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Abstract: The effect of the total saponins from Rosa laevigata Michx fruit (RLTS) against 

acetaminophen (APAP)-induced liver damage in mice was evaluated in the present paper. 

The results showed that RLTS markedly improved the levels of liver SOD, CAT, GSH, 

GSH-Px, MDA, NO and iNOS, and the activities of serum ALT and AST caused by APAP. 

Further research confirmed that RLTS prevented fragmentation of DNA and mitochondrial 

ultrastructural alterations based on TdT-mediated dUTP nick end labeling (TUNEL) and 

transmission electron microscopy (TEM) assays. In addition, RLTS decreased the gene or 

protein expressions of cytochrome P450 (CYP2E1), pro-inflammatory mediators (IL-1β, 

IL-4, IL-6, TNF-α, iNOS, Bax, HMGB-1 and COX-2), pro-inflammatory transcription 

factors (NF-κB and AP-1), pro-apoptotic proteins (cytochrome C, p53, caspase-3, caspase-9, 

p-JNK, p-p38 and p-ERK), and increased the protein expressions of Bcl-2 and Bcl-xL. 

Moreover, the gene expression of IL-10, and the proteins including LC3, Beclin-1 and Atg5 

induced by APAP were even more augmented by the extract. These results demonstrate that 

RLTS has hepatoprotective effects through antioxidative action, induction of autophagy, and 

suppression of inflammation and apoptosis, and could be developed as a potential candidate 

to treat APAP-induced liver damage in the future. 
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1. Introduction 

Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, and overdoses of it can 

cause hepatic necrosis and renal failure [1]. This drug is metabolized by cytochrome P450 to produce  

N-acetyl-p-benzoquinoneimine (NAPQI), which can react with glutathione (GSH) to cause oxidative 

stress that may trigger the mitochondrial signal pathway and lead to cell injury [2–5]. Mitochondrial 

damage is a well-known feature caused by APAP, which can inhibit mitochondrial respiration and 

decrease membrane potential [6,7] to produce mitochondrial dysfunction and oxidant stress [8,9]. In 

addition, some biological processes including apoptosis, inflammatory and autophagy have been found 

in APAP-induced hepatotoxicity [10–14]. 

APAP-induced hepatotoxicity can cause some serious diseases [15]. N-acetylcysteine (NAC) is the 

only used drug to treat the liver damage caused by APAP [16], and however, NAC is limited to treat 

APAP-induced liver injury because it has to be given at the early stage [17]. Therefore, exploration of 

new potential candidates to treat APAP-induced liver damage is urgent. Nowadays, natural products 

with high efficiency and low toxicity have attracted more and more attentions, and some natural 

components including silymarin, liquiritigenin and arjunolic acid have been found to be beneficial for 

treatment of APAP-induced liver injury [18–21]. 

Rosa laevigata Michx, a famous medicinal plant, is widely distributed in China. The fruit of this 

plant has been widely used for improving kidney health, inhibiting arteriosclerosis and reducing 

inflammation [22,23]. Saponins are considered to be the major active constituents [24] with anti-oxidant, 

anti-fungal and anti-viral actions [25]. Our previous study has indicated that the total saponins from this 

herb showed significant hepatoprotective effects against carbon tetrachloride-induced acute liver injury 

in mice [26]. However, the effect of the total saponins from R. laevigata Michx fruit (RLTS) against 

APAP-induced liver injury has not been reported in the best of our knowledge. 

The aim of the present study was to evaluate the action of RLTS against liver injury in male 

Kunming mice caused by APAP and then the possible mechanisms were also tested. We found that 

RLTS showed potential protective effect against APAP-induced liver damage through induction of 

autophagy, suppression of inflammation and apoptosis. 
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2. Results and Discussion 

2.1. Effects of RLTS on Serum ALT, AST Activities and Liver Histopathology 

The activities of ALT and AST in the model group were highly elevated compared with control 

group (p < 0.01), which suggested obvious liver damage caused by APAP (Figure 1A,B). Treatment 

with RLTS significantly decreased ALT and AST levels in a dose-dependent manner. Relative liver 

weight increased in the model group (Figure 1C), which was prevented by RLTS at the dose of  

300 mg/kg. As shown in Figure 1D, livers from the mice receiving 300 mg/kg of RLTS were 

morphologically as good as those of the normal mice, and while large hemorrhagic areas, massive 

confluent necrosis and inflammatory cells infiltration were found in APAP-treated animals, RLTS or 

silymarin pretreatment attenuated the damage. 

