis assay. Two mL of RBC suspension were mixed with 2 mL of PBS solution 

containing GSA (31.25–500 µg/mL). The erythrocyte suspension was agitated gently while being 

incubated with APPH (final concentration, 50 mM) at 37 °C for 3 h. After incubation, 8 mL of PBS 

solution was added to the reaction mixture, followed by centrifugation at 1,000 g for 10 min. The 

absorbance of the supernatant was recorded at 540 nm in a spectrophotometer. Percentage inhibition 

was calculated by the following equation: 

% Inhibition = (1 − Absorbance of sample/Absorbance of control) × 100 

3.6. Assay for Effects of GSA on DNA oxidative damage 

The protective effect of GSA on DNA strand breaks induced by hydroxyl radicals was measured by 

the conversion of pBR322 DNA to an open circular form according to the method described by Cheng 

et al. [20] with some minor modifications. Briefly, 1 μL of plasmid pBR322 DNA (0.5 μg/μL) was 

treated with 3 μL of FeSO4 (0.08 mM), 4 μL of 30% H2O2 (v/v), 3 μL distilled water, and 2 μL of the 

tested sample at different concentrations (125–500 µg/mL). The mixture was then incubated in a water 

bath at 37 °C for 1 h. Then 2 μL of DNA loading dye (6×) was added to the mixture. The DNA 

samples were resolved on a 0.8% (w/v) agarose gel using ethidium bromide staining. Gels were 

scanned on a gel documentation system (Nextep, Seoul, Korea) and bands were quantified using 

NEXTEP analysis software. To avoid photolysis of samples, experiments were conducted in the dark. 

3.7. Mitochondria-Based Assay 

3.7.1. Isolation of Mitochondria from Liver 

Mitochondria were isolated from the livers of mice according to the methods described by He  

et al. [47], with some modifications. Briefly, livers were rinsed using cold homogenization media, and 

subsequently homogenized in the homogenization buffer A (1:4, w/v; sucrose 0.32 mol/L, EDTA  

1 mmol/L, Tris–HCl 10 mmol/L, and bovine serum albumin (BSA) 65 mmol/L, pH 7.4). This 

homogenate was centrifuged for at 45 g for 10 min, and the unbroken tissue, cells, and nuclei were 

discarded. The supernatant obtained was centrifuged at 15,000 g for 10 min, and the pellet was 

collected and resuspended in the homogenization buffer A. This procedure was repeated until a single 

pellet was obtained. The pelleted mitochondria were resuspended in 30 mL of buffer B (KCl 137 mmol/L, 
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HEPES 10 mmol/L, MgCl2 2.5 mmol/L, and EDTA 0.5 mmol/L, pH 7.2) and stored at −20 °C until 

use. The concentration of mitochondrial protein was determined using the Bradford protein assay with 

BSA as a standard. 

3.7.2. Mitochondrial Reactive Oxygen Species (ROS) Measurements 

ROS production in mitochondria was measured using 2',7'-dichlorofluorescin diacetate (DCFH-DA), 

a H2O2-sensitive fluorescent probe, as previously described by He et al. [47], with modifications. 

Briefly, 40 μL of appropriate dilutions of extract was added into a mixture containing 30 μL glutamate 

(40 mmol/L), 30 μL succinate (40 mmol/L) and 165 μL H2O2 buffer in a 96-well plate, and followed 

by 75 μL DCFH-DA (52 μmol/L). Then, 60 μL (1.5 mg/mL) mitochondrial suspension was added to 

initiate the reaction, which was incubated at 37 °C for 10 min. The change in fluorescence of the 

reaction mixture was recorded at 485 nm excitation and 530 nm emission in a spectrophotometer. 

Inhibition of DCFH oxidation was calculated by the following equation: 

% Inhibition = (1 − Absorbance of sample/Absorbance of control) × 100 

3.8. In Vivo Antioxidant Activity 

3.8.1. Animals and Experimental Design 

In vivo antioxidant activity was assayed according to the methods described by Liu et al. [31] with 

some modifications. Female BALB/c mice (weighing 20 ± 2 g, 8 weeks old) were purchased from 

Orient Bio Inc. (Seongnam, Gyeonggi, Korea). Animals were acclimatized under controlled conditions 

for 1 week before experimental feeding. Mice were housed in specific pathogen-free conditions in an 

animal room at Konkuk University, maintained on a 12-h light/dark cycle, and provided food and 

water ad libitum. All animal procedures were carried out according to a protocol approved by the 

Institutional Animal Care and Use Committee of the Konkuk University. After one week of adaptation, 

the mice were randomly divided into five groups of 5 animals each: Group 1 (control) received vehicle 

(water), Group 2 received vitamin C (positive control), Group 3, Group 4, and Group 5 received GSA 

at 12.5, 25, and 50 mg/kg body weight, respectively, by gavage for 30 consecutive days.  

