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Abstract: Crystals of 1,6-hexanedioic acid (I) undergo a temperature-dependent reversible 

phase transition from monoclinic P21/c at a temperature higher than the critical temperature 

(Tc) 130 K to another monoclinic P21/c at temperature lower than Tc. The phase transition 

is of first order, involving a discontinuity and a tripling of the b-axis at Tc whereas the 

other unit cell parameters vary continuously. The transition is described by the 

phenomenological Landau theory. The crystal structure analyses for data collected at  

297(2) K and 120.0(1) K show that there is half of a molecule of (I) in the asymmetric unit 

at 297(2) K whereas there are one and a half molecules of (I) in the asymmetric unit at 

120.0(1) K. At both temperatures, 297(2) and 120.0(1) K, intermolecular O-H···O 

hydrogen bonds link the molecules of I into infinite 1D chains along [101] direction. 

However there are significantly more O-H···O hydrogen bonds presented in the 120.0(1) K 

polymorph, thereby indicating this phase transition is negotiated via hydrogen bonds. The 

relationship of the conformational changes and hydrogen bonding for these two 

polymorphs are explained in detail. 
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1. Introduction 

Reports on several types of phase transitions due to hydrogen bonding [1,2] and their 

conformation changes [3] have been published. In our previous investigations, we have reported the 

studies of hydrogen bonding phase transitions in phenol/benzoic acid and amine adducts [4–8]. In 

those crystals the structural phase transitions have been from monoclinic-to-triclinic [4] and from 

orthorhombic-to-monoclinic [7]. The phenomenological Landau theory of ferroelastic phase 

transitions was developed to identify the primary order parameters of these structural phase transitions 

leading eventually to the clarification of these structural phase transitions [5,6,8]. Owing to our interest in 

phase transitions of organic compounds both in structural and theoretical studies, we have prepared 

crystalline forms of 1,6-hexanedioic acid or adipic acid (I, Figure 1) which is an interesting aliphatic 

dicarboxylic acid due to its undulatory behavior in the solid state. A monoclinic polymorph of adipic 

acid has been reported by Ranganathan, Kulkarni and Rao [9] which did not exhibit polymorphism, but 

underwent a phase transition. Recently, Ohki, Nakamura and Chihara reported that the adipic acid 

undergoes a phase transition at about 136 K [10]. However, our study shows that I actually exhibits 

polymorphism in forms of triclinic polymorph [11] and monoclinic polymorph (in this study). 

Moreover we found that the triclinic polymorph [11] does not undergo phase transition whereas the 

monoclinic polymorph shows a reversible first-order temperature dependent phase-transition.  

In this paper, we report the preparation, temperature-dependent phase transition and the X-ray 

structural analyses of I at 297(2) and 120.0(1) K which will be referred to as room-temperature phase 

(RTP) and low-temperature phase (LTP), respectively. The phase transition of I is described 

macroscopically by the Landau phenomenological theory approach.  

Figure 1. Schematic diagram of adipic acid (I). 

 

2. Results and Discussion 

Adipic acid reported in this study crystallizes in a centrosymmetric monoclinic P21/c space group. 

Using the same crystal to collect data at high temperature and low temperature, it was found that the 

crystal of I undergoes a reversible temperature-dependent phase transition from monoclinic P21/c at 

the temperature higher than the critical temperature (Tc) 130 K to another monoclinic P21/c at 

temperature lower than Tc. The crystal data of I at 297(2) K (RTP) and 120.0(1) K (LTP) are summarized 

in Table 1. Selected bond lengths, bond angles and torsion angles of the RTP and LTP structures are 

listed in Table 2. The interplanar angles between the functional units in I are listed in Table 3 and the 

hydrogen bonds are listed in Table 4. 
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Table 1. Crystal data and parameters for structure refinement of I at 297(2) and 120.0(1) K. 