Figure 1. Effects of RLTS on serum ALT and AST activities (A and B), relative liver 

weight (C) and histopathological examination by hematoxylin and eosin (H&E) staining 

(D) against APAP- induced liver damage in mice. I: RLTS control; II: normal control;  

III: model; IV: RLTS (100 mg/kg); V: RLTS (200 mg/kg); VI: RLTS (300 mg/kg);  

VII: silymarin (200 mg/kg). Relative Liver weight (%) = liver weight/body weight × 100. 

H&E stained sections were observed under 200 × magnification. Values are expressed as 

mean ± SD in each group. * p < 0.05, ** p < 0.01 vs. model; ## p < 0.01 vs. normal control. 
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2.2. Antioxidant Activity of RLTS 

The antioxidant activity results of RLTS are shown in Figure 2A–G. Compared with the control 

group, the levels of SOD, CAT, GSH and GSH-Px were significantly decreased, and the levels of MDA, 

NO and iNOS were significantly increased in APAP-treated group, which were all reversed by RLTS  

(p < 0.05). 

Figure 2. Effects of RLTS on the levels of SOD (A), CAT (B), GSH (C), GSH-Px (D), 

MDA (E), NO (F) and iNOS (G) in livers. I: RLTS control; II: normal control; III: model; 

IV: RLTS (100 mg/kg); V: RLTS (200 mg/kg); VI: RLTS (300 mg/kg); VII: silymarin 

(200 mg/kg). Values are expressed as mean ± SD (n = 10). * p < 0.05, ** p < 0.01 vs. 

model group; ## p < 0.01, # p < 0.05 vs. normal group. 
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2.3. Effects of RLTS on Nuclei and DNA Fragmentation Caused by APAP 

DAPI staining revealed normal nuclei morphology in the control group as shown in Figure 3A. 

However, in APAP-treated mice, condensed nucleus or loss of nuclei was observed. Pretreatment with 

RLTS (300 mg/kg) produced obvious improvement compared with model group. TUNEL assay was 

used to detect fragmentation of DNA. As shown in Figure 3B,C, TUNEL-positive cells showed green 

fluorescence and brown after fluorescein labeling and DAB staining respectively. Virtually no 

TUNEL-positive nuclei was found in control group. Compared with model group, RLTS at the dose of 

300 mg/kg significantly reduced the DNA fragmentation (shown in Figure 3D–E). 

Figure 3. Representative micrographs of DAPI stained nuclei (A), TUNEL fluorescent 

images (B) and DAB&H stained images (C) in normal control, model and RLTS (300 mg/kg) 

groups (magnification, 400×). Statistic analysis of TUNEL fluorescent images (D) and 

DAB&H dyeing images (E). Values are expressed as mean ± SD (n = 4). ** p < 0.01 vs. 

model group; ## p < 0.01, # p < 0.05 vs. normal group. 
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2.4. Effects of RLTS on Cellular Ultrastructure and Mitochondrial Injury 

As shown in Figure 4A, the mitochondrial valley was absent and the nucleus was condensed in the 

model group, which were inhibited by 300 mg/kg of RLTS. Autophagy characterized by 

autophagosomes was also observed in the model group, which was further enhanced by RLTS. In 

addition, the mitochondria extracted from the livers were labeled with TMRM. As shown in Figure 4B, 

RLTS at the dose of 300 mg/kg significantly increased the red fluorescence of TMRM compared with 

model group indicating decreased impaired mitochondria. 

2.5. Effect of RLTS on Expressions of CYP2E1 and Cytochrome C 

The effects of RLTS on expressions of CYP2E1 and cytochrome C were investigated. As shown in 

Figure 4C,D, APAP administration significantly enhanced the expressions of CYP2E1 and cytochrome 

C, which were all markedly attenuated by the extract. As shown in Figure 4E,F, the declined levels in the 

RLTS-treated group (300 mg/kg) were 54.29% ± 6.01% and 42.94% ± 7.74% (p < 0.01), respectively, 

compared with the model group. 

