
Molecules 2014, 19, 8124-8139; doi:10.3390/molecules19068124 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Ethyl Ferulate, a Component with Anti-Inflammatory 
Properties for Emulsion-Based Creams 

Ana C. Nazaré 1, Carolina M. Q. G. de Faria 1, Bruna G. Chiari 2, Maicon S. Petrônio 1,  

Luis O. Regasini 3, Dulce H. S. Silva 3, Marcos A. Corrêa 2, Vera L. B. Isaac 2,  

Luiz M. da Fonseca 1,* and Valdecir F. Ximenes 1,4,* 

1 Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, UNESP, 

Universidade Estadual Paulista, Araraquara-SP, 14801-902, Brazil 
2 Departamento de Cosmetologia, Faculdade de Ciências Farmacêuticas de Araraquara, UNESP, 

Universidade Estadual Paulista, Araraquara-SP, 14801-902, Brazil 
3 NuBBE - Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de 

Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara-SP, 

14800-900, Brazil 
4 Departamento de Química, Faculdade de Ciências, UNESP, Universidade Estadual Paulista,  

Bauru-SP, 17033-360, Brazil 

* Authors to whom correspondence should be addressed; E-Mails: fonseclm@fcfar.unesp.br (L.M.F.); 

vfximenes@fc.unesp.br (V.F.X.); Tel.: +55-14-3103-6088 (V.F.X). 

Received: 28 April 2014; in revised form: 10 June 2014 / Accepted: 10 June 2014 /  

Published: 17 June 2014 

 

Abstract: Ethyl ferulate (FAEE) has been widely studied due to its beneficial heath 

properties and, when incorporated in creams, shows a high sun protection capacity. Here 

we aimed to compare FAEE and its precursor, ferulic acid (FA), as free radical scavengers, 

inhibitors of oxidants produced by leukocytes and the alterations in rheological properties 

when incorporated in emulsion based creams. The cell-free antiradical capacity of FAEE 

was decreased compared to FA. However, FAEE was more effective regarding the 

scavenging of reactive oxygen species produced by activated leukocytes. Stress and 

frequency sweep tests showed that the formulations are more elastic than viscous. The 

viscoelastic features of the formulations were confirmed in the creep and recovery assay 

and showed that the FAEE formulation was less susceptive to deformation. Liberation 

experiments showed that the rate of FAEE release from the emulsion was slower compared 

to FA. In conclusion, FAEE is more effective than FA as a potential inhibitor of oxidative 

damage produced by oxidants generated by leukocytes. The rheological alterations caused 
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by the addition of FAEE are indicative of lower spreadability, which could be useful for 

formulations used in restricted areas of the skin. 

Keywords: neutrophil; NADPH oxidase; oxidative stress; ferulic acid; ethyl ferulate; 

cosmetic product 

 

1. Introduction  

Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a naturally occurring plant product  

that has long been studied due to its potential beneficial health properties, including anti-oxidative [1], 

anti-inflammatory [2–4], neuroprotective [5,6] and antiproliferative activities [7]. The efficiency of FA 

as an antioxidant compound has been linked to the stability of its phenoxyl radical due to charge 

delocalization between the aromatic ring and the double bond in the side chain [8]. 

In the same direction, the alkyl ester derivative of ferulic acid, ethyl ferulate (ethyl 4-hydroxy-3-

methoxycinnamate, FAEE) has also been widely studied and some recent findings include its 

anticholinesterase activity [9]; inhibition of nuclear factor-kappa B (NF-κB) activity in LPS-stimulated 

RAW 264.7 macrophages [10]; inhibition of inducible nitric oxide synthase (iNOS) induction in  

UV-induced oxidative stress in melanocytes [11]; induction of heme oxygenase (HO-1) activity  

in rat astrocytes and neurons, which is a putative pathway against oxidative stress that underline 

neurodegenerative diseases [12]; and cytoprotective effect against reactive oxygen species (ROS)-induced 

damage through the stimulation of dermal fibroblasts stress response [13]. These potential pharmacological 

properties of FAEE have been related to its increased lipophilicity compared to its acid precursor, a 

property that could enhance the accessibility to the intracellular medium by diffusion by the cell 

membrane [14]. 

The enhanced pharmacological properties of FAEE compared to FA is not an isolated phenomenon. 

Indeed, the esterification of phenolic acids has widely been used as an efficient approach to improve its 

efficacy in several experimental models. A significant example is gallic acid, since the antimutagenicity 

activity against activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium 

is dependent on alkyl chain length of the gallic acid alkyl esters [15]. The antioxidant capacity, 

evaluated as inhibitors of AAPH-induced lyses of erythrocytes was eight-fold higher when propyl 

gallate was compared to gallic acid [16]. Gallates are also more effective than their acid precursors as 

inhibitors of TNF-α-induced NFκB activation in human embryonic kidney cells [17]. A similar 

tendency was observed to protocatechuic and caffeic acids. In this concern, findings in our laboratory 

have demonstrated that the heptyl ester of protocatechuic acid was ten-fold more efficient that the acid 

precursor as inhibitor of the production of superoxide in activated neutrophils [18]; and the butyl and 

heptyl esters of caffeic acid were four-fold more effective as bactericidal agent against Helicobacter 

pylori [19]. 