3.8.2. Biochemical Assay 

Twenty-four hours after the last drug administration, mice were sacrificed and blood samples were 

collected. The blood samples were then centrifuged at 10,000 g at 4 °C for 10 min to obtain blood 

serum, which was then stored at −80 °C for further analysis. The liver and brain were removed 

immediately, washed and homogenized in ice-cold physiological saline to prepare a 10% (w/v) 

homogenate. Then, the homogenate was centrifuged at 1,000 g at 4 °C for 10 min to remove cellular 

debris, and the supernatant was collected for analysis.  

Antioxidant enzymatic activities were determined using SOD, CAT, and GPx assay kits (Cayman 

Ann Arbor, MI, USA) following the manufacturer’s instructions. One unit of SOD is defined as the 

amount of enzyme needed to exhibit 50% dismutation of the superoxide radical. Detection of catalase 

activity was based on the reaction of the enzyme with methanol in the presence of an optimal 
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concentration of H2O2. The formaldehyde produced was measured spectrophotometrically with  

4-amino-3-hydrazino-5-mercapto-1,2,4-triazole as the chromogen. Catalase activity was expressed as 

µmol of formaldehyde per min per g of protein from homogenates. GPx activity was measured on the 

basis of the reaction of GSH and 5,5'-dithiobis-(2-nitrobenzoic acid). The protein contents in the 

supernatants obtained from the liver and brain were determined by the Bradford Protein assay kit. All 

the above treatments were performed at 4 °C. 

3.9. In Vitro Anticholinesterase Inhibition Assay 

The AChE inhibition assay was carried out in a multi-well plate using a modified method, as 

described by Ellman et al. [48]. Electric eel acetylcholinesterase was used, while acetyl thiocholine 

iodide (ATCI) was used as the substrate of the reaction. 5,5-dithiobis(2-nitrobenzioc) acid (DTNB) 

was used for measurement of AChE activity. Briefly, 150 μL of 0.1 M sodium phosphate buffer (pH 8.0), 

10 μL test compound solution, and 20 μL of enzyme solution (0.09 units/mL) were mixed and 

incubated for 15 min at 25 °C. 10 μL of DTNB (10 mM) was then added and reaction was initiated by 

the addition of substrate (10 μL of ATCI, 14 mM solution). The hydrolysis of the ATCI can be 

measured by the formation of the product, 5-thio-2-nitrobenzoate, a colored anion formed by the 

reaction of DTNB and thiocholine, which is released by enzyme hydrolysis. Absorbance was measured 

at 412 nm (Shimadzu, 1200, Japan) after 10 min. Tacrine, a standard AChE inhibitor, was used as 

positive control. The percent of acetylcholinesterase inhibition was calculated as following: 

% Inhibition = 100 − [Absorbance of the test compound/Absorbance of the control] × 100 

3.10. Statistical Analysis 

Data are expressed as mean ± standard deviation (SD). All analysis was carried out in at  

least three replicates for each sample. Results were analyzed statistically using SPSS 15.0, Sigma plot 

10.0, and GraphPad Prism 5 software (San Diego, CA, USA). A value of p < 0.05 was considered 

statistically significant. 

4. Conclusions  

GSA possesses strong antioxidant activity as demonstrated by biologically relevant assays, such as 

the oxidative DNA damage prevention assay, hemolysis inhibition assay, liver mitochondria oxidative 

damage prevention assay. Administration of GSA could significantly enhance the activities of 

antioxidant enzymes (SOD, CAT, and GPx) in mice sera, liver, and brain. Moreover, the results 

suggest that GSA can inhibit cholinesterase activities. Altogether, our results show that GSA has great 

value for preventing oxidative stress-related disease and can be a prominent source of 

anticholinesterase activity. 
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