Crystal Properties 297(2) K (RTP) 120.0(1) K (LTP) 

CCDC deposition numbers 989931 989973 

Formula C6H10O4 C6H10O4 

Formula Weight 146.14 146.14 

Color; Shape Colorless; Block Colorless; Block 

Crystal System Monoclinic Monoclinic 

Space Group P21/c P21/c 

Z 2 6 

Lattice Constants 

a =7.3647(3)Å  

b = 5.1503(3)Å 

c = 10.1332(5)Å 

β = 112.274(3)° 

a = 7.3865(6)Å 

b = 14.9130(13)Å 

c = 10.0475(9)Å 

β = 111.656(6)° 

Volume [Å3] 355.42(3) 1028.66(15) 

Dx [Mg·m−3] 1.366 1.415 

μ [mm−1] 0.115 0.120 

F(000) 156 468 

θ range [°] 2.99–32.50 2.57–27.50 

h, k, l  −10/11, −7/7, −14/15 −9/9, −19/7, −13/13 

Reflections Collected  5118 10307 

Reflections Unique 1279 2346 

Tmin/Tmax 0.9661/0.9394 0.9373/0.9649 

R(int) 0.0270 0.0523 

Number of Parameters  67 136 

GoF 1.052 1.180 

Final R index[I > 2σ(I)] 0.0453 0.0949 

Table 2. Selected bond lengths (Å), angles (°) and torsion angles (°) for I. 

Monoclinic at 297(2) K Monoclinic at 120.0(1) K 

Bonds    

O1-C1 1.2242(11) O1A-C1A 1.219(5) 

O2-C1 1.2989(11) O2A-C1A 1.308(5) 

O2-H1O 0.98(2) O2A-H1OA 0.82 

C1-C2 1.4931(11) C1A-C2A 1.523(6) 

C2-C3 1.5091(13) C2A-C3A 1.499(6) 

C3-C3 i 1.5135(15) C3A-C3 ii 1.546(8) 

  O1B-C1B 1.220(5) 

  O2B-C1B 1.316(5) 

  O2B-H1OB 0.82 

  C1B-C2B 1.505(5) 

  C2B-C3B 1.514(5) 

  C3B-C4B 1.514(5) 

Angles    

O1-C1-O2 122.79(8) O1A-C1A-O2A 123.9(4) 

O1-C1-C2 122.93(8) O1A-C1A-C2A 123.5(4) 

O2-C1-C2 114.28(8) O2A-C1A-C2A 112.6(3) 
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Table 2. Cont. 

Monoclinic at 297(2) K Monoclinic at 120.0(1) K 

C1-C2-C3 114.80(8) C1A-C2A-C3A 113.4(3) 

  O1B-C1B-O2B 123.1(3) 

  O1B-C1B-C2B 123.7(3) 

  O2B-C1B-C2B 113.3(3) 

  C1B-C2B-C3B 114.7(3) 

Torsion angles    

O1-C1-C2-C3 −7.40(15) O1A-C1A-C2A-C3A −2.6(6) 

O2-C1-C2-C3 172.92(9) O2A-C1A-C2A-C3A 177.2(3) 

C1-C2-C3-C3 i −174.46(9) C1A-C2A-C3A-C3A ii 177.6(4) 

  O1B-C1B-C2B-C3B 9.6(6) 

  O2B-C1B-C2B-C3B −170.1(3) 

  C1B-C2B-C3B-C4B 172.8(3) 

symmetry codes: i = −x, −y, −z; ii = −x + 1, −y + 2, −z + 2. 

Table 3. Interplanar angles between the functional units in I. 

Phase Plane Plane Interplanar angle (°) 

RTP O1/O2/C1/C2 C2/C3/C2A/C3A 6.95(9) 

at 297(2) K     

LTP O1A/O2A/C1A/C2A C2A/C3A/C2AA/C3AA 4.2(4) 

at 120.0(1) K O1B/O2B/C1B/C2B C2B/C3B/C4B/C5B 8.1(4)  

 O3B/O4B/C5B/C6B C2B/C3B/C4B/C5B 9.3(4) 

Table 4. Geometries of intermolecular hydrogen bonds in I. 

Crystals D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

RTP O2-H1O···O1 iii 0.985(19) 1.673(19) 2.6508(11) 171.3(18) 

at 297(2) K      

LTP O2A-H1OA···O1A iv 0.82 1.85 2.668(4) 176 

at 120.0(1) K O2B-H1OB···O3B v 0.82 1.83 2.648(4) 175 

 O4B-H2BA···O1B vi 0.82 1.84 2.658(4) 175 

Symmetry codes: iii = 1 − x, −y, 1 − z; iv = −x, 2 − y, 1 − z; v = −1 + x, y, −1 + z; vi = 1 + x, y, 1 + z. 