As well-known, exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to 

skin, and ROS represent a pivotal role in this deleterious process [20]. Hence, compounds with 

antioxidant capacity are frequent components in sunscreen products [21]. Particularly with respect to 

FA, its presence in numerous cosmetic formulation and sunscreen products is a consequence of its 
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antioxidant and photoprotective efficacy [8,22,23]. Regarding FAEE, the incorporation in O/W creams, 

at a concentration of 10%, gave a sun protection factor (SPF) similar to that of benzymidazilate, a filter 

permitted in the EU [24]. 

NADPH oxidases (Noxs), a group of multicomponent enzymes which catalyze the one-electron 

reduction of molecular oxygen, are found in a variety of cells, including phagocytes [25] and 

keratinocytes [26]. The activation of NADPH oxidase involves the migration of the cytosolic proteins 

to the membrane, enabling assembly of the enzyme complex, which release superoxide anion and, by 

an enzymatic cascade of reaction, to other ROS [25]. It has been demonstrated that UVA activates 

Nox1 to produce ROS that stimulate PGE2 synthesis, and that Nox1 may be an appropriate target for 

agents designed to block UVA-induced skin injury [27]. 

Considering the discovery that esterification of protocatechuic acid improved its efficacy as inhibitor 

of NADPH oxidase and the involvement of this multicomponent enzyme in the generation of ROS in 

skin, here we aimed to study and compare FA and FAEE regarding, antioxidant activity, inhibition of 

ROS released by leukocytes and their rheological characteristics in an emulsion based cream. 

2. Results and Discussion 

FA and FAEE (Figure 1) have been widely used in cream for topical use. Among other factors, the 

application of these compounds is based in their antioxidant capacity [8,22–24,28]. Hence, our first 

objective was to compare their efficacies using a panel of in vitro antioxidant assays. From the data 

presented at Table 1, it can be observed that the esterification provoked a decrease in the capacity of FA 

as reducing agent toward the stable free radical DPPH. However, FAEE was still a better scavenger of 

DPPH compared to BHT, a widely used antioxidant for cosmetic preparations. We also used Trolox, a 

soluble form of vitamin E frequently used as a reference antioxidant. Trolox was the most efficient 

antioxidant in this experimental model. 

The next assay for comparison of anti-radical efficacy was based in the capacity of reduction of 

peroxyl radicals (ROO•). As well-established, ROO• are transient species in lipoperoxidation chain 

reactions, which are well-accepted as a pathway involved in the ROS-mediated cell damage [29]. Here, 

ROO• was generated by the thermolysis of the azo-compound AAPH, which decomposes at 

physiological temperature (37 °C) in aqueous solutions to generate an alkyl radical (R•). The R• reacts 

with molecular oxygen being converted to ROO• [30]. Figure 2a,c show the effect of FA and FAEE in 

the decay of pyranine fluorescence. The relationship between AUC and concentration of the tested 

compounds was the analytical parameter for the efficacy as ROO• scavenger (Figure 2b,d). The 

antioxidant efficacy was compared with Trolox, which was submitted to the same protocol and the Trolox 

equivalent antioxidant capacity (TEAC) calculated (Figure 2d). As can be observed, again FA was a more 

efficient antioxidant compared to FAEE and BHT. 

FA and FAEE were also compared by their capacity to reduce Fe(III) to Fe(II) using the FRAP 

assay (Figure 3). In this protocol the antioxidant capacity is measured by the formation of the complex 

Fe(II)-TPTZ, which absorbs at 593 nm [31]. Figure 3 shows the relationship between the concentration 

of the tested compounds and the absorbance of the Fe(II)-TPTZ complex. From the slopes, the TEAC 

was calculated as demonstrated in previous assays. How can be observed FA was again more efficient 

than FAEE. 
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Figure 1. Molecular structure of ferulic acid (FA) and ethyl ferulate (FAEE). 

 

Table 1. DPPH Scavenging Activity. 

 IC50 (μM) 

FA 23.5 ± 0.5 
FAEE 59.7 ± 0.2 
BHT 65.0 ± 0.5 

Trolox 17.4 ± 0.3 

The results are mean and SD of triplicates. 

Figure 2. Scavenging activity against ROO•. (a,c) Kinetic profile of pyranine fluorescence 

bleaching by ROO• in the presence of absence of the tested compounds. (b,d) Linear 

relationship between the area under the curve and concentrations of FA and FAEE. From 

the liner regression curves the slopes were calculated. (e) Trolox equivalent antioxidant 

activity (TEAC = slope compound/slope trolox). The results are mean and SD of triplicate. 

