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Abstract: This work advances the modeling of bondonic effects on graphenic and 

honeycomb structures, with an original two-fold generalization: (i) by employing the fourth 

order path integral bondonic formalism in considering the high order derivatives of the 

Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb 

defective structures starting from graphene, the carbon-based reference case, and then 

generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the 

fermionic two-degenerate statistical states function in terms of electronegativity. The 

honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric 

dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these 

defective nanoribbons the bondonic formalism foresees a specific phase-transition whose 

critical behavior shows typical bondonic fast critical time and bonding energies. The 

quantum transition of the ideal-to-defect structural transformations is fully described by 

computing the caloric capacities for nanostructures triggered by η-sized topological 

isomerisations. Present model may be easily applied to hetero-combinations of Group-IV 

elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn. 

Keywords: bondons; electronegativity; graphene; silicene; germanene; phase transition; 

4th order quantum propagator 
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1. Introduction 

With the irresistible rise of graphene, great attention has been paid by the scientific community to 

the spectacular properties of this carbon monolayer, the “Nobel prized” new carbon allotrope which ‒ a 

decade after its discovery in 2004 [1]—still promises innovative technological solutions for many 

issues in physics and nanotechnology, but clearly, the real breakthrough discovery initiating the  

golden-age of graphene is still missing [2]. This remains an unachieved goal, a severe scientific 

challenge that pushes experimentalists worldwide to solve the barriers, both technological and cost-

wise, which hinder mass-applications of this one-atom-thick fabric of carbon with its “extreme” 

mechanical and electronic features. The risk of a frustrating record with no application results for 

grapheme is the same fate which (somehow unexpectedly) prevented so far any practical Cn fullerene 

applications, has been recently denied by the most authoritative review on the subject [3], waiting for a 

“manufacturing” turning-point; these authors in fact repute the fact that graphene will eventually 

become attractive for industrial applications providing that “mass-produced graphene will guarantee 

the same performances as the best samples obtained in research laboratories”. 

From a general perspective, ten years of investigations on graphenic honeycomb lattices point out 

the scientific relevance of monolayer materials like hexagonal BN, MoS2 and others, whose 2D 

crystals present a rich diversity of physico-chemical properties that can be further specialized by 

combining variable stacks of heterostructures (often called van der Waals heterostructures due to the 

presence of van der Waals-like forces gluing the layers together [4] as in normal graphite crystals) with 

applications, for example, in vertical tunneling transistors [5]. It is however commonly accepted [3] 

that at least for microprocessors, graphene-based logic elements will replace the silicon technology 

only after 2025, the main physical limit being so far represented by the reduced value of the induced 

bandgap in graphene still limited to 360 meV with a reduction of performances of a factor 103 if 

compared to current silicon devices. This impasse is one of the main reasons focusing research today 

on a movement from carbon-based toward silicon-based hexagonal systems in microelectronics. 

The natural candidate for such a class of material is silicene, the honeycomb monolayer theoretically 

introduced as the all-silicon version of graphene [6,7], which has been synthesized by chemical 

exfoliation of calcium disilicide resulting in silicon 2D nanosheets of 0.37 nm thickness [8] or, more 

recently, by epitaxial growth on metallic surfaces. Topologically, silicene, Si-NR and graphene share 

the same kind of hexagonal mesh made of 3-connected atoms, the main distinguishing character being 

for silicene the structural distortion (see the next section). The topology of the honeycomb lattices 

allows the creation of isomeric defects consisting in a double pair of 5|7 rings, the so-called  

Stone-Wales rotation or SW topological defect, an important structural change which modifies the 

band configurations for such low-dimensional systems. In fact, sparse SW rotations immediately open 

a band gap of 0.1 eV in silicene fragments. 

