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Abstract: Density, viscosity and ionic conductivity data sets of deep eutectic solvents 

(DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 

1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. 

The properties of DES were measured at temperatures between 303 K and 333 K for HBD 

percentages of 66.7% to 90%. The effects of HBDs under different temperature and 

percentages are systematically analyzed. As expected, the measured density and viscosity 

of the studied DESs decreased with an increase in temperature, while ionic conductivity 

increases with temperature. In general, DESs made of TBABr and glycerol showed the 

highest density and viscosity and the lowest ionic conductivity when compared to other 

DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the 

properties of the DES.  

Keywords: deep eutectic solvent; tetrabutylammonium bromide; density; viscosity;  

ionic conductivity  
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1. Introduction 

Over the past few decades, ionic liquids (ILs) have been a research topic of interest due to their 

unique physical properties: low melting point [1,2], low volatility [2,3], high thermal stability [2–4], high 

polarity [3], inflammability [3,4], and wide range of solubility [5,6]. However, there have problems 

related to high cost, purification and toxicity [1,4,7,8]. These problems have been largely rectified with 

the emergence of deep eutectic solvents (DESs), an advanced generation of ILs which are 

biodegradable, cheap and easy to prepare [9,10]. DES are structurally different from ILs, as DES have 

both ionic and non ionic species and are connected by a hydrogen bonding network. Nevertheless, 

DES can replace ILs in many applications due to their shared characteristics [9]. 

Abbott and his group made an excellent discovery by simply mixing choline chloride, C5H14ClNO 

(ChCl) and urea, (NH2)2CO, which produced a DES with a melting point of 285 K [11]. The low 

melting point is a result of mixing an organic salt and a hydrogen bond donor (HBD) such as an amine, 

alcohol, amide or carboxylic acid [11,12]. Until now, most DES studies have been primarily focused 

on the economical and biodegradable substituted quaternary ammonium salts of ChCl [10,13–16]. 

ChCl or 2-hydroxyethyltrimethylammonium are produced annually on the Mtonne (million metric ton) 

scale as a main source of vitamin B4 for chicken feed. It is also known as an essential micronutrient 

needed for a normal body function and to promote health [17]. Meanwhile, a quaternary ammonium 

salt, tetrabutylammonium bromide (TBABr) has emerged as a popular phase-transfer catalyst in 

various organic transformations [18]. The salt has been found to be a valuable source of bromide [19] 

and is sometimes used as an IL [20]. Not only it is cheap, but TBABr is also environmentally friendly, 

has greater selectivity, is operationally simple, non-corrosive and easily recyclable [18].  

Previously, there has been a little research into the physical properties such as density, viscosity, 

surface tension, refractive index and pH of synthesized DESs, such as ChCl [13,14], fructose [21] and 

glucose-based DES [22]. The known properties of phosphonium-based DESs include the melting 

point, density, viscosity, pH, conductivity and dissolved oxygen content reported by Kareem et al. [23]. 

The properties of the DES are strongly affected by the composition, temperature, pH value and water 

content [24]. Investigating DES properties under different conditions determines the suitability of the 

DES for use in organic synthesis applications [16], biotransformations [1,10], biomasss processing and 

electrochemistry [9].  

This paper studies the physical properties of novel TBABr-based DESs, including density, viscosity 

and ionic conductivity. Measurements were made at different HBD percentages in the range of 66.7% 

to 90.0%, temperatures between 303 and 333 K and at atmospheric pressure, 1.05 atm. The following 

DESs were studied: combinations of TBABr with alcohol-based HBDs such as ethylene glycol,  

1,3-propanediol, 1,5-pentanediol and glycerol. The physical properties of TBABr-based DES with 

combinations of these HBD have not been studied. The experiments studied the effects of HBD 

percentages, type of HBD and temperature changes on DESs, with a view to better understanding the 

properties of the DESs. 
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2. Results and Discussion 

Novel DESs based on TBABr salts with a few HBDs were successfully synthesized. The structures 

of TBABr salt and HBDs used in the syntheses of DESs include ethylene glycol (EG), 1,3-propanediol 

(1,3-PD), 1,5-pentanediol (1,5-PD) and glycerol (Gly) (Figure 1). 