Different letters denotes significant differences. One-Way Anova and Tukey’s Multiple 

Comparison Test (p < 0.05). 
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Figure 3. Ferric reducing capacity (FRAP assay). (a,b) Linear relationship between the 

concentration of the tested compounds and absorbance of the complex Fe(II)-TPTZ. From 

the liner regression curves the slopes were calculated. (c) Trolox equivalent antioxidant 

activity (TEAC = slope compound/slope trolox). The results are mean and SD of triplicate. 

Different letters denotes significant differences. One-Way Anova and Tukey’s Multiple 

Comparison Test (p < 0.05). 

 

As stated above, our main reason for studying the properties of FAEE in emulsions was its potential 

anti-inflammatory efficacy, as has been widely suggested [10–12,14]. Hence, we measured and 

compared FA and FAEE as inhibitors of the generation of ROS produced by stimulated neutrophils. 

For that, cells were isolated from peripheral blood and activated by opsonized zymosan. The release of 

non-specific ROS by the activated cells was evaluated by luminol-dependent chemiluminescence. 

From the results depicted in Figure 4, it can be seem that FAEE was significantly more potent than FA. 

Moreover, its efficacy was similar to apocynin, a compound widely used as NADPH oxidase  

inhibitor [32,33]. 

Figure 4. Inhibitory effect on ROS produced by stimulated neutrophils. The cells were 

stimulated by opsonized zymosan and the production of ROS evaluated by luminol-

dependent chemiluminescence. The results are mean and SD of duplicates of three 

different experiments. Different letters denotes significant differences. One-Way Anova 

and Tukey’s Multiple Comparison Test (p < 0.05). The different concentrations of the 

tested compounds were treated separately in the statistical analysis (a1, b1 and c1 for 10 µM 

and a2, b2 and c2 for 100 µM. 
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It must be emphasized that the luminol-dependent chemiluminescence assay is a technique that 

detects ROS like superoxide anion, hydrogen peroxide, hypochlorous acid, etc. Hence, in this experimental 

model, the inhibitory effect of a tested substance can be a consequence of direct scavenger action upon 

these ROS, by the inhibition of its generation, or both. For these reason, we also compared FA and 

FAEE using the chromogenic probe WST-1. This compound is a cell-impermeable and water soluble 

tetrazolium salt that reacts specifically with superoxide anion [34]. 

The data depicted in Figure 5 show that FAEE showed the same effect of apocynin and, again, it 

was more effective than FA. It is noteworthy that superoxide anion is the product of the activation of 

NADPH oxidase, hence this result could imply the inhibition of this enzyme complex or the scavenger 

of superoxide anion. To discriminate these effects we also tested the compounds in a cell-free system. As 

it can be observed, the effect of FA and FAEE using xanthine- xanthine oxidase as a source of 

superoxide, was much lower compared to the cell-system. Hence, we can conclude that FAEE is able 

to inhibit NADPH oxidase and this property could contribute to its anti-inflammatory activity. 

As well-known, beyond the biological activity of its active substances, others factors are important 

for a topical formulation, such as the stability of the system, specially the stability of the active 

substances incorporated in the cream, the rheological behavior and the ability of the formulation in the 

release of the active substances. For that, FA and FAEE were incorporated in the base cream at 

0.038% and 0.044% respectively. These values were chosen to reach 2 mM as final concentration, in 

which the biological effects assayed before should be guaranteed. 

Figure 5. Inhibitory effect on superoxide anion produced by stimulated neutrophils and by 

xanthine/xanthine oxidase (X/XO). The production of superoxide was monitored by the 

reduction of WST-1. The tested compounds were used at 100 µM in both assays. The results 

are mean and SD of duplicates of three different experiments. Different letters denotes 

significant differences. One-Way Anova and Tukey’s Multiple Comparison Test (p < 0.05). 
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around 4.8 and after 90 days only a slight increase was observed, that is not significant since they 

remained at a pH compatible with the skin, being suitable for topical use. As could be expected due to 

the acid character, the addition of FA (C2) decreased the pH of the emulsion to about 4.2 in relation to 

C1 and again this value was not changed significantly after 90 days (Figure 6a). The addition of FA 

and FAEE did not provoke a significant alteration in the density of the base cream and the obtained 

values did not change significantly after 90 days (Figure 6b). The presence of FA and FAEE provoked 

an increase in the viscosity of the base cream. However, after 15 days, no significant difference was 

observed among C1, C2 and C3. The viscosity of the formulations C1, C2 and C3 was only slightly 

increased during the 90 days (Figure 6c), probably due to water loss in formulations, which increases 

the viscosity due to the increase in the concentration of greasy components. FA and FAEE were also 

resistant to degradation. The result from Figure 6d show that the relative concentration of FA and 

FAEE was not changed significantly during the studied time interval. Altogether, these results are 

indicative that the presence of FA and FAEE did not cause any significant alteration in the physical 

properties of the base cream. These results allow concluding that in relation to the stability, both FA 

and FAEE were suitable active substances to produce a topical formulation, maintaining its stability 

when in contact with an emulsion-based formulation. 