In this context therefore a comprehensive treatment of the electron behavior in nanostructures made 

of Group-IV elements is highly necessary and represents in fact the main scope of this work. Our 

original approach is based on the properties of the bondon, the recently introduced quasi-particle 

arising from the Bohmian quantum description of the matter [9–16] which is the expression of the 

quantization of the chemical bond by bosonation of the electronic-pairs [11,15]. High order path 

integral formalism and topological potentials are also used here as basic theoretical tools (see Section 3). 
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The main outcome of the current study consists in the original prediction of a specific phase transition 

induced by the bondonic movements in a 1D honeycomb system rearranged by SW topological 

defects; the method clearly discriminates various chemical nanostructures, e.g., graphenic (C-based), 

silicenic (Si-based), germanenic (Ge-based) and stannenic (Sn-based) nanoribbons, by using the 

appropriate electronegativity functions. Future experimental and theoretical works will assess the 

general validity of the reported theoretical conclusions, allowing a deeper description of the bondonic 

chemistry of Group-IV elements at the nanoscale. 

2. Structure and Topology of Honeycomb Nanoribbons 

In this section the main characteristics of 1D nanoribbons made of Group-IV elements are briefly 

presented. Like graphene, these systems exhibit the genuine honeycomb structure given in Figure 1a. 

For silicene in particular, deposition techniques under ultra-high vacuum conditions on silver (110) 

plane guide the production [17] of one-atom-thick metallic Si nanowires (or silicon nanoribbons Si-NR). 

Metallic Si-NR are suitable for being promoted to n or p-type semiconductors by chemical doping. 

Figure 1. (a) The honeycomb mesh characterizing the 1D nanoribbons with the two 

independent atoms and the two unit cell vectors which, by translation, cover the entire 

structure; (b) side view of the lattice and (c) of the buckling structural parameter δ spacing 

silicene hexagonal sublattices A and B; the Si-Si bond distance is also depicted; in silicene 

typical distortion parameter is δ = 0.44 Ȧ with d(Si-Si) = 2.25 Ȧ; (d) The 5|7|7|5 Stone-Wales 

rotation seen in the direct and dual representation in the nanoribbon honeycomb mesh;  

(e) view of the SW defect in the mesh (a), pentagonal (heptagonal) rings are in red (green). 
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Such extended Si nanoribbons are built by the action of the two-components 2p quantum levels, 

corresponding to the electronic contributions coming from the two distinct silicon atomic sites. 

Experimental and theoretical investigations by scanning tunneling microscopy (STM) and ab initio 

calculations based on density functional theory (DFT) [18,19] state that silicene 1D stripes grow on the 

silver substrate with a length exceeding 100 nm and with 1.6 nm “magic” width. Si nanowires are 

moreover able to reach a “self-organized”, regular coverage on the substrate surface with a spacing of 

about 2 nm [19]. These important structural results have been consecrated [20] by the same team of 

researchers who succeeded in the epitaxial formation of silicene 2D sheets on a silver (111) substrate. 

By mean of scanning tunneling microscopy and angular-resolved photoemission spectroscopy 

measures, in conjunction with DFT simulations, the study ultimately confirms the silicene buckled 

honeycomb arrangement (Figure 1b). The buckling distortion δ (Figure 1c) moves the system out from 

perfect (graphene) planarity. Such a chair-like puckering of the Si 6-rings corresponds to a buckling 

parameter of δ = 0.44 Ȧ with a bond length of d(Si-Si) = 2.25 Ȧ [21] whereas in graphene the  

inter-atomic distance is d(C-C) = 1.42 Ȧ. 

The chemical stability of buckled honeycomb structures is substantially granted by the “puckering 

induced” dehybridization-effect which allows pz orbitals, oriented normally to the layer, making linear 

combinations with the s orbitals, forming π bonding and hence π and π* bands, similarly to graphene 

case. Comparative values for the based on the modified Harrison bond orbital method are reported in [22] 

resulting in an atomic binding energy of Eatom = 13.5 eV and Eatom = 7.1 eV for graphene and silicene 

respectively. It is worth noticing that, from the structural point of view, the two independent atoms that 

constitute the graphene unit cell generate in silicene the two distinct sublattices A and B, laying in two 

δ-spaced parallel planes (Figure 1b) [23]. 