Figure 4. TEM analysis of the livers (magnification, 25,000×) in normal, model and RLTS 

(300 mg/kg) groups, and the arrows indicated autophagosome (A). Mitochondrial membrane 

potential detected by TMRM staining (B). Effects of RLTS (300 mg/kg) on the expression 

of CYP2E1 (C) and cytochrome C (D) (magnification, 200×). Statistical analysis of the 

fluorescence intensity (E) and the integrated optical density (F). Values are expressed as 

mean ± SD (n = 4). ** p < 0.01 vs. model group; ## p < 0.01 vs. normal group. 
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2.6. Effects of RLTS on some Molecular Expressions in Inflammatory Pathway 

As shown in Figure 5, RLTS (300 mg/kg) significantly down-regulated the gene or protein 

expression of IL-1β, IL-4, IL-6, TNF-α, iNOS, HMGB-1, COX-2 and NF-κB by 4.68-, 2.58-, 4.10-, 

2.54-, 2.07-, 2.03-, 2.30- and 1.45-fold. As shown in Figure 5D, the expression of IL-10 was 

up-regulated by APAP, and however, RLTS pretreatment (200 and 300 mg/kg) markedly further 

enhanced the gene expression compared with the model group. 

Figure 5. Effects of RLTS on the gene expressions of IL-1β (A), IL-4 (B), IL-6 (C),  

IL-10 (D), and the protein expressions of TNF-α (E), iNOS (F), HMGB-1 (G), COX-2 (H), 

NF-κB (I). Values are expressed as mean ± SD (n = 4). * p < 0.05, ** p < 0.01 vs. model 

group; ## p < 0.01, # p < 0.05 vs. normal group. 

 

2.7. Effects of RLTS on Some Molecular Expressions Associated with Apoptosis 

To investigate the mechanisms of RLTS against APAP-induced liver damage, the apoptotic pathway 

was examined. As shown in Figure 6A–G, the protein expressions of Bax, p53 and AP-1, as well as 

Caspase-3 and -9 in APAP-treated group were strongly up-regulated by 3.65-, 2.08-, 3.59-, 2.05-, 

2.32-fold, while Bcl-2 and Bcl-xL were down-regulated by 2.85- and 2.19-fold, which were all 

significantly (p < 0.05) reversed by RLTS. In addition, as shown in Figure 7A–C, the levels of  

hepatic p-JNK, p-p38 and p-ERK were significantly increased by APAP, which were all significantly 

down- regulated by RLTS. 
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Figure 6. Effects of RLTS on the protein expressions of Bax (A), Bcl-2 (B), Bcl-xL (C), 

p53 (D), AP-1 (E), Caspase-3 (F), Caspase-9 (G). Values are expressed as mean ± SD  

(n = 4). * p < 0.05, ** p < 0.01 vs. model group; ## p < 0.01, # p < 0.05 vs. normal group. 

 

2.8. Effects of RLTS on Some Molecular Expressions in Autophagic Pathway 

As shown in Figure 7D–F, the levels of LC3, Beclin-1 and Atg5 were all increased in the 

APAP-treated group with no significant differences (p > 0.05) compared with the control group. 

However, RLTS further up-regulated their expressions. 
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Figure 7. Effects of RLTS on the protein expressions of p-JNK (A), p-p38 (B), p-ERK (C), 

LC3 (D), Beclin-1 (E) and Atg5 (F). Values are expressed as mean ± SD (n = 4).  

* p < 0.05, ** p < 0.01 vs. model group; ## p < 0.01, # p < 0.05 vs. normal group. 

 

2.9. Discussion 

APAP overdoses can cause severe liver toxicity [27]. In the present study, RLTS pretreatment 

significantly lowered the levels of AST and ALT and reduced inflammatory cell infiltration, which 

meant that RLTS showed significant activity against APAP-induced liver injury. 

APAP-induced hepatotoxicity is a complex biological process [28,29]. In the present paper, RLTS 

significantly improved the levels of GSH, SOD, CAT and GSH-Px, and decreased MDA level, which 

indicated that the protective effect of RLTS against APAP-induced liver injury may be associated with 

its antioxidant capacity. NO, a highly reactive oxidant and generated by iNOS, has been considered to be 

one of the crucial mediator in APAP-induced liver injury [11]. In our work, RLTS inhibited the levels of 

NO and iNOS, which should be related with the protective effect of RLTS against APAP-induced  

liver damage. 

It has been demonstrated that APAP-induced hepatotoxicity can be modulated by chemicals through 

affecting P450 activity [30]. CYP2E1 is the primary enzyme for APAP bio-activation and its activity  

is increased following APAP treatment [2]. In the present work, the expression of CYP2E1 was 

suppressed by RLTS, which suggested that the protective effect of RLTS against APAP-induced liver 

injury may be through affecting APAP bio-activation. 