Figure 6. Stability of the creams. The creams were stored in transparent PVC packages at 

room temperature. After daylight exposure for up to 90 days (a) pH, (b) density, (c) 

concentration and (d) viscosity of the creams were evaluated. C1 (base cream), C2 (base 

cream plus FA) and C3 (base cream plus FAEE). The results are mean and SD of triplicates. 
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The formulations were submitted to rheological studies, aiming to verify their suitability to be used 

as topical products in relation mainly to their spreadability and viscosity. The first assay performed was 

the flow curves (Figure 7a). All the formulations were non-Newtonian and thixotropyc fluids. These 

features are suitable for formulations of topical use, indicating easy spreadability. Comparing the 

formulations, the hysteresis area of C1 and C2 were equivalent, but C3 had a higher hysteresis area. 

Stress and frequency sweep tests were also performed, which were carried out to analyze the elastic 

modulus (G') and viscous modulus (G''). The results obtained with the stress sweep showed that the 

formulations could be submitted to a stress ranging from 0.1 to 10 Pa without significant structural 

alterations. Thus, 1 Pa was the shear stress chosen for the development of frequency sweeps and creep 

and recovery assay, ensuring that the formulation would not suffer any structure deformations during 

the assays. The results also show that compared to the base cream, the addition of FA and FAEE did 

not provoke significant alterations in these rheological properties (Figure 7b). The frequency sweep 

tests showed that G' was higher than G'' for all formulations (Figure 7c). Thus, it means that the 

formulations are more elastic than viscous, which could indicate a high stability of these systems, 

which is confirmed by the stability studies [35,36]. 

The viscoelastic features of the formulations were confirmed in the creep and recovery rheological 

assay, which also allows discriminating between the elastic and viscous responses (Figure 7d). The 

results also show the capacity of recovery which was of 19.19% for C1, 21.75% for C2 and 26.18% for 

C3. As can be observed, the presence of FAEE provoked an increase in the viscosity as was verified in 

the flow curves. These results suggest that formulation C3 is less susceptive to deformation, which will 

interfere with its spreadability. 

Figure 7. Rheological studies of the creams. (a) Flow curves, (b) stress sweep, (c) frequency 

sweep and (d) creep and recovery. C1 (base cream), C2 (base cream plus FA) and C3 

(base cream plus FAEE). 
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Another important characteristic of C3 was the lower rate of release of the active principle 

compared to C2. Figure 8 shows that 80% of FA was released from C2 in eight hours, whereas C3 

released only 25% of FAEE. This probably happened due to the higher hydrophobicity of FAEE, 

which could cause a higher association with the oily phase of the formulation. 

Figure 8. Release profile of creams containing FA and FAEE performed on Franz cells. 

Data represent the mean and SD of at least 2 different experiments conducted in triplicate. 

 

3. Experimental 

3.1. Chemicals 

Ethyl ferulate, ferulic acid, (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), 

2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), 2,2-diphenyl-1-picrylhydrazyl (DPPH),  

8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (pyranine), 2,4,6-Tri(2-pyridyl)-s-triazine 

(TPTZ), dimethyl sulfoxide (DMSO), Brij® 35, tung oil, Histopaque®-1077, Histopaque®-1119, 3-(4,5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), phorbol 12-myristate 13-acetate 

(PMA), xanthine, xanthine oxidase and zymosan were purchased from Sigma-Aldrich Chemical Co. 

(St. Louis, MO, USA). 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium 
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in DMSO at a concentration of 16.0 M. Butylated hydroxytoluene (BHT), caprilyc capric triglyceride, 

ceteareth-20, cetearyl alcohol, cetyl palmitate, EDTA, octyl stearate, PHENOVA® (phenoxyethanol, 

methylparaben, ethylparaben, propylparaben and butylparanen), and propylene glycol were purchased 

from Mapric Pharmacist Products Ltda (São Paulo, SP, Brazil). 

3.2. Antioxidant Activity: DPPH Scavenging Assay 

The relative antiradical potency of ferulic acid and its ester were compared by characterizing their 

capacity to reduce DPPH [37]. The tested compounds were incubated for 30 min with 100 µM DPPH 

in methyl alcohol in the dark. The scavenger activity was evaluated spectrophotometrically at 517 nm, 
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using the absorbance of unreacted DPPH radical as a control. The scavenger activity was calculated as: 

[(absorbance of control − absorbance of sample)/(absorbance of control)] × 100. 

3.3. Antioxidant Activity: Peroxyl Radical Scavenging Assay 

These studies were performed as previously described with modifications [38]. The fluorescent 

compound pyranine (5 µM) was incubated with 20 mM AAPH in 10 mM phosphate buffered saline 

(PBS, pH 7.4) at 37 °C in the absence (control) or presence of the tested compounds in the wells of a 

microplate for 3 h. The final reaction volume was 300 µL. The fluorescence bleaching of the pyranine 

was monitored at 460/510 nm in a Spectramax M2 microplate reader (Molecular Devices, Sunnyvale, 

CA, USA). The curves (AUCsample—AUCcontrol) against the concentration of the tested compounds 

were raised and their slopes used as analytical parameter. Trolox was used as a reference antioxidant. 