Topological mechanisms enrich the physico-chemical features of the honeycomb lattices by 

creating isomeric transformations, respecting both the number of atoms and the number of bonds. Such 

a particular one-bond rotation, the so-called Stone-Wales (SW) rotation or SW topological defect, 

transforms four hexagons in a double pair of 5|7 rings (Figure 1d), changing the band configurations of 

the honeycomb mesh. According to recent Monte-Carlo simulations on the subject [24], this mechanism 

alters the long-range planarity of the graphenic layer over regions with the size of many nanometers, 

reaching large out-of-plane deformations δ ≈ 1.7 Ȧ. These buckled SW transformations may have 

therefore a possible role during fullerene and nanotube formation. Figure 1e shows the characteristic 

heptagon-pentagon double pair appearing in the hexagonal network after a SW rotation. The generation 

of SW defects solely depends from the 3-connectivity of the lattice atoms. SW-compatible patterns 

reflect the properties of the topological adjacency matrix of the system. Typical values for the energy 

barrier Eb opposing such a SW rotation in graphene [24] and Ag(111)-grown silicene [25] are  

Eb ≈ 5 eV and Eb ≈ 2.8 eV, respectively. This large difference reflects the basic structural fact that 

silicene has a larger inter-atomic distance compared to graphitic layers, so an easier formation of 

topological defects in silicene may be expected, maintaining however a peculiar stability even at  

high temperatures. 

Remarkably, silicene and Si-NR exhibit, like graphene, massless relativistic Dirac fermions arising, 

for the nanoribbons case from the 1D projection of π and π* Dirac cones [26]. Moreover (see the 

relevant summary [27] and related references), the 1D topology which characterizes the metallic Si-NR 

structures favors the electrons interactions according with the Luttinger liquid model which implies the 
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emergence of bosonic quasi particles effects coexisting with the Dirac fermionic characters expected  

for 2D silicene. On top of this, superconducting phenomena may be also expected for 1D silicene 

stripes matching similar effects measured at 8 K in hexagonal metallic silicon, possibly with an 

augmented Tc [26]. Van der Waals lattices of Group-IV elements made of germanenic (Ge-based) and 

stannenic (Sn-based) layers present analogous structural and topological features. 

3. The Computational Method 

The electronic properties of 1D nanoribbons are discussed here by considering the recent concept of 

bondon, the new bosonic quasi-particle arising from the Bohmian quantum picture applied to the 

quantization of the chemical bond [9–16] having the quantized proper mass: 

2

2 1

2 BondBond
B XE

M
=  (1) 

In Equation (1) the energy and the proper length of action obey to the Heisenberg analogous 

relationship [9]: 

amolkcalEAX bond

o

Bond =× ]/[][ , 019,182=a  (2) 

This description of the chemical bonding has been recently applied to extended nanostructures (i.e., 

for graphenic fragments sized in the range 15–30 Ȧ) with phase transformations [16]. Other applications 

includes the description of the optical and acoustic branches through the bondon-phonon interaction, 

the bondonic identification in the IR and Raman spectra of chemical compounds, as a measure of their 

reactivity or toxicity in bio-, eco- and pharmaco-logical cellular systems [28]. We describe in the 

following the phase transitions induced by the bondonic propagators till the 4th order (the maximum 

bond order in chemical systems) in Group-IV elemental defective nanoribbons. 
One considers a particle (the bondon) with mass M moving between the space-points ax  and bx  

under the potential ( )xV  to be further identified with the molecular net topological potential. The 

associate quantum evolution may be described by semiclassical propagator obeying the Schrödinger 