Figure 1. Structure of TBABr and HBDs used to synthesis the DESs. 

Salt Hydrogen bond donors (HBDs) 

DESs in liquid phase at room temperature were labeled as TBABr:EG, TBABr:1,3-PD, TBABr:1,5-PD 

and TBABr:Gly. For each DES, five combinations consisting of 66.7%, 75.0%, 80.0%, 83.3% and 

85.7% HBD were experimented on, except for the TBABr:Gly, which was studied in the range of  

75.0% to 90.0% Gly. The percentage of HBD in DES are according to molar ratio. These DESs were 

liquids at room temperature. Below the stated percentage of HBD, the mixtures remained solid at room 

temperature. However, for TBABr:EG (66.7% EG) and TBABr:Gly (75.0% Gly), a slight precipitate 

was formed after three to four months, and heating is required prior to application to homogenize the DES.  

2.1. Density  

2.1.1. The Effect of Temperatures on Density 

Density leads to an understanding of the liquid’s behavior. It is well known that density is 

drastically affected by the temperature and components of the liquid. It is important to know the effect 

of temperature on density in applications such as solvent design. The densities of DES at different 

temperatures are depicted in Figure 2. Three replicate readings were taken at each temperature for 

improved accuracy. There is no known literature on the densities of these DESs.  
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Figure 2. Density, ρ of DESs as a function of temperature K at different HBD percentages 

(a) TBABr:EG, (b) TBABr:1,3-PD, (c) TBABr:1,5-PD and (d) TBABr:Gly. 

 

 

Density measurements were performed at temperatures ranging from 303 K to 333 K. TBABr:Gly 

exhibited the highest density, followed by TBABr:EG, TBABr:1,3-PD and TBABr:1,5-PD. All 

recorded densities of synthesized DESs were below 1.20 g·cm−3. The highest density was reported for 

TBABr:Gly, which reached a maximum of 1.1867 g·cm−3 of 90.0% Gly at 303 K. Meanwhile, 

TBABr:1,5-PD of 85.7% 1,5-PD showed the lowest density value of 0.9770 g·cm−3 at the highest 

tested temperature of 333 K. 

The density of DESs decreases almost linearly with an increase in temperature (Figure 2). During 

heating, anions and cations in DESs vibrate. These vibrations can cause molecular rearrangements due 

to the weak interactions between ions, which in turn reduces the density of the liquid [25]. 

The results attained in this work were compared with the density of ChCl-based DES studied by 

Harris [14]. The density of TBABr:Gly at 90.0% Gly (1.1817 g·cm−3 at 308 K) was similar to the 

density of ChCl:Gly at 67% Gly (1.1810 g·cm−3 at 293 K). Meanwhile, TBABr:EG and TBABr:1,3-PD 

were found to have similar values to the DES of ChCl:1,4-butanediol at percentages of 75.0% to  

95.0% 1,4-butanediol at 293 K (1.0210 to 1.0520 g·cm−3). Additionally, TBABr:1,5-PD had density 

values very similar to the DES formed from ChCl:1,2-butanediol at percentages of 80.0% to 95.0% 

1,2-butanediol at 293 K (1.0090 to 1.0300 g·cm−3). It can be concluded that the density of  

TBABr-based DES is comparable to the density of other DESs, except for glucose-based DESs 
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(1.2115 to 1.2978 g·cm−3 at 298.15 K to 358.15 K) [26]. The densities of TBABr-based DES are 

slightly lower than glucose-based DES. 