The (slopesample/slopeTrolox) ratio generated the Trolox equivalent antioxidant activity (TEAC), which 

we used to evaluate the relative antioxidant efficacy. 

3.4. Ferric ion Reducing Antioxidant Power (FRAP) Assay 

The FRAP reagent was prepared as follows: TPTZ (1 mL, 10 mM dissolved in 40 mM HCl), FeCl3 

(1 mL, 20 mM dissolved in water) and sodium acetate buffer (10 mL, 300 mM, pH 3.6). The tested 

compounds at various concentrations (10 µL) were incubated with 290 µL of FRAP reagent for 30 min 

in the dark and room temperature [31]. The absorbance was measured at 593 nm using a mixture 

constituted of 10 µL PBS and 290 µL FRAP as a blank. The curves absorbances against the 

concentrations of the tested compounds were raised and their slopes used as analytical parameter. 

Trolox was used as a reference antioxidant. The ratio (slopesample/slopeTrolox) generated the Trolox 

equivalent antioxidant activity (TEAC), which we used for evaluate the relative antioxidant efficacy. 

3.5. Isolation of Human Neutrophils and Peripheral Blood Mononuclear Cells 

Blood samples were obtained from healthy volunteers. Experiments were performed in accordance 

with regulations of the Research Ethics Committee, Faculty of Pharmaceutical Sciences, Unesp,  

São Paulo, Brazil). Polymorphonuclear cells (PMN) were isolated by centrifugation on a  

Histopaque®-1077/1119 gradient at 700 × g for 30 min at room temperature. After isolation, the cells 

were resuspended in PBS supplemented with 1 mM calcium chloride, 0.5 mM magnesium chloride, 

and 1 mg/mL glucose (supplemented PBS) [39]. The cells were studied for cytotoxic effects of the 

tested substances using the trypan blue exclusion assay. At the higher concentration used (100 µM), 

the viability of the cells was >98% (data not shown). 

3.6. ROS Production by Activated Leukocytes: Luminol-Dependent Chemiluminescence Assay 

PMN (1 × 106 cells/mL) were pre-incubated at 37 °C in supplemented PBS with the tested compounds 

for 15 min. Next, luminol (2.0 × 10−5 M) and opsonized zymosan (1.0 mg/mL) were added and the 

light emission was measured for 30 min at 37 °C using a plate luminometer (Centro Microplate 

Luminometer LB960, Berthold Technologies, Oak Ridge, TN, USA). The final assay volume was  

250 μL. The integrated light emission was used as an analytical parameter for inhibition the ROS 
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produced by the stimulated cells. The inhibitory potency was calculated using the light emission 

generated by the control, in which the zymosan-activated cells were incubated in the absence of the 

tested compounds [40]. 

3.7. Superoxide Anion Production by Activated Neutrophils 

PMN (1.0 × 106 cells/mL) were pre-incubated at 37 °C in supplemented PBS with the tested 

compounds for 10 min. Next, WST-1 (500 µM) and PMA (100 nM) were added and the reduction of 

WST-1 was measured spectrophotometrically at 450 nm for 30 min at 37 °C using a plate reader 

(Molecular Devices). The inhibitory potency was calculated using the absorbance of the control in 

which the PMA-activated cells were incubated in the absence of the tested compounds [18]. 

3.8. Superoxide Anion Radical Production by Xanthine/Xanthine Oxidase 

The tested compounds (100 µM) were incubated at 37 °C in PBS with 500 µM WST-1 and 100 mM 

xanthine. The reactions were initiated by addition of 0.05 unit/mL xanthine oxidase and the reduction 

of WST-1 was measured spectrophotometrically at 450 nm for 15 min at 37 °C using a plate reader 

(SpectraMax M2, Molecular Devices) [18]. 

3.9. Preparation of Emulsions 

The emulsions were prepared according to the usual technique. Oily and aqueous phase components 

were weighed separately. They were heated to 70 °C in water bath until solubilization and/or fusion  

of solid components. Aqueous phase was added to the oily phase under manual agitation until the 

temperature fell to room temperature. Oily phase: 6% cetearyl alcohol, 1% ceteareth-20, 1.5% cetyl 

palmitate, 1.5% octyl stearate and 1% caprilyc capric triglyceride. Aqueous phase: 3% propylene glycol, 

and water until 100 g. As preservatives 0.05% EDTA, 0.05% BHT, 0.2% for mixture of preservatives 

(phenoxyethanol, methylparaben, ethylparaben, propylparaben, butylparaben, isobutylparaben) were 

used. FA (0.038%) or FAEE (0.044%) were incorporated in the oily phase. The emulsions were named 

base cream (C1), base cream plus FA (C2) and base cream plus FAEE (C3). 