1D equation, with the path integral solution being found in semiclassical expansion up to fourth (IV) 

order to look like (see Appendix 1) and [29,30]: 
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In terms of the classical path dependence connecting the end-points ( ) 2/ba xxx +=  as well as on 

the path difference ab xxx −=Δ ; here and throughout the whole paper β  represents the inverse of the 

thermal energy TkB  and   the reduced Planck constant. With Equation (3) one can form the partition 

function for the periodical quantum orbits by considering close integration over the classical or 

average path: 
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However, Equation (4) can be further simplified by using the Gauss theorem (see Appendix 2)  

to yield: 
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At this point one implements the bondonic information regarding the mass quantification in the 

valence state (the first or “ground” state of the bonding spectra) in terms of bonding energy and length 

of Equation (1), BMM → , thus turning Equation (5) into the actual bonding related one: 
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Now, facing the superior potential first, second, and fourth order derivatives, they can be 

systematically treated by replacing them with associate topological invariants and higher orders over 

the concerned bonds, networks or lattices, i.e.,: 

( ) ]0[Ξ=Ξ→xV , ( ) ]1[Ξ→∇ xV , ( ) ]2[2 Ξ→∇ xV , ( ) ]4[4 Ξ→∇ xV    (7) 

Nevertheless, attention should be paid at this passage from physical to topological quantities  

since it actually replaces electronic interactions with topology-based interactions, being therefore 

restricted to those topological invariants bearing an energetic meaning, as is the case with the Wiener 

index, for instance. 
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Next, one should fix the energy-length realm of the bondon in the 0th order of the partition function 

which renders the classical observability by the involved thermal length, here mapped into the 

topological space and energy so defining the bondonic unitary cell of action [16]; to this aim, one 

firstly runs the 0th partition function: 
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Then, Equation (8) is used for internal energy computing of the bondon as the average energy 

condensed in the network responsible for bonding at periodical-range action: 
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It immediately fixes the long-range length of periodic action of bondon by recalling Equation (2): 
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Remarkably, when the asymptotic limits are considered for both periodic energy and length of bondon, 

one sees that they naturally appear associated with the topological potential and with the Coulombian 

interaction for the low-temperature case, while rising and localizing the bonding information (like the 

delta-Dirac signal) for the high-temperature range, respectively, being the last case an observational 

manifestation of bondonic chemistry. This feature will be used in a moment below. 

Returning to the full partition function now the bondonic periodicity information on length and 

energy action maybe included to rewrite Equation (6) to the actual form: 
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However, for workable measures of macroscopic observables, one employs the partition function of 

Equation (11) to compute the canonical associated partition function according with the custom 

statistical rule assuming the N-periodic cells in the network: 
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with the help of Equation (12) one is provided with the canonical (macroscopic) internal energy 

contributed by N-bondons from the N periodic cells, through considering further thermal derivation: 
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Finally; by continuing the inverse thermal energy derivatives; the internal energy of bonding of 

Equation (13) may be employed also for estimating the allied caloric capacity: 
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(14)

The treatment of pristine (“0”)–to–defect (“D”) networks goes now by equating the  

respective formed caloric capacities from Equation (14) towards searching for the β-critic through the 

phase-transition equation: 

( ) ( )
DEFECTSDDDDCRITIC

IV
BIDEALCRITIC

IV
B CC ]4[]2[]1[]0[][]4[

0
]2[

0
]1[

0
]0[

0
][ ,,,,,,,, ΞΞΞΞ=ΞΞΞΞ ββ  (15) 

Now one may use the above mentioned high temperature regime, ( 0→β ), see Equations (9) and (10), 

in accordance with the present semiclassical approach, to find the critical phase-transition 

“temperature” to be: 
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(16) 

In the next section, this model will be applied to the study of the bondonic properties of graphenic 

(C-based), silicenic (Si-based), germanenic (Ge-based), and stannenic (Sn-based) nanoribbons with 

Stone-Wales defects. 

4. Results and Discussion 

4.1. Topological Wiener Polynomials 

Here we will progress on the investigations of SW defects in graphene and related layers, as silicene 

germanene, and stannene, by analyzing the propagation in the hexagonal nanoribbons of the 5|7 pairs 

according to the wave-like topological mechanism originally introduced in [31] and called  

Stone-Wales waves (SWw) along with the effect a drifting effect may have on the long-range 

electronic properties of such monolayers with the aid of bondonic path integral formalism, just 

explained in a formal way. 