Previous study has demonstrated that inflammatory reactions are associated with APAP-induced 

liver injury [31]. Some pro-inflammatory mediators including TNF-α, IL-1β and IL-6 are potentially 

harmful because of their uncontrolled and prolonged actions [32], which can be modulated by the 
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activations of NF-κB and HMGB-1 [33,34]. In addition, COX-2, another pro-inflammatory mediator, 

can produce eicosanoids and cause cellular inflammation and necrosis [35]. Our study revealed that 

administration of RLTS markedly reduced the expressions of TNF-α, IL-1β, IL-4, IL-6, iNOS, 

HMGB-1, COX-2 and NF-κB. Furthermore, IL-10 with anti-inflammatory and immunomodulatory 

effects can attenuate the activation of TNF-α-induced NF-κB pathway [36,37]. Our results showed that 

APAP increased the expression of IL-10 in the model group, and RLTS further increased its expression. 

These results indicated that the effects of RLTS against APAP-induced liver injury may be through 

suppression of inflammation. 

Although the pattern of APAP-induced cell death has been generally believed, some evidences have 

demonstrated that apoptosis may play a major role in the process [38,39]. In the present paper, TUNEL 

assay and the expressions of some related proteins associated with the effects of RLTS against apoptosis 

induced by APAP were studied. Cytochrome C is one pro-apoptotic protein [28], and the leakage  

of it into cytosol in APAP-treated mice has been found [9]. The release of cytochrome C means the 

apoptosis [40]. Moreover, AP-1, a crucial transcription factor, can promote hepatocyte apoptosis 

through cytochrome C release and caspase-3 activation [33]. Bcl-2 and Bcl-xL can be as the antioxidants 

and exert anti-apoptotic activities [38], whereas Bax can exhibit conformational change under apoptotic 

process [41]. p53 can reduce the expression of Bcl-2 and up-regulate the expression of Bax to complete 

the promotion of apoptosis [42]. In the present paper, the leakage of cytochrome C and the expressions 

of caspase-3, -9 and AP-1 were attenuated by RLTS, and the extract up-regulated the expressions of 

Bcl-2, Bcl-xL, and down-regulated the expressions of Bax, p53. These findings suggested that the action 

of the extract against APAP-induced liver injury may be through protection of apoptosis. 

The MAP kinase family plays important roles in regulation of cell proliferation and cell death [43]. It 

has been confirmed that oxidative stress derived from APAP bioactivation can directly activate JNK 

pathway, and phosphorylated JNK can block the anti-apoptotic function of Bcl-2 family [5]. Similarly, 

phosphorylations of p38 and ERK are responsible for shifting the balance of the proapoptotic and 

antiapoptotic members of Bcl-2 family proteins, which may alter mitochondrial membrane 

permeabilization and finally cause cytochrome C release [44]. In the study, RLTS down-regulated the 

phosphorylation levels of JNK, p38 and ERK, which indicated that the action of the extract against 

APAP-induced liver injury may be through affecting MAPK signal pathway. 

Apart from apoptotic and necrotic cell death, autophagy is an evolutionarily conserved pathway that 

involves the sequestration and delivery of cytoplasmic material to lysosome [45], which can play 

protective roles in some diseases [46]. LC3, one microtubule-associated protein, has been used as one 

marker for the mammalian autophagosome [46]. In the elongation/enclosure step of autophagosome 

formation, Atg5 and Atg16 can form the Atg12-Atg5-Atg16 complex [47]. Furthermore, Beclin-1 

interacted with the anti-apoptotic members of Bcl-2 and Bcl-xL can activate autophagy [48]. In the 

present study, the increased levels of Beclin-1, Atg5 and LC3 induced by APAP were all further 

up-regulated by RLTS, which suggested that the autophagy activated by RLTS may be beneficial to 

prevent APAP-induced liver damage. 
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3. Experimental 

3.1. Plant Material and Preparation of RLTS 

Rose laevigata Michx fruit was obtained from Yun-nan Qiancaoyuan Pharmaceutical Company Co. 