2.1. Crystal Structure 

Plots of an asymmetric unit of I at the temperature 297(2) K (RTP) and 120.0(1) K (LTP) are 

shown in Figure 2a, b and Figure 3a, b respectively. The asymmetric unit of the RTP structure consists 

of half a molecule (Figure 2a), whereas there are one and a half crystallographic independent 

molecules in the asymmetric unit of the LTP structure (Figure 3a). In the RTP molecular structure 

which is shown in Figure 2b, there is an inversion center on the central C-C bond and the molecular 

backbone adopts the expected planar zig-zag structure. For the LTP molecular structure which is 

shown in Figure 3a, the half-molecule fragment resembles the asymmetric unit of the RTP. 

However the LTP molecule is relatively more planar (compared to the RTP molecule) with the 

torsion angle C1A-C2A-C3A-C3A
ii
 being 177.6(4)° and the angle made by the carboxylic acid  
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O1A-C1A-C2A-C3A = −2.6(6)° (Figure 3b), the corresponding angles being −174.46(9) and 

−7.40(15)° in the RTP (Table 2). The molecular back bone of the full molecule fragment of the LTP is 

buckled with the torsion angles C1B-C2B-C3B-C4B = 172.8(3)°, C2B-C3B-C4B-C5B = 176.1(3)° 

and C3B-C4B-C5B-C6B = −174.0(3)°. 

Figure 2. (a) Asymmetric unit of I with the atomic numbering schemes at 297(2) K (RTP) 

and (b) molecular view of I with the atomic numbering schemes at 297(2) K (RTP). The 

atoms with suffix “A” were generated by symmetry code −x, −y, −z. 

 
 

Figure 3. (a) Asymmetric unit of I with the atomic numbering schemes at 120.0 (1) K (LTP) 

and (b) molecular view of I with the atomic numbering schemes at 120.0 (1) K (LTP). The 

atoms with suffix “AA” were generated by symmetry code –x + 1, −y + 2, −z + 2. 

 

 

a b 

a 

b 
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The bond lengths and angles in RTP and LTP structures are in normal ranges and agree with the 

corresponding values in the triclinic polymorph [11]. The interplanar angles of the functional groups in 

the temperature polymorphs are listed in Table 3. With temperature changes, the bond lengths and 

angles of I are almost unchanged in the molecule with half symmetry (half-molecule fragment) which 

can be seen in (Table 2). However even though these parameters are slightly different in the  

full-molecule fragment (molecule B in Figure 3b) which lost its symmetry but the torsion angles are 

significantly different, resulting in significant conformational changes. As can be seen in Table 4, the 

RTP structure has one O-H···O hydrogen bond whereas the LTP structure has three O-H···O hydrogen 

bonds. Their geometries and symmetry operations are listed in Table 4. The extra hydrogen bonds, i.e., 

O2B-H1OB···O3B
v
 and O4B-H2OB···O1B

vi
 (Table 4) interconnecting the molecule of LTP structure 

are not observed in the RTP structure. 

In the crystal packing of both RTP and LTP structures, the molecules are linked via centrosymmetric 

pairs of intermolecular O-H···O hydrogen bonds, forming infinite one-dimensional chains along the  

[101] direction (Figure 4a,b). These chains are further stacked along the b-axis. 

Figure 4. Packing diagram of I at (a) 297 (2) K (RTP) and (b) 120.0 (1) K (LTP) viewed 

down the b-axis. Hydrogen bonds are drawn as dash lines. 

 

Summarizing, these extra O-H···O hydrogen bonds presented in the LTP structure initiates the 

reversible temperature-dependent phase transformation leading to the conformational changes of the 

full-molecule fragment structure in the LTP. 

The cell parameters of I were measured in the temperature range from 297(2) to 90.0(1) K (Table 5) and 

the plot is depicted in Figure 5. It is clearly seen that there is a discontinuous jump of the b parameter 

at 130 K. As the temperature is decreased from the room temperature to close to transition temperature 

Tc = 130 K, the a parameter increases by 0.05 Å while the b and c parameters show only small 

variations (Figure 5). Below the transition temperature, the cell parameters is still monoclinic with the 

same space group and the a and c parameters remains nearly the same. Surprisingly that the b 

parameter changes to 14.942(11) Å which is almost triple of its value at room temperature (Table 5 

and Figure 5). The β angle shows only slight variation on cooling to the low temperature (Figure 6). 