Figure 2. Propagation of the Stone-Wales wave-like defect along the zig-zag direction 

caused by the insertion of pairs of hexagons at η = 1, corresponding to the SW defect 

generations step; the size of this dislocation dipole ranges from η = 0 (pristine lattice) to  

η = 5; pristine (rearranged) hexagons are in blue (and orange); pentagons and heptagons are 

in red and green, respectively. 
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The topological skeletons of the systems considered in the present article are basically represented 

by a mesh of fused hexagons entirely paving the nanoribbons (Figure 2); closed boundary periodic 

conditions are imposed to form nanotori of carbon or silicon. Present section introduces to the  

graph-theoretical methods used to describe the generation and the propagation of the Stone-Wales 

defects in such a kind of cubic lattices, i.e., planar structures made of 3-connected nodes. 

From the topological perspective, the key concepts applied in comparing graphene with silicone and 

related honey-comb networks’ properties are basically two: 

• First, the two 5|7 pentagon-heptagon units SW constituting the SW defect, also called  

5|7|7|5 dipole, are considered free to migrate in the hexagonal lattice by inserting η-1 pairs of 

hexagons 6|6. 

Such a structural modification reflects a universal topological property of the hexagonal meshes. In 

this way, extended linear defects are created, keeping the modified structures fully isomeric to the 

initial one (i.e., conserving number of atoms, rings and bonds). Figure 2 shows, from the graphical 

point of view, the iterative sequence of bond rotations producing the SW dislocation dipole 

5|7{6|6}η7|5 with size η also called SW wave (SWw) [31]. DFT computations [32] demonstrate that 

strain-induced local forces energetically favor the topological swap of two hexagons with the 

pentagon-heptagon pair; more details on topological dislocations are provided in the original paper on 

SWw [31]. Although SWw defective configurations are not yet investigated in Si-NR systems by mean 

of ab-initio methods, the introduction-mentioned Eb ≈ 2.8 eV low values featured by the energy-barrier 

for normal SW rotations in Si hexagonal layers (see reference [27]) encourage the search for that 

defect diffusion mechanism also in silicene.  

The second conceptual instrument used in the present analysis regards the physical-to-topological 

passage introduced by Equation (7): 

• The evolution of the nanoribbon defective structure is controlled by a pure topological 

potentials Ξ expressing the long-range, collective effects of the network on the network stability 

itself in terms of distance-based topological invariants computed on the nanoribbon chemical 

graph composed by n nodes. 

Equally important, topological potentials Ξ are subject to a minimization principle. In spite of this 

apparently simple statement, appropriate approximation demonstrates in several cases a substantial 

predictive power when the topological potentials Ξ are applied for studying the isomeric evolution of 

complex systems, like the SWw-surfed nanoribbons under present investigation. An overview, from 

“fullerene to graphene”, of topological modeling simulations is provided in [33], whereas article [16] 

presents the first investigation of the influence of the collective topological properties of honeycomb 

lattices over the collective bosonic behavior of sp2 electrons.  

It is worth remembering here the “basal properties of distance-based topological potentials“ making 

those mathematical object exceptionally suitable for determining delocalized bondonic properties:  

(i) physically, the topological potential Ξ considers by definition the collective long-range effects 

produced by the mutual interactions of all atoms pairs of the chemical system;  

(ii) numerically, Ξ features an easily-manageable polynomial behavior in term of the parameter 

expressing the size of the system (that parameter may be n or even η) with the leading coefficient 
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of the respective polynomial only depending from the dimensionality D of the system–see the 

recent review on topological modeling methods and results [33]. 