Ltd. (Kunming, China) and authenticated by Dr. Yunpeng Diao (College of Pharmacy, Dalian Medical 

University, Dalian, China). A voucher specimen (DLMU, JYZ-2012080426) was deposited in the 

Herbarium of College of Pharmacy, Dalian Medical University (Dalian, China). Total saponins from  

R. laevigata Michx fruit (RLTS) was prepared and the content of saponin in the crude extract was 

determined [49]. 

3.2. Chemical and Reagents 

APAP with the purity of >98% was obtained from HEOWNS (Tianjin, China). Silymarin was 

purchased from Sigma Chemical Company (Milan, Italy). Detection kits including AST, ALT, CAT, 

SOD, GSH, GSH-Px, MDA, NO and iNOS were all supplied by Nanjing Jiancheng Institute of 

Biotechnology (Nanjing, China). Tissue Protein Extraction Kit was produced by KeyGEN Biotech. 

Co., Ltd. (Nanjing, China). Enhanced Bicinchoninic Acid (BCA) Protein Assay Kit was purchased from 

Beyotime Institute of Biotechnology (Haimen, China). Tris, SDS and 4',6'-Diamidino-2-phenylindole 

(DAPI) were obtained from Sigma (St. Louis, MO, USA). Hematoxylin, Histostain-TM-Plus Kit and 

3',3'-diaminobenzidine tetrahydrochloride (DAB) Substrate Kit were provided by Zhongshan Golden 

Bridge Biotechnology (Beijing, China). In Situ Cell Death Detection Kit, POD was supplied by Roche 

Diagnostics (Roche Diagnostics Gmbh, Mannheim, Germany). Tetramethylrhodamine methyl ester 

(TMRM) was purchased from Life Technologies (Eugene, OR, USA). RNAiso Plus, PrimeScript® RT 

reagent Kit with gDNA Eraser (Perfect Real Time) and SYBR® Premix Ex Taq™ II (Tli RNaseH Plus) 

were purchased from TaKaRa Biotechnology Co., Ltd. (Dalian, China). Antibody against CYP2E1 was 

provided by US Biologicals (Swampscott, MA, USA). The antibodies against p38, p-p38, ERK, p-ERK, 

JNK and p-JNK were supplied by Bioworld Technology (Louis Park, MN, USA). Other primary 

antibodies and horseradish peroxidase-conjugated goat anti-rabbit IgG, and horseradish 

peroxidase-conjugated goat anti-mouse IgG antibodies were all provided by Proteintech Group 

(Chicago, IL, USA) and Boster Biological Technology (Wuhan, China). TRITC-conjugated goat 

anti-rabbit IgG was purchased from Zhongshan Golden Bridge Biotechnology (Beijing, China). 

3.3. Animals 

Male Kunming mice (18–22 g) were provided by the Experimental Animal Center of Dalian Medical 

University, Dalian, China (Quality certificate number: SCXK (Liao) 2008–0002). The mice were 

housed in a climate-controlled room with relative humidity (60% ± 5%), temperature (21 ± 3 °C), 12 h 

light-dark cycle. They were fed with commercial pelleted feed from Xietong Organism Institute 

(Nanjing, China) and water ad libitum. The animals were acclimatized at least one week prior to 

experiments and treated in accordance with the guidelines recommended by China National Institutes of 

Healthy Guidelines for the Care and Use of Laboratory Animals. 
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3.4. Experimental Design 

The animals were randomly divided into seven groups (n = 10). Group I (RLTS control, 300 mg/kg), 

Group II (normal control group), Group III (model group), Groups IV-VI (RLTS-treated groups) and 

Group VII (positive control group). Groups IV, V and VI were administrated RLTS at the doses of 100, 

200 and 300 mg/kg suspended in 0.5% carboxymethylcellulose sodium (CMC-Na) and Group VII was 

given 200 mg/kg of silymarin once daily for 7 consecutive days, respectively. Two hour after  

final administration, the mice in Groups III-VII were injected intraperitoneally with acetaminophen  

(400 mg/kg), while the mice in Groups I and II received only appropriate vehicle. The animals were 

anesthetized for collecting the blood and sacrificed to obtain the livers after 24 h acetaminophen 

challenge followed by fasting. The fresh liver was weighed to count the relative liver weight (relative 

liver weight (%) = liver weight/body weight × 100). A portion of liver was cut and fixed in 10% formalin 

and the remaining parts were immediately stored at −80 °C. 

3.5. Serum Biochemistry 

The activities of ALT and AST in serum were evaluated by detection kits according to the 

manufacturer’s instructions. 