3.10. Stability Studies 

The creams were stored in transparent PVC packages at room temperature (24 ± 2 °C) and exposed 

to the daylight for up to 90 days. Samples were collected at the first day, 15, 45 and 90 days and 

evaluated for the organoleptic features, density, pH, chemical stability and viscosity [41]. For the 

chemical stability study, an analytical curve (concentration versus absorbance) of FA and FAEE 

solubilized in methanol were constructed using a spectrophotometer (Shimadzu, UV mini 1240, Kyoto, 

Japan) at 298 and 299 nm, respectively. Thus, periodically, samples of the emulsions exposed to the 

various stress conditions were collected, solubilized in methanol and determined the amount of FA  

and FAEE. 
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3.11. Rheological Studies 

The rheological assays performed were: (a) flow curves, with shear rate varying from 0 to 100 s−1 

during 120 s and then returning to 0 s−1 in 120 s; (b) stress sweep, with shear stress from 0.1 to 10 Pa 

and frequency at 1 Hz; (c) frequency sweep, with frequency from 0.1 to 50 Hz and shear stress of 1 Pa; 

(d) creep and recovery, with duration of 600 s, shear stress at 1 Pa and recovery to 0 Pa in 300 s. These 

tests were performed at 25 °C. The creams were evaluated using a rheometer (TA instruments, AR 

2000 ex, New Castle, DE, USA) with a cone/plate sensor (1.59°, 40 mm) and the data analyzed by the 

Rheology Advantage Instruments Control Software [36]. 

3.12. Study of the Release Profile of FA and FAEE from the Creams 

The evaluation of the release of FA and FAEE from the creams was performed as described [42]. 

Using Franz diffusion cells with 1.77 cm2 of diffusion area (Hanson Research, Microette, CA, USA), 

where a cellulose acetate membrane (Whatman®, 0.45 µM) was positioned between the donor 

compartment, containing the formulation and an acceptor compartment filled with phosphate buffer 

0.1 M pH 7,4 and 5% DMSO. The temperature was kept at 37 ± 2 °C by a water jacket. The acceptor 

fluid was magnetically stirred (300 rpm) through the experiment. The time intervals for sample 

drawing were: 0.5, 1.0, 2.0, 4.0, 6.0 and 8.0 h. The relative concentrations of FA and FAEE were 

measured by their absorptions at 298 nm and 299 nm, respectively. The sink conditions were kept. 

4. Conclusions 

The scientific literature shows that FAEE has several potential beneficial health properties.  

Here, we have added one more data point to this panel of biological effects; its higher efficacy as an 

inhibitor of the generation of oxidants by activated leukocytes. As we have demonstrated, this effect 

was not related to its antiradical scavenging capacity. Indeed, FA was significantly more efficient as an 

antioxidant in the cell-free assays, but less effective in the cell-based assay. Specifically, our results 

suggest that FAEE acts as a NADPH oxidase inhibitor, and its potency was similar to that of apocynin, 

a widely used inhibitor of this enzymatic complex. When, incorporated in a topical pharmaceutical 

formulation, FAEE caused some rheological alterations, such as increased viscosity and lower 

susceptibility to deformation compared to the base cream or cream with FA. The lower spreadability 

can be useful for formulations that are developed for application on restrict areas of the skin, such as 

around the eyes. Hence, the use of FA or FAEE in creams should be decided in conformity with  

their intended applications. FA when the purpose is a better antiradical effect or FAEE if  

anti-inflammatory properties are desired. 

Acknowledgments 

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior (Capes), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) and Conselho 

Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are thankful to Sandra Helena 

Pulcinelli for providing full access to the rheometer used in this study and Ms Renata Cristina 

Kiatkoski Kaminski for technical assistance in the utilization of the rheometer. 



Molecules 2014, 19 8136 

 

 

Author Contributions  

Conceived and designed the experiments: V.F.X., L.M.F. and A.C.N. Performed the experiments: 

A.C.N., C.M.Q.G.F., B.G.C., M.S.P. and L.O.R. Analyzed the data: V.F.X., L.M.F., A.C.N., M.A.C., 

V.L.B.I. and D.H.S.S. Wrote the paper: V.F.X., A.C.N. and L.M.F. All authors read and approved the 

final manuscript.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity 

of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives 

of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012, 

60, 12312–12323. 

2. Choi, R.; Kim, B.H.; Naowaboot, J.; Lee, M.Y.; Hyun, M.R.; Cho, E.J., Lee, E.S.; Lee, E.Y.; 

Yang, Y.C.; Chung, C.H. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 

diabetes. Exp. Mol. Med. 2011, 43, 676–683. 

3. Barone, E.; Calabrese, V.; Mancuso, C. Ferulic acid and its therapeutic potential as a hormetin for 

age-related diseases. Biogerontology 2009, 10, 97–108. 

4. Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects.  

Food Chem. Toxicol. 2014, 65, 185–195. 

5. Picone, P.; Nuzzo, D.; di Carlo, M. Ferulic acid: A natural antioxidant against oxidative stress 

induced by oligomeric A-beta on sea urchin embryo. Biol. Bull. 2013, 224, 18–28. 

6. Fetoni, A.R.; Mancuso, C.; Eramo, S.L.; Ralli, M.; Piacentini, R.; Barone, E.; Paludetti, G.; 

Troiani, D. In vivo protective effect of ferulic acid against noise-induced hearing loss in the 

guinea-pig. Neuroscience 2010, 169, 1575–1588. 