Actually, a practical introduction to lattice topological descriptors is provided by looking to the 

nanoribbon structure in Figure 2 as an hexagonal network with n atoms. While indicating with dij the 

ij-element of the n × n distance matrix D of the graph, the first important lattice descriptor is 

represented by the topological Wiener index W, e.g., the semi sum of the n2 entries of:  

W = ∑i>j dij with dij = 0 (17) 

The invariant Equation (17) provides a powerful rank of isomeric chemical graphs, privileging the 

most compact structures [33]; for this reason, the Wiener index is a natural choice for the role of 

chemical potential of the system, continuing Equation (7) here with the involvement of the energetic 

calibration slope (α): 

Ξ W=αW (18) 

Systems like graphene and, to some extent, the related ones, including silicene, that are rich in sp2 

electrons, are conveniently described by introducing an explicit term in the electronic potential energy 

to convey the effects of conjugation forces among the occupied states of the unfilled π-bands. As 

recently demonstrated in [34], that electronic conjugation term involves the lattice topology, being 

directly proportional to a combination of the Wiener index W Equation (17) and the order s corrections:  

W(s) = ∑i>j d
s
ij with dii = 0 (19) 

In case of large structures only the first terms s = 1,2,3,4… contribute significantly to the  

global energy, and proper scale factors γs have to be computed in the relative expression for the 

topological potential: 

Ξ W = ∑s γsW
(s) with s = 1,2,3,4… (20) 

Interested readers may find the formal derivation of Equation (19) contributions and related asymptotic 

properties in the original work [34]. For s = 1 (this is the case of large lattices) Equation (20) reduces 

to Equation (17) with γ1 being the energy scale factor one may interpolate by ab-initio results. 

Topological invariants Ξ are computed for the defective isomeric configurations illustrated in Figure 2. 

The nanoribbon building unit is made of n0=84 atoms constituting the colored rings. In order to avoid 

long-range self-interactions, topological potential are computed in a periodically closed supercell E 

built by (3 × 3) building units. Supercell E has therefore a grand-total of N = 756 nodes and B = 1,134 

chemical bonds (or graph edges), the B = 3n/2 relation being valid for other cubic graphs like the 

fullerene ones. At the center of that supercell, the n0 = 84 array will hosts the generation and the 

propagation of the η-sized Stone-Wales wave for η = 0,1,2,3,4,5 the η = 1 step corresponding to the 

generations of the standard SW defect 5|7|7|5. In Figure 2 the black-circled atoms mark the bonds 

rotated during the expansion of the SWw dislocation dipole. For the nanoribbon fragments of Figure 2, 

through employing the pristine-to-defective steps η = 0-5, the topological potentials need in Equation (7) 

are generated by the associate polynomials of Equations (21)–(24), respectively: 
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with the specialization for each defective nanoribbon-steps depicted in the Figure 2 and reported  

in Table 1. 

Table 1. Numerical values abstracted from topological potentials of Equations (21)–(24) 

then used to generate the interpolations polynomials of Equations (27)–(34) as a function 

of the η-step of the forming (η = 0,0.2,0.4,0.6,0.8,1) and propagation (η = 0,1,2,3,4,5) of 

the SWw dipole in the periodic nanoribbon supercell E of the of Figure 2, respectively,  

see text. 

η W[°] W[1] W[2] W[4] 

0 4,467,960 40,453,200 267,186,000 1,410,130,000 
0.2 4,466,600 40,424,600 266,868,000 1,407,660,000 
0.4 4,465,060 40,392,500 266,508,000 1,404,880,000 
0.6 4,463,470 40,359,500 266,134,000 1,402,000,000 
0.8 4,461,900 40,329,100 265,764,000 1,399,170,000 
1 4,460,420 40,305,200 265,416,000 1,396,500,000 
2 4,455,370 40,542,500 264,226,000 1,387,400,000 
3 4,453,620 42,849,300 263,807,000 1,384,160,000 
4 4,452,140 51,493,100 263,439,000 1,381,240,000 
5 4,450,930 74,805,700 263,132,000 1,378,770,000 

The supercell in Figure 2 shows two distinct topological regimes according to the selected 

topological potential. Considering Ξ W = αW as the potential energy of the system, see Equation (18) 

and Table 2, the generation and the propagation of the isomeric SWw dipole results in a topologically 

favored condition. The system evolves in such a way the Wiener index Equation (17) decreases with  