ILs are generally denser than DESs, for example, the density of 1-alkyl-3-methyl-imidazolium 

iodide, [C4mim]I ranges from 1.3600 to 1.4340 g·cm−3 for the range of temperatures of 299.15 K to  

388.15 K [27]. Additionally, the density of a few organic solvents were compared to the density of 

DESs. It was found that methanol has a density of 0.7822 g·cm−3, acetonitrile 0.7714 g·cm−3 and  

N,N-dimethylacetamide 0.9317 g·cm−3 at 303 K [28], all lower than the density of tested DESs. 

2.1.2. The Effect of HBDs on Density 

Overall, at all tested temperatures as well as HBD percentages, TBABr paired with glycerol had the 

highest density when compared to the other synthesized DESs. It could be concluded that DES density 

can be highly affected by the type of the HBDs. The presence of three hydroxyl groups on HBD in 

TBABr:Gly was a contributing factor to the increase of density value as shown by the results. A 3D 

network of hydrogen bonds are formed through the interactions between glycerol and anions from 

TBABr [14]. The compact structure as a result of hydrogen bonds increases the density of DES. As 

Abbott et al. mentioned, the differences of density in DES are caused by the varying degrees of 

hydrogen bonds in these systems [29]. The density of DES with different carbon atom lengths were 

compared, where TBABr:EG, TBABr:1,3-PD and TBABr:1,5-PD each consist of two carbons, three 

carbons and five carbons chain, respectively. The density reduces drastically as the chain length of 

HBDs increases (Figure 3).  

Figure 3. The graph of density, ρ and viscosity, η at 303 K versus the length of HBDs used in DESs. 

 

This result is supported by the interactions in DESs. A longer carbon chain of HBD in TBABr:1,5-PD 

decreases the hydrogen bond interactions due to steric hindrance. Consequently, the free volume tends 

to increase thus lowering the density of the liquid. The effect of a longer alkyl chain group on the 

density of an IL was previously studied by Ribe et al. [30]. A decrease in the density of  
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R1-methylimidazolium tetrafluoroborate was observed when the alkyl chain length on the imidazolium 

cation increased. 

2.1.3. The Effect of HBD Percentages on Density 

HBDs were added to the TBABr salt in amounts ranging from 66.7% to 85.7% for TBABr:EG, 

TBABr:1,3-PD and TBABr:1,5-PD. Meanwhile, 75.0% to 90.0% of Gly was added to TBABr:Gly. As 

can be seen in Figure 4, the effect of adding HBD into DES is very small, except in TBABr:Gly.  

Figure 4. Plot of density, ρ versus HBD percentages at 303 K for alcohol HBDs based DES. 

 

There was a remarkable increase in the density of TBABr:Gly from 1.1356 to 1.1867 g·cm−3 when 

Gly was added. Similarly, the density increased from 1.0664 to 1.0757 g·cm−3 as the EG was added to 

salt, which is barely observable from the graph. Meanwhile, the TBABr:1,5-PD showed an opposite 

trend, where the density decreased slightly from 1.0287 to 1.0106 g·cm−3 when 1,5-PD was added to 

TBABr salt. There was no visible change in the density of TBABr:1,3-PD when 1,3-PD was added 

since the value changed on slightly (by 0.002), from 1.0545 to 1.0523 g·cm−3. 

Different effects of HBD percentages on density of DES system were observed. This might be due 

to the ways the HBD wraps around the Br anion, which is responsible for the size of the complex 

formed. Hence, it could affect the packing structure and density of DESs.  

2.2. Viscosity 

Viscosity is an internal friction measurement of a moving fluid which describes the resistance of a 

substance to flow [16]. In comparison to organic solvents, DESs have higher viscosity leading to some 

difficulties in handling, stirring and also filtering. The liquid viscosity is important in selecting an 

appropriate solvent. The viscosity is strongly influenced by the ability of the liquid to transport the 

mass within the liquid, which is immensely responsible for any changes in the chemical reactions. The 

high viscosity of the DES causes the limited mobility of species within the DES, which in turn causes 
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a low conversion of products, especially in enzymatic reactions. The viscosity study was performed at 

different temperatures and HBD percentages.  