7. Prabhakar, M.M.; Vasudevan, K.; Karthikeyan, S.; Baskaran, N.; Silvan, S.; Manoharan, S.  

Anti-cell proliferative efficacy of ferulic acid against 7, 12-dimethylbenz(a) anthracene induced 

hamster buccal pouch carcinogenesis. Asian Pac. J. Cancer Prev. 2012, 13, 5207–5211. 

8. Zhang, L.W.; Al-Suwayeh, S.A.; Hsieh, P.W.; Fang, J.Y. A comparison of skin delivery of ferulic 

acid and its derivatives: Evaluation of their efficacy and safety. Int. J. Pharm. 2010, 399, 44–51. 

9. Szwajgier, D. Anticholinesterase activity of phenolic acids and their derivatives. Z. Naturforsch. C 

2013, 68, 125–132. 

10. Islam, M.S.; Yoshida, H.; Matsuki, N.; Ono, K.; Nagasaka, R.; Ushio, H.; Guo, Y.; Hiramatsu, T.; 

Hosoya, T.; Murata, T.; et al. Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory 

activities of phytosteryl ferulates: Structure-activity studies. J. Pharmacol. Sci. 2009, 111, 328–337. 

11. Di Domenico, F.; Perluigi, M.; Foppoli, C.; Blarzino, C.; Coccia, R.; de Marco, F.; Butterfield, D.A.; 

Cini, C. Protective effect of ferulic acid ethyl ester against oxidative stress mediated by UVB 

irradiation in human epidermal melanocytes. Free Radic. Res. 2009, 43, 365–375. 



Molecules 2014, 19 8137 

 

 

12. Scapagnini, G.; Butterfield, D.A.; Colombrita, C.; Sultana, R.; Pascale, A.; Calabrese, V.  

Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative 

stress. Antioxid. Redox Signal. 2004, 6, 811–908. 

13. Calabrese, V.; Calafato, S.; Puleo, E.; Cornelius, C.; Sapienza, M.; Morganti, P.; Mancuso, C. 

Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal 

fibroblasts: Role of vitagenes. Clin. Dermatol. 2008, 26, 358–363. 

14. Sultana, R. Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders.  

Biochim. Biophys. Acta 2012, 1822, 748–752. 

15. Locatelli, C.; Rosso, R.; Santos-Silva, M.C.; de Souza, C.A.; Licínio, M.A.; Leal, P.; Bazzo, M.L.; 

Yunes, R.A.; Creczynski-Pasa, T.B. Ester derivatives of gallic acid with potential toxicity toward 

L1210 leukemia cells. Bioorg. Med. Chem. 2008, 16, 3791–3799. 

16. Ximenes, V.F.; Lopes, M.G.; Petrônio, M.S.; Regasini, L.O.; Silva, D.H.; da Fonseca, L.M. 

Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2 amidinopropane)hydrochloride 

(AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. J. Agric. 

Food Chem. 2010, 58, 5355–5362. 

17. Morais, M.C.; Luqman, S.; Kondratyuk, T.P.; Petronio, M.S.; Regasini, L.O.; Silva, D.H.;  

Bolzani, V.S.; Soares, C.P.; Pezzuto, J.M. Suppression of TNF-α induced NFκB activity by gallic 

acid and its semi-synthetic esters: Possible role in cancer chemoprevention. Nat. Prod. Res. 2010, 

24, 1758–1765. 

18. De Faria, C.M.; Nazaré, A.C.; Petrônio, M.S.; Paracatu, L.C.; Zeraik, M.L.; Regasini, L.O.;  

Silva, D.H.; da Fonseca, L.M.; Ximenes, V.F. Protocatechuic acid alkyl esters: Hydrophobicity as 

a determinant factor for inhibition of NADPH oxidase. Curr. Med. Chem. 2012, 19, 4885–4893. 

19. Paracatu, L.C.; Bornacorsi, C.; de Faria, C.M.; Nazaré, A.C.; Petrônio, M.S.; Regasini, L.O.; 

Silva, D.H.; Raddi, M.S.; da Fonseca, L.M.; Ximenes, V.F. Alkyl caffeates as anti-helicobacter 

pylori and scavenger of oxidants produced by neutrophils. Med. Chem. 2014, 10, 74–80. 

20. Yin, Y.; Li, W.; Son, Y.O.; Sun, L.; Lu, J.; Kim, D.; Wang, X.; Yao, H.; Wang, L.; 

Pratheeshkumar, P.; et al. Quercitrin protects skin from UVB-induced oxidative damage.  

Toxicol. Appl. Pharmacol. 2013, 269, 89–99. 

21. Bogdan, A.I.; Baumann, L. Antioxidants used in skin care formulations. Skin Ther. Lett. 2008, 13, 

5–9. 

22. Saija, A.; Tomaino, A.; Trombetta, D.; de Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; 

Bonina, F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective 

agents. Int. J. Pharm. 2000, 199, 39–47. 