These data show that the phase transition is of first order, involving a discontinuity and a tripling of the 

b-axis at Tc whereas the a-axis and c-axis are continuous and essentially unchanged. In addition, the  

β angle (Figure 6) also varies insignificantly during transition. The temperature dependence of the unit 

a b 
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cell volume, which was shown in Figure 7, almost triple on cooling in accordance to the changes of the 

cell parameters.  

Table 5. Temperature dependent cell parameters for I. 

Temp (K) a (Å) b (Å) c (Å) β (°) Volume (Å
3
) 

297 7.3660(4) 5.1539(3) 10.1383(5) 112.333(4) 356.0(2) 

290 7.38(3) 5.182(18) 10.04(4) 110.56(7) 359.5(1) 

280 7.37(3) 5.19(2) 10.06(5) 110.62(9) 360.2(1) 

270 7.38(2) 5.193(16) 10.16(3) 112.02(9) 360.6(1) 

260 7.37(2) 5.191(13) 10.14(3) 111.97(8) 359.6(9) 

250 7.355(17) 5.191(11) 10.15(2) 111.76(7) 359.8(9) 

240 7.342(15) 5.188(10) 10.09(2) 110.96(5) 358.7(9) 

230 7.342(13) 5.198(9) 10.10(2) 110.98(4) 360.0(8) 

220 7.315(14) 5.188(9) 10.08(2) 111.04(5) 357.2(8) 

210 7.299(13) 5.185(9) 10.08(2) 111.09(4) 355.9(8) 

200 7.302(16) 5.194(11) 10.11(2) 111.19(7) 357.3(8) 

190 7.30(2) 5.202(14) 10.12(3) 111.05(11) 358.9(7) 

180 7.30(2) 5.206(15) 10.12(3) 110.96(10) 359.0(8) 

170 7.33(3) 5.24(2) 10.21(5) 111.36(11) 365.3(7) 

160 7.239(8) 5.187(5) 10.088(14) 111.26(3) 353.0(6) 

150 7.215(7) 5.179(5) 10.074(14) 111.23(3) 350.8(6) 

140 7.243(16) 5.206(11) 10.09(2) 110.67(10) 355.8(6) 

130 7.414(5) 14.942(11) 10.087(9) 111.77(3) 1037.8(3) 

120 7.44(2) 14.97(4) 10.12(3) 111.51(5) 1048.7(7) 

110 7.37(4) 15.01(9) 10.09(6) 111.63(15) 1039.0(8) 

100 7.3791(3) 14.8734(7) 10.0347(5) 111.525(2) 1024.52(7) 

90 7.41(3) 14.99(7) 10.10(5) 111.23(9) 1046.0(7) 

Figure 5. Temperature dependence of cell lengths (a, b and c-axis) of I. Cell Parameters 

(Å) vs. Temperature (K). 
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Figure 6. Temperature dependence of angle β of I. Beta Cell Angle (°) vs. Temperature (K). 

 

Figure 7. Temperature dependence of volume of I. Volume (Å3) vs. Temperature (K). 

 

2.2. Landau Phenomenological Theory of First Order Structural Phase Transitions in I 

The crystallographic data show that the crystal I undergoes an isosymmetric phase transition based 

on the geometric anomaly from monoclinic P21/c at high temperatures (above 140 K) to another 

monoclinic P21/c at low temperatures (below 130 K) without any significant structural change. In 

order to discuss this anomaly, Q is assumed as the order parameter in the Landau phenomenological 

theory of the structural phase transition in the crystal I [12]. At the microscopic level this order 

parameter may represent a set of displacements, such as conformational changes (which is very 

obvious from the contents of the asymmetric units in Figure 2b, leading to a tripling of the b-axis and a 

discontinuity in unit cell volume (see Table 2). Thus this isosymmetric phase transition is not brought 

about by qualitative change in crystal symmetry, but by quantitative change of formation of hydrogen 

bonds leading to conformational changes. Similar type of phase transition can be induced by 
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quantitative changes such as atomic size, amount of ionic displacement or statistical weight of atomic 

distribution [13]; and a representative example of isosymmetric phase transition is the γ-α transition in 

cerium and its alloys [14]. 