2.2.1. The Effect of Temperatures on Viscosity 

The viscosity of DESs at different temperatures was studied in the same range as the density 

measurements (Figure 5).  

Figure 5. Viscosity, η of DESs as a function of temperature at different HBD percentages 

(a) TBABr:EG, (b) TBABr:1,3-PD (c) TBABr:1,5-PD and (d) TBABr:Gly. 

 

 

It is noted that the highest viscosity at room temperature (303 K) belongs to TBABr:Gly (467.2 mPa·s). 

DESs viscosity reduces with an increase in temperature. Each DES attained its lowest viscosity at the 

highest tested temperature of 333 K, 5.7, 19.0, 28.0 and 57.5 mPa·s for TBABr:EG, TBABr:1,3-PD, 

TBABr:1,5-PD at 85.7% and TBABr:Gly at 90.0%, respectively. The vast difference in densities 

indicates that the DESs are highly sensitive towards temperature. Increased kinetic energy through 

heating may weaken the attractive forces between molecules [25]. The decrease in viscosity vs. 

temperature is a non-linear graph. Specifically, the viscosity decreases rapidly at low temperature and 

slowly approaches a similar value at higher temperature. These results are consistent with the reported 

literature [27,31]. 
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2.2.2. The Effect of HBDs Percentages on Viscosity 

Meanwhile, the effect of HBD percentages on viscosity was investigated from 75.0% to 90.0% for 

TBABr:Gly and 66.7% to 85.7% for TBABr:EG, TBABr:1,3-PD and TBABr:1,5-PD. The addition of 

HBD decreased the viscosity of synthesized DESs (Figure 6). At 303 K, the viscosity of TBABr:Gly 

decreased slowly from 467.2 to 377.6 mPa·s upon addition of 75.0% up to 90.0% Gly into TBABr salt. 

This trend agrees with the results reported by Zhao et al. [17], who studied choline acetate and 

glycerol, but is in contrast with the work by Harris [14] and Abbott et al. [32], who studied choline 

chloride and glycerol in which the viscosity decreased only with the addition of ChCl salt. Their results 

were attributed to the ability of ChCl to disrupt the intermolecular hydrogen bonding of the 3-D 

glycerol structure, which led to a greater degree of freedom which decreases the viscosity of 

ChCl:glycerol. In contrast to their results, however there was no evidence of disruption of TBABr 

toward the glycerol. This could be mainly due to the type of salt affecting the viscosity of resulting 

mixtures. 

Figure 6. Plot of viscosity, η versus HBDs percentages at 303 K for alcohol HBD-based DES. 

 

Similarly, decrease of viscosities of TBABr:EG, TBABr:1,3-PD and TBABr:1,5-PD from 151.2 to 

19.7 mPa·s, 219 to 69.8 mPa·s and 302.2 to 115.4 mPa·s respectively, were also noticed, when the 

HBD was added slowly from 66.7% to 85.7% at 303 K. The possible reason could be that the lower 

molar ratio of salt with HBD increases. The salt possibly acts as a bridge that connects the other ionic 

groups. A lower molar ratio of salt in DES caused decreased viscosity, due to the sparse network 

between different groups [33]. 

2.2.3. The Effect of HBDs on Viscosity 

As observed in density data, the TBABr-based DES has the highest viscosity when paired with the 

glycerol HBD. As TBABr:Gly contains more hydroxyl groups compared to the other DESs, it was 

expected to be the most viscous. The existence of extra hydroxyl groups creates more hydrogen bonds, 
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which increases the attractive forces between molecules, making a liquid viscous. However, for the 

TBABr-based DESs with diol HBDs, the trends of viscosity are in contrast with the order of density 

data where TBABr:1,5-PD had the highest viscosity, followed by TBABr:1,3-PD and TBABr:EG. 