3.6. Histopathological Examination 

After fixing in 10% neutral formalin solution, the tissues were dehydrated with a sequence of ethanol 

solutions, embedded in paraffin wax and cut at 5 μm thickness, stained with haematoxylin and eosin 

(H&E stain) and then observed for morphological evaluation under a light microscope (Leica 

DM4000B, Solms, Germany). 

3.7. Determinating the Levels of Antioxidant Markers in Liver Tissue 

The liver tissues were homogenized in cold Tris-HCl to make 1:9 (w/v) homogenates. The homogenate 

was centrifuged (2500 g for 10 min at 4 °C) and the supernatants were collected. The levels of SOD, 

CAT, GSH, GSH-Px, NO and iNOS were detected according to the instructions of the kits. 

3.8. Assay for Lipid Peroxidation Product 

The lipid peroxidation was estimated by MDA level, which was determined under the  

manufacturer’s instruction. 

3.9. DAPI Staining 

Morphological assessment of nuclei was performed with DAPI staining as described previously [50]. 

Briefly, the paraffin sections were deparaffinized with xylene and rehydrated with different 

concentrations of alcohol. Then, the slices were incubated with 1 μg/mL DAPI for 8 min, washed with 

PBS and examined by fluorescence microscopy (Olympus BX63, Tokyo, Japan). 
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3.10. TUNEL Assay 

TUNEL assay was carried out with paraffin-embedded slices from control, model and RLTS-treated 

(300 mg/kg) groups using a commercial kit according to the manufacturer’s instructions. Briefly, the 

dewaxed course was treated as described above. After incubation with Proteinase K for 8 min, the green 

fluorescein labeled dUTP solution was added on the surface of sections and incubated at 37 °C for 1 h. 

Then the slides were washed and photographed using fluorescence microscopy. Total of 50 μL 

converter-POD was added on the tissues for the reaction at 37 °C for 30 min. Then the samples were 

spotted with DAB fluid and hematoxylin. Images were obtained by using fluorescence microscopy 

(Olympus BX63) and inverted digital imaging light microscopy (Leica DM4000B). TUNEL positive 

areas showed green fluorescence or brown staining, and the damage degree of DNA was identified by 

the mean number of positive cells. 

3.11. Transmission Electron Microscopy (TEM) Assay 

Fresh liver tissues from control, model and RLTS (300 mg/kg) groups were perfused with 2% 

glutaraldehyde overnight at 4 °C. The samples were treated as the previous description [28], and the 

ultramicrotomies were observed and imaged by using an electron microscope (JEM-2000EX, JEOL, 

Sagamihara, Japan). 

3.12. Determination of Mitochondria Membrane Potential (ΔΨm) 

Mitochondria were isolated from liver tissue according to the manufacturer’s instruction. Briefly, 

total of 100 mg liver tissue was gained from the mice in control, model and RLTS (300 mg/kg) groups. 

Then the tissue was made into 10% homogenate with separating reagent A and centrifuged at 600 g  

for 5 min at 4 °C to generate the supernatants. After that, the supernatants were centrifuged at  

11,000 g for 10 min at 4 °C, and the sediment (mitochondria) was obtained. After incubation with 

tetramethylrhodamine methylester (TMRM) in dark for 30 min at 37 °C, the mitochondrial membrane 

potential was detected by the red fluorescence and photographed by using a fluorescence microscope 

(Olympus BX63). 

3.13. Immunofluorescence and Immunohistochemical Assays for CYP2E1 and Cytochrome C 

The liver sections were deparaffinized and rehydrated as described above, and then treated  

with 0.01 mol/L citrate (pH = 6.0) in a microwave oven for 15 min. Thereafter, 3% hydrogen peroxide 

(H2O2) was used to block endogenous peroxidase activity for 10 min and normal goat serum was used to 

block nonspecific protein binding for 20 min. Then, the slices were incubated at 4 °C overnight with the 

rabbit anti-CYP2E1 antibody (1:100, dilution) or rabbit anti-cytochrome C antibody (1:100 dilution), 

followed by incubation with TRITC-conjugated goat anti-rabbit IgG for 30 min, or biotinylated goat 

anti-rabbit IgG and horseradish peroxidase-conjugated streptavidin for 15 min. The images were 

obtained by a light microscope (Nikon Eclipse TE2000-U, NIKON, Tokyo, Japan). 
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3.14. Quantitative Real-time PCR 

