Supplementary Materials

Figure S1. ¹H-NMR spectrum of 4k.

Figure S3. ¹³C-NMR spectrum of 4k.

Figure S7. H,H-COSY spectrum of 4k.

Figure S9. C,H-COSY spectrum of 4k.

Figure S11. HMBC spectrum of 4k.

ppm

Figure S17. ¹³C-NMR spectrum of 5a.

S9

Figure S21. H,H-COSY spectrum of 5a.

Figure S22. H,H-COSY spectrum of 5a.

Figure S23. C,H-COSY spectrum of 5a.

Figure S25. HMBC spectrum of 5a.

Figure S27. HMBC spectrum of 5a.

Figure S30. ¹H-NMR spectrum of 6f.

4.848 4.840 4.833 4.833 4.819 4.813 4.813	4.651	4.027		3.499 3.496 3.496 3.451 3.451 3.451 3.416 3.311 3.311 3.311
		l	1 (

Figure S33. DEPT-135 NMR spectrum of 6f.

Figure S35. H,H-COSY spectrum of 6f.

Figure S37. C,H-COSY spectrum of 6f.

Figure S39. HMBC spectrum of 6f.

		CCRF- CEM	MDA- MB-231	SK-OV-3			CCRF- CEM	MDA- MB-231	SK-OV-3			CCRF- CEM	MDA- MB-231	SK- OV-3			CCRF- CEM	MDA- MB-231	SK-OV-3
Ar	Comp				Comp	Yield (%)				Comp	Yield (%)				Comp	Yield (%)			
1 Vi	2a	51.68	85.51	73.60	4a	92	37.07	35.48	-21.46	5a	93	53.56	77.03	58.83	6a	90	61.01	87.01	72.54
CH3	2b	51.81	87.72	73.91	4b	90	58.88	41.33	18.30	5b	90	52.22	83.16	72.02	6b	91	62.34	81.59	74.04
OCH3	2c	56.74	88.72	73.11	4c	86	52.32	26.60	-10.61	5c	85	53.72	86.53	63.20	6c	83	60.92	85.47	71.11
Cl	2d	51.61	87.87	-41.45	4d	91	51.14	0.00	-43.19	5d	92	45.03	74.88	51.68	6d	92	56.48	73.80	18.62
Br	2e	62.06	86.45	56.17	4e	90	48.21	24.80	-24.73	5e	89	45.61	58.83	55.69	6e	90	57.85	72.67	23.91
F	2f	53.34	85.94	-33.65	4f	92	49.50	45.67	-1.07	5f	90	46.89	81.67	40.56	6f	89	28.13	76.71	-13.31
	2g	47.40	87.41	-25.73	4g	90	40.99	53.30	3.69	5g	92	43.99	82.03	22.47	6g	91	29.56	60.52	-18.16

Table S1. Antiproliferative activity of **2a–n**, **4a–n**, **5a–n** and **6a–n**¹.

 Table S1. Cont.

Ar		CCRF- CEM	MDA- MB-231	SK-OV-			CCRF- CEM	MDA- MB-231	SK-OV-3			CCRF- CEM	MDA- MB-231	SK- OV-3			CCRF- CEM	MDA- MB-231	SK-OV-3
	Comp				Comp	Yield (%)				Comp	Yield (%)				Comp	Yield (%)			
H ₃ CO ³	2ј	53.75	75.69	50.53	4j	85	48.28	53.91	36.37	5j	86	64.15	84.90	61.03	6j	82	62.29	81.52	60.35
	2k	49.31	76.84	56.05	4k	93	57.70	70.86	68.28	5k	90	56.57	84.07	67.80	6k	92	62.44	86.84	68.65
Br	21	47.33	74.93	43.78	41	91	56.01	71.96	70.52	51	92	57.45	81.95	70.28	61	89	64.03	86.09	61.38
F	2m	48.44	74.63	50.25	4m	94	57.88	69.09	56.58	5m	93	57.91	84.75	73.89	6m	90	64.03	85.60	56.75
72	2n	46.70	84.03	12.23	4n	90	51.20	79.55	69.64	5n	87	57.35	73.62	71.35	6n	89	26.83	-0.57	-41.20

¹ The control was calculated to be 0% inhibition.