As the number of carbon atoms increases, viscosity of DES increases while the density decreases. 

The structures of the HBDs are an important factor in determining density and viscosity. As an 

example, TBABr:1,5-PD with the longest alkyl chain among the tested HBDs in DESs had the highest 

viscosity and lowest density (Figure 3). The molecular chain of TBABr:1,5-PD became tangled due to 

its long carbon chain, which caused the increase in viscosity. As explained by Bonhote et al. [34], the 

high molar mass side chains in ILs have stronger van der Waals forces resulting in insufficient mobility 

and high viscosity. Hence, it can be concluded that when the length of HBD increases, viscosity increases 

but density decreases. The result is consistent with other research cited in the literature [27,30]. 

Abbott et al. [35,36] suggested the hole theory which describes the factors affecting the viscosity of 

ILs as well as DES. According to this theory, the ratio of ion radius to hole size within a liquid causes 

the difference in viscosity. If the hole is an equal or greater in size to its adjacent ion, the ion is able to 

move through the IL causing it to be less viscous [29]. Abbott et al. [36] mentioned that low viscosity 

can be obtained using a small quaternary ammonium cation such as the ethylammonium cation. The 

viscosity obtained at 313 K for ethylammonium cations paired with trifluoroacetamide, urea and 

acetamide are 256.0 mPa·s, 128.0 mPa·s and 64.0 mPa·s, respectively. Interestingly, the values are 

comparable to those seen with the much larger ions used in this study, tetrabutylammonium cations. 

However, there are other factors that may affect the ability of ions to move in DES other than the size 

of cations, such as the size of voids and radii of complex anions [36].  

It is clear from this study that viscosities of DESs are higher when compared to most of the 

conventional solvents but almost similar to the ILs [4,10]. The viscosity of the synthesized DESs, 

ranging from 19.7 to 467.2 mPa·s at 303 K is higher than the viscosity of a few organic solvents such 

as methanol (0.6 mPa·s), ethanol (0.8 mPa·s), propanol (2.3 mPa·s), pyridine (1.5 mPa·s) at 293 K [37], 

benzene (0.5 mPa·s) and tetradecane (1.7 mPa·s) at 313 K and 6.8 atm [38]. The ILs have a wide range 

of viscosities. Ribe et al. [30] published the viscosity of ILs ranging from 10.7 to 284.1 mPa·s for 

BMIM[BF4] and 20.8 to 895.3 mPa for OMIM[BF4] at temperatures from 283 K to 363 K. Ochedzanet 

et al. [39] measured the viscosity for a variety of ILs at temperatures ranging from 293 K to 343 K, 

including C4MIM[AlCl4] at 8.7 to 34.0 mPa·s, C6MIM[AlCl4] at 15.3 to 68.0 mPa·s, C6-Py[AlCl4] at 

19.0 to 65.3 mPa·s and C4-4-mpy[AlCl4] at 10.5 to 49.4 mPa·s. 

2.3. Ionic Conductivity 

2.3.1. The Effect of Temperatures on Ionic Conductivity 

Ionic conductivity was experimentally determined at different temperatures (Figure 7). For all four 

different type of DESs, ionic conductivity increases with temperature. Kinetic energy from heat 

increases the frequency of collision between molecules leading to weak intermolecular forces and 

increased ionic conductivity of DES [33]. 
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Figure 7. Ionic conductivity, κ of DESs as a function of temperature for different HBD 

percentages (a) TBABr:EG, (b) TBABr:1,3-PD (c) TBABr:1,5-PD and (d) TBABr:Gly. 