23. Oresajo, C.; Stephens, T.; Hino, P.D.; Law, R.M.; Yatskayer, M.; Foltis, P.; Pillai, S.; Pinnell, S.R. 

Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin 

against ultraviolet-induced photodamage in human skin. J. Cosmet. Dermatol. 2008, 7, 290–297. 

24. Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J. Interest of ferulic acid ethyl ester in 

photoprotective creams: Measure of efficacy by in vitro method. Nat. Prod. Res. 2008, 22,  

1467–1471. 
  



Molecules 2014, 19 8138 

 

 

25. Kleniewska, P.; Piechota, A.; Skibska, B.; Gorąca, A. The NADPH oxidase family and its 

inhibitors. Arch. Immunol. Ther. Exp. (Warsz.) 2012, 60, 277–294. 

26. Turner, C.P.; Toye, A.M.; Jones, O.T. Keratinocyte superoxide generation. Free Radic. Biol. Med. 

1998, 24, 401–407. 

27. Valencia, A.; Kochevar, I.E. Nox1-based NADPH oxidase is the major source of UVA-induced 

reactive oxygen species in human keratinocytes. J. Investig. Dermatol. 2008, 128, 214–222. 

28. Trombino, S.; Cassano, R.; Ferrarelli, T.; Barone, E.; Picci, N.; Mancuso, C. Trans-ferulic acid-based 

solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf.  

B Biointerfaces 2013, 109, 273–279. 

29. Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new.  

J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. 

30. Niki, E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 

1990, 186, 100–108. 

31. Stratil, P.; Klejdus, B.; Kuban, V. Determination of total content of phenolic compounds and their 

antioxidant activity in vegetables-evaluation of spectrophotometric methods. J. Agric. Food Chem. 

2006, 54, 607–616. 

32. Simonyi, A.; Serfozo, P.; Lehmidi, T.M.; Cui, J.; Gu, Z.; Lubahn, D.B.; Sun, A.Y.; Sun, G.Y.  

The neuroprotective effects of apocynin. Front. Biosci. (Elite Ed.) 2012, 4, 2183–2193. 

33. Petrônio, M.S.; Zeraik, M.L.; da Fonseca, L.M.; Ximenes, V.F. Apocynin: Chemical and biophysical 

properties of NADPH oxidase inhibitor. Molecules 2013, 18, 2821–2839. 

34. Tan, A.S.; Berridge, M.V. Superoxide produced by activated neutrophils efficiently reduces the 

tetrazolinum salt, WST-1 to produce a soluble formazan: A simple colorimetric assay for measuring 

respiratory burst activation for screening anti-inflammatory agents. J. Immunol. Methods 2000, 

238, 59–68. 

35. Gregolin, M.T.; Chiari, B.G.; Ribeiro, H.M.; Isaac, V.L.B. Rheological characterization of 

hydrophylic gels. J. Dispers. Sci. Technol. 2010, 31, 820–825. 

36. Isaac, V.L.B.; Moraes, J.D.D.; Chiari, B.G.; Guglielmi, D.A.S.; Cefali, L.C.; Rissi, N.C.;  

Corrêa, M.A. Determination of the real influence of the addition of four thickening agents in 

creams using rheological measurements. J. Dispers. Sci. Technol. 2013, 34, 532–538. 

37. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate 

antioxidant activity. Lebensm.-Wiss. Technol. 1995, 22, 25–30. 

38. Campos, A.M.; Sotomayor, C.P.; Pino, E.; Lissi, E. A pyranine based procedure for evaluation of 

the total antioxidant potential (TRAP) of polyphenols. A comparison with closely related 

methodologies. Biol. Res. 2004, 37, 287–292. 

39. English, D.; Andersen, B.R. Single-step separation of red blood cells. Granulocytes and mononuclear 

leukocytes on discontinuous density gradients of Ficoll-Hypaque. J. Immunol. Methods 1974, 5, 

249–252. 

40. Kitagawa, R.R.; Raddi, M.S.; Khalil, N.M.; Villegas, W.; da Fonseca, L.M. Effect of the 

isocoumarin paepalantine on the luminol and lucigenin amplified chemiluminescence of rat 

neutrophils. Biol. Pharm. Bull. 2003, 26, 905–908. 
  



Molecules 2014, 19 8139 

 

 

41. Isaac, V.L.B.; Cefali, L.C.; Chiari, B.G.; Oliveira, C.C.L.G.; Salgado, H.R.N.; Corrêa, M.A. Protocolo 

para ensaios físico-químicos de estabilidade de fitocosméticos. Rev. Ciênc. Farm. Básica Apl. 2008, 

29, 81–96. 

42. Reichling, J.; Landvatter, U.; Wagner, H.; Kostka, K.H.; Schaefer, U.F. In vitro studies on release 

and human sikin permeation of Australian tea tree oil (TTO) from topical formulations. Eur. J. 

Pharm. Biopharm. 2006, 64, 222–228. 

Sample Availability: Samples of the compounds are available from the authors. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