In the present paper on crystal I, in order to relate the geometrical quantity of elastic strain with the 

thermodynamic order parameter Q in Landau phenomenological theory, the Landau potential for the 

crystal I is formulated with the bilinear coupling between order parameter Q and the elastic strain 

components. This is assumed that the crystal is in thermodynamic equilibrium with respect to 

spontaneous strain [12]. In the geometrical representation of monoclinic crystal, the Cartesian 

coordinate system of axes X, Y, and Z are such that X and Y are parallel to a-axis and b-axis 

respectively and Z is perpendicular to both these axes and thus it is parallel to c* axis (of the reciprocal 

lattice). For the notation of elastic strain components, we follow the standard Voigt notation adopted in 

the theory of elastic deformations of a continuous homogeneous medium [15] to describe the 

dimensionless strain tensors 
k

e , with the abbreviated subscript k taking integral values from 1 to 6.  

The Landau potential F is expressed in the power series of order parameter Q and the bilinear 

coupling with elastic strain components as follow:  

6 6 6
2 4 6 1

20

1 1 1

1 1 1
( ) ( ) ( )

2 4 6
kl k l k k

k l k

F T F T A T Q BQ CQ c e e e Q
  

        (1) 

The term 
0
( )F T is the free energy of the high temperature phase and we adopt the temperature 

dependence of A(T) as: 

0 0
( ) ( )A T a T T   (2) 

where a0 is a constant and T0 is the critical temperature. The parameters B and C are assumed to be 

weakly temperature dependent over the range of temperatures considered and are therefore taken as 

constants. The first three terms in (1) represent the Landau potential of the order parameter Q. The 

fourth term represents the quadratic elastic energy per unit volume of a monoclinic crystal, where klc  

is the elastic constants in Voigt notation. The last term is the coupling energy between the order 

parameter and the elastic strain, with the coupling constants k . Minimizing Equation (1) with respect 

to ke , the simplification leads to 
6

1
2

1
k kl l

l

Q c e




  . We can then rewrite ke  in term of Q as: 

( , )k k kl ke c Q   (3) 

where k  are the coefficients depending on the elastic constants of monoclinic crystal and coupling 

constants k . Eliminating the terms in strain components in Equation (1) using ke  in Equation (3), we 

obtain the normalized free energy as: 

" 2 4 6
0 0 0

1 1 1
( ) ( ) ( )

2 4 6
F T F T a T T Q BQ CQ      (4) 

where 
0

6 6
" 1

0 0
, 1 1

2kl k l k ka
k l k

cT T    
 

 
   

 
  .  

Equation (4) is the functional for the usual Landau form of free energy in the first order phase 

transition if B < 0 and C > 0 and in this case it is proposed for the phase transition of crystal I. The 
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analytical expression for Q in terms of the Landau parameters can be obtained by minimizing  

Equation (4) with respect to Q as shown: 

  2 21 "
2 0 0

4C
Q B a C T TB     (5) 

We have shown in our previous work [8] that the values of Q, which correspond to the minima of 

free energy (given by Equation (5) for "

0T T ), are the values of the spontaneous order parameter 

(denoted as Q'). Q' varies non-linearly with temperature T with a discontinuity at "

0T is an indication of 

first order phase transition.  

Table 2 shows the measured lattice parameters for crystal I equilibrated at the temperatures from 90 K 

to 297 K. The temperature variation for the lattice parameters a, b, c and β are plotted in Figures 5 to 7. 

From Figure 5, the abrupt jump in the b-unit cell length at the transition temperature may be  

over-exaggerated owing to the tripling of the unit cell length, however, based on the crystallographic 

data for temperatures below 130 K, we can estimate the magnitude of this linear strain along the  

b-axis, e2 as: 

 2 003
/TC

b
e bb

   (6) 

where 
CTb is the LTP b-unit cell length. The expressions for the other elastic strain components for 

monoclinic P21/c to P21/c phase transition in terms of lattice parameters such as 
01 1a

a
e   , 

0 0

sin

3 sin
1

c

c
e




  , 4 0e  , 0

0 0 0 0

coscos

5 sin sin

ac

c a
e



 
   and 6 0e  , are formulated according to Schlenker et al. [16]. 