   

  

2.3.2. The Effect of HBD Percentages on Ionic Conductivity 

Figure 8 illustrates the ionic conductivity of each DES as the amount of HBD added into DES 

mixture. The ionic conductivity of TBABr:EG, TBABr:1,3-PD and TBABr:1,5-PD increased from 

66.7% to 85.7%, respectively, as the percentages of EG, 1,3-PD and 1,5-PD added increased. The 

increases of ionic conductivity arise from the high movement of charge carriers due to the decreases in 

viscosity. This can be explained by the Walden Rule, which describes the strong relationship between 

ionic conductivity and viscosity. The low viscosity of liquid results in high ionic conductivity [40,41]. 

Meanwhile, the ionic conductivity for TBABr:Gly decreased as percentages of glycerol in DES 

increased from 75.0% to 90.0% Gly. This occurred due to the decreased amount of TBABr salt in 

DES, resulting in lower ionic conductivity. From the viscosity results, it was proposed that ionic 

conductivity for TBABr:Gly would increase with the addition of HBD. However, it appeared to act 

differently, suggesting that there is a difference in the way glycerol complexes to the bromide ions of 

TBABr when compared to other systems. The Walden Rule has recently been used to describe IL ionic 

conductivity. However, deviation is possible as the rule applies to ions in infinite solution, in which 

interactions between ions are not considered. These results are also seen in other types of DES such as 

ChCl:1,4-butanediol and ChCl:1,2-butanediol [14]. 
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Figure 8. Plot of ionic conductivity, κ versus HBD percentages at 303 K for alcohol HBDs 

based DES. 

 

As the comparisons were made, it can be concluded that TBABr:EG had the highest ionic 

conductivity (118.3 µS·cm−1 to 528.5 µS·cm−1), followed by TBABr:1,3-propanediol (63.7 µS·cm−1 to 

311.5 µS·cm−1) and TBABr:1,5-pentanediol (38.7 µS·cm−1 to 168 µS·cm−1) when HBD was added 

from 66.7% to 85.7%. The lowest ionic conductivity was obtained for TBABr:glycerol valued  

29.6 µS·cm−1 to 77.7 µS·cm−1 when HBD reduced from 90% to 75%.  

The ionic conductivity of DES was lower than that of ILs. The value of ionic conductivity for 

pyridinium-based ILs such as [bpy][BF4] is 3,210 to 11,200 µS·cm−1, [bpy][CF3SO3] is 2,660 to  

8,390 µS·cm−1 and [b3mpy][N(CN)2] is 10,270 to 25,800 µS·cm−1 in the 303 K to 333 K temperature 

range [41]. However, the ionic conductivity for a tetraethylammonium-based amino acid chiral IL such 

as [N2222][thr] (240 µS·cm−1 at 298 K) [40] was quite close to the ionic conductivity of TBABr:EG at 

80.0% EG (237.5 µS·cm−1 at 303 K). Therefore, increasing the temperature or adding water to DES 

may increase ionic conductivity.  

2.3.3. The Effect of HBDs on Ionic Conductivity 

The shorter alkyl chains of a diol HBD in TBABr:EG produce higher ionic conductivity due to the 

greater ion mobility of the salts in the mixture. Fewer van der Waals interactions make for the shorter 

carbon chains on HBD, which causes lower viscosity in DES mixtures [40]. Meanwhile, for the same 

HBD alkyl chain length, it was observed that the diol-based DES, TBABr:1,3-PD has higher ionic 

conductivity when compared to the triol-based DES, TBABr:Gly. Fewer hydroxyl groups in diol-based 

DESs produce fewer hydrogen bond networks than triol-based DESs, which lead to greater ion 

mobility and ionic conductivity. This was supported by the statement that the characteristics of the 

ionic structure, including size and shape determine its behavior in liquid, which strongly affects the 

ionic conductivity value [41]. 
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3. Experimental Section 

3.1. Materials 

Tetrabutylammonium bromide (TBABr), 1,3-propanediol and 1,5-pentanediol were supplied by 

Fluka Chemical (Reidstr, Steinheim, Germany) with 98% purity. The hydrogen bond donor ethylene 

glycol was purchased from R&M (Essex, UK). Glycerol was purchased from J.T.Baker (Phillipsburg, 

NJ, USA). All chemicals were used without further purification. 