Total RNA was isolated from liver tissues with RNAiso Plus reagent, then total RNA was  

reverse-transcribed into cDNA by using PrimeScript® RT reagent Kit with a TC-512 PCR system 

(TECH-NE, Stone, UK). Thereafter, the aliquots of cDNAs were amplified using specific primers. The 

sequences of the primers were as follows: GAPDH: forward, 5'-TGTGTCCGTCGTGGATCTGA-3', 

reverse, 5'-TTGCTGTTGAAGTCGCAGGAG-3', (NM_008084.2); IL-1β: forward, 5'-TCCAGGAT 

GAGGACATGAGCAC-3', reverse, 5'-GAACGTCACACACCAGCAGGTTA-3', (NM_008361.3); 

IL-4: forward, 5'-ACGGAGATGGATGTGCCAAAC-3', reverse, 5'-AGCACCTTGGAAGCCCTA 

CAGA-3', (NM_021283.2); IL-6: forward, 5'-CCACTTCACAAGTCGGAGGCTTA-3', reverse, 

5'-CCAGTTTGGTAGCATCCATCATTTC-3', (NM_031168.1); IL-10: forward, 5'-GCCAGAGCC 

ACATGCTCC -TA-3', reverse, 5'-GATAAGGCTTGGCAACCCAAGTAA-3', (NM_010548.2). The 

levels of mRNA expressions were assessed by real-time PCR with SYBR® Premix Ex Taq™ II (Tli 

RNaseH Plus) and 7500 Real Time PCR System (Applied Biosystems, Carlsbad, CA, USA). A 

no-template control was analyzed in parallel for each gene, and GAPDH gene was amplified as a 

housekeeping gene. At last, the unknown template was calculated through the standard curve for 

quantitative analysis. 

3.15. Western Blotting Assay 

Total protein was isolated using the tissue protein extraction kit based on the manufacturer’s 

instruction and the content of protein was determined. An aliquot of the supernatant was separated by 

electrophoresis with SDS-PAGE gel and transferred to a PVDF membrane (Millipore, Billerica, MA, 

USA). After blocking in 5% dried skim milk for 3 h, the membrane was individually incubated overnight 

at 4 °C with primary antibodies including rabbit anti-TNF-α (1:400), rabbit anti-iNOS (1:500), rabbit 

anti-HMGB-1 (1:500), rabbit anti-COX-2 (1:1000), anti-NF-κB (1:700), rabbit anti-Bax (1:700), rabbit 

anti-Bcl-2 (1:700), rabbit anti-Bcl-xL (1:500), rabbit anti-p53 (1:500), rabbit anti-AP-1 (1:1000), rabbit 

anti-Caspase-3 (1:200), rabbit anti-Caspase-9 (1:200), rabbit anti-p-JNK (1:500), rabbit anti-JNK 

(1:500), rabbit anti-p-p38 (1:500), rabbit anti-p38 (1:500), rabbit anti-p-ERK (1:500), rabbit anti-ERK 

(1:500), rabbit anti-LC3 (1:1000), rabbit anti-beclin-1 (1:1000), rabbit anti-Atg5 (1:500), mouse anti- 

GAPDH (1:1000). Then the blots were incubated with secondary antibodies either the goat anti-rabbit 

(1:1000 dilution) or the goat anti-mouse (1:2000 dilution) IgG-horseradish peroxidase-conjugated for 3 h 

at room temperature. Detection was performed by using an enhanced chemiluminescence (ECL) method 

and photographed by Bio-Spectrum Gel Imaging System (UVP, Upland, CA, USA). To remove the 

variations due to protein quantity and quality, the data were revised to GAPDH expression (IOD of 

objective protein versus IOD of GAPDH protein). 

3.16. Statistical Analysis 

Data were analyzed by using the SPSS software 17.0. Differences between the groups were 

performed by one-way ANOVA and Tukey post hoc tests, using p < 0.05 and p < 0.01 as the level of 

significance. Values were expressed as mean ± standard deviation (SD). 
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4. Conclusions 

In summary, the present study suggests that total saponins from Rosa laevigata Michx fruit shows a 

significant protective effect against APAP-induced liver damage in mice via induction of autophagy, 

and suppression of inflammation and apoptosis. However, further studies should be carried out to 

investigate in depth the mechanisms, drug targets and the active compounds of the crude extract useful 

for treatment of liver injury. 
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