The values for 0a , 0b , 0c  are the average values of the HTP a-unit cell, b-unit cell and c-unit cell 

length respectively. 0  is the average value of HTP, and as variation of β from LTP to HTP is very 

small, thus it is considered in the calculation that 0  . The scalar spontaneous strain se , according 

to that proposed by Aizu [17] is: 

6
2

1
s k

k

e e


   (7) 

With respect to the structural properties of monoclinic symmetry in crystal I, the spontaneous strain 

from Equation (6) will be reduced to 2 2 2 2

1 2 3 5se e e e e    . Since from the data 0  , 3 5 and 0e e  , 

thus 2 2

1 2se e e  . 

In order to establish the linear relationship between the strain components and Q, which gives 

strong indication that crystal I undergoes first order isosymmetric phase transition, a plot of the square 

of spontaneous strain 2

se  versus temperature is shown in Figure 8. The graph shows a clear 

discontinuity at the transition temperature (130 K) that corresponds to the discontinuity in the b-unit 

cell length (Figure 5) and unit cell volume shown (Figure 7). Since the elastic strain components are 

linearly proportional to Q as shown in Equation (3), thus the discontinuity of the geometric quantities 

in crystal I implies the first order isosymmetric phase transition of crystal I. Although the geometric 

anomalies of tripling of b-unit cell length and unit cell volume may be an exaggerated picture of a first 

order phase transition in crystal I, however, the above analysis is an indirect prediction based on the 

discontinuities of 
2

se and order parameter 2Q  [12].  
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Figure 8. Temperature variation of 2

se (square of spontaneous strain). The line indicates the 

trend of the data, and the values are calculated from raw data. 

 

3. Experimental Section 

General Information 

Adipic acid or 1,6-hexanedioic acid (I) was obtained commercially (Fluka, Buchs, Switzerland). 

Crystals of 1,6-hexanedioic acid were grown by the slow evaporation from ethyl acetate solution to 

afford the colorless block-shaped single crystals of I. The crystal obtained was subjected on X-ray 

structural analyses. The single crystal of 0.30 × 0.52 × 0.55 mm
3
 in size was mounted on a glass fiber 

with epoxy cement for X-ray crystallographic study. Using the same crystal, the cell parameters were 

measured in the temperature range from 297(2) to 90.0(1) K. Two crystallographic data of I were collected 

at 297(2) and 120.0(1) K, respectively, and these crystallographic data and experimental details are 

presented in Table 1. The data were collected using a Bruker APEX2 CCD diffractometer with a 

graphite monochromated MoKα radiation at a detector distance of 5 cm and with APEX2 software [18]. 

Crystallographic data at 120.0(1) K were collected with the Oxford Cyrosystem Cobra low-temperature 

attachment. The collected data were reduced using SAINT program [18] and the empirical absorption 

corrections were performed using the SADABS program [18]. The structures were solved by direct 

methods and refined by least-squares using the SHELXTL software package [19]. For the RTP 

polymorph, all non-hydrogen atoms were refined anisotropically and all H atoms were located from 

difference Fourier maps and isotropically refined. For the LTP polymorph, all H atoms were placed in 

calculated positions with distances of O–H = 0.82 Å and C–H = 0.97 Å after checking their positions 

in the difference map. The Uiso values were constrained to be 1.2Ueq of the carrier atoms. The final 

refinement converged well. The selected bond lengths are presented in Table 2. Materials for 

publication were prepared using SHELXTL [19], PLATON [20] and Mercury [21]. The 

crystallographic-information files for I at temperature 297(2) and 120.0(1) K have been deposited in 

the Cambridge Crystallographic Data Base Center with deposition numbers CCDC989931 and 

CCDC989973, respectively.  
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4. Conclusions  

The cell parameters of crystal I were measured in the temperature range from 297 to 90 K. The 

transition occurs at TC = 130 K. These data show that the isosymmetric phase transition is of first 

order, involving discontinuities and a tripling of the b-axis and cell volume at TC (Figure 4a). The 

analysis of bilinear coupling between order parameter Q and elastic strain components formulated in 

the Landau potential shows that the Landau phenomenological theory of first order structural phase 

transition in crystal I is adequate in illustrating the feature of phase transition through the spontaneous 

strain. These  spontaneous strain is caused by the conformational changes of the molecular structure 

resulting from extra hydrogen bonding at the low temperature structure which has initiated the first 

order reversible temperature-dependent phase transition in crystal I. 
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