3.2. Methods 

3.2.1. Synthesis of DESs 

DESs mixtures were prepared accordingly to the method reported by Abbot et al. [12]. DESs were 

synthesized through mixing TBABr salt with different HBDs at various molar ratios. The mixtures 

were heated at 353 K for three to five hours at atmospheric pressure until a clear liquid was formed. 

However, some of DESs did not liquefy even after eight hours of mixing at temperatures as high as 

373 K. The unsuccessful combinations were discarded from further investigation. Liquids DESs at 

room temperature were characterized for their density, viscosity and ionic conductivity (Table 1).  

Table 1. Type of DES, percentage of HBD and abbreviations used for synthesis of TBABr 

based DES. 

Type of DES Percentage of HBD (%) Abbreviations 

TBABr:Ethylene glycol 66.7, 75.0, 80.0, 83.3, 85.7 (TBABr:EG) 
TBABr:1,3-Propanediol 66.7, 75.0, 80.0, 83.3, 85.7 (TBABr:1,3-PD) 
TBABr:1,5-Pentanediol 66.7, 75.0, 80.0, 83.3, 85.7 (TBABr:1,5-PD) 

TBABr:Glycerol 75.0, 80.0, 83.3, 85.7, 90.0 (TBABr:Gly) 

3.2.2. Characterization of DESs 

All synthesized DESs were initially dried in a vacuum drying oven set at 323 K for 24 h at 0.19 atm. 

They were stored in sealed laboratory vials and were kept in a desiccator over the silica gel. Studies for 

the density, viscosity and ionic conductivity of DESs were reported at temperatures ranging from 303 K 

to 333 K at percentages of 66.7% to 90.0% HBDs. 

The viscosity of the DESs were measured using a Brookfield DV-II Pro viscometer (Middleboro, 

MA, USA) directly connected to Huber Compatible temperature controlled CC1 heating bath  

(Werner-von-Siemens-Strasse, Offenburg, Germany). The density of the DESs were measured using a 

Mettler Toledo Densito 30PX (Sonnenbergstrasse, Schwerzenbach, Switzerland) instrument. The ionic 

conductivity was measured using a conductivity meter from Mettler Toledo GmBH (model 

SevenEasy). The samples were heated in an oil bath, and the measurements were made after at least 20 min 

of warming in order to reach a good equilibrium of temperature between the DES sample and oil bath. 

All the measurements were repeated two to five times for each sample. The validity of the apparatus 

and the experimental methods used were tested by measuring the density, viscosity and ionic 

conductivity of distilled water under the same atmospheric pressure and temperatures as the DES sample. 
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4. Conclusions  

DESs were successfully synthesized in various HBD percentages with the combination of four 

different HBDs, ethylene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol. Experimental density, 

viscosity and ionic conductivity of the DESs from 303 to 333 K and at different HBD percentages 

were reported. The physical properties of different DESs are strongly influenced by the selection of 

HBD, temperature and percentage. The length of alkyl chain and numbers of hydroxyl groups on the 

HBD leads to changes in density, viscosity and ionic conductivity. The viscosity, density and ionic 

conductivity of synthesized DESs are quite similar to those of other DESs and ILs. It was evident that 

the density and viscosity of a DES decreases as temperature increases. However, the ionic conductivity 

of DESs increases with temperature. DESs made of longer HBD have higher viscosity, but lower 

density. The ionic conductivity of DES is always inversely related to the viscosity of the DES. The 

addition of HBD has a different effect in different type of DESs. The TBABr-based DESs had 

comparable density and viscosity to other DESs although they have a long tetrabutylammonium cation. 

The ionic conductivity of the prepared DESs is quite low. Increasing the temperature is the best 

solution to increase ionic conductivity. The results from this basic study of physical properties will be 

useful for the development of new DESs.  
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