η = 1 by reducing the chemical distances in the graph in the 7-rings region. Only the W[1] presents an 

anomaly to this behavior as illustrated in Table 1, starting for the steps η = 4&5; this justifies the 

present fourth high order approach in order to properly describe complex topological electronic 

bonding features as well, within the frame of the bondonic formalism. Nevertheless, other terms in the 

topological potential, coming from W[2&4] descriptors, follow the W[0] behavior and they do not alter 
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therefore this compactness-driven propagation effect along the zig-zag edge of the nanoribbons; 

numerically, topological distances span the dij = 1,2,…,29,30 range in all the lattice configurations  

with N = 756 nodes whose central defective regions (having n0 = 84 atoms) are step-by-step 

reproduced in Figure 2. 

Table 2. Synopsis of the topo-reactive parameters for the defects instances (starting from 

pristine net at the step η = 0) from the SW propagations in Graphene sheet as described in 

Figure 2, namely: electronic, total, binding and parabolic energy–the last one computed 

upon Equations (25) and/or (26) with the total number of pi-electrons Nπ = 82 for the steps 

η = 0÷4 and Nπ = 84 for the last instant case η = 5, within the semi-empirical AM1 

framework [39], respectively; the bottom of the table reports the free intercept correlation 

slopes and the associate correlation factors for each set of structural energies respecting the 

topological defective Wiener potential values of Table 1, providing the actual hierarchy 

(bolded values) and the calibration recipe (bolded italic) then used to generate the working 

potential polynomials of Equations (27)–(34). 

Defect Step 
Instant 

Structure 

Electronic 

Energy (eV) 

Total  

Energy (eV) 

Binding Energy 

(eV) 

Parabolic 

Energy (eV) 

η = 0 

 

2858.69979 2595.306 7308.17 13,063.1207 

η = 1 

 

2425.90314 2409.47 7494.0069 102,344.109 

η = 2 

 

2641.35644 2410.023 7493.4534 100,091.3384 

η = 3 

 

90063.404 10331.43 −427.9522 6770.427006 

η = 4 

 

2428.23769 2408.129 7495.3472 102,353.338 

η = 5 

 

2484.84517 2468.133 7676.8912 107,394.1399 

Correlation Slope, 

α in Equation (18) 

)(]0[ ηW  0.00384593 0.000846 0.0013853 0.01614977 

)(]1[ ηW  0.00029961 7.01 × 10−5 0.000123 0.001488221 

)(]2[ ηW  6.4681 × 10−5 1.42 × 10−5 2.335 × 10−5 0.000271766 

)(]4[ ηW  1.2299 × 10−5 2.71 × 10−6 4.445 × 10−6 5.16926 × 10−5 

Correlation Factor 

R2 

)(]0[ ηW  0.21643315 0.622413 0.813889 0.727612957 

)(]1[ ηW  0.16519269 0.538169 0.8067669 0.777077187 

)(]2[ ηW  0.21568411 0.621567 0.8144879 0.725935217 

)(]4[ ηW  0.21522938 0.621048 0.8148337 0.724864925 
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4.2. Topo-Reactivity Wiener Polynomials 

The appropriate α values in Equation (18) are determined by a specific interpolation process that is 

described in the following. To model chemical reactivity, one considers various energetic quantities 

(such as the total energy, electronic energy or binding energy) alongside the celebrated parabolic form 

of the pi-energy [35,36] computed by mean of a polynomial combination of electronegativity and 

chemical hardness for frontier orbitals (such as HOMO-highest occupied molecular orbital and 

LUMO-lowest unoccupied molecular orbital) respecting the number of pi-electrons engaged in the 

molecular reactivity; as such it runs upon the Mulliken-type formula [37]: 

2

22
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ativityElectroneg
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
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(25) 

Equivalently, within the frozen core approximation or by Koopmans’ theorem [38], it is rewritable 

in terms of the ionization potential (IP) and electronic affinity (EA):  

2

42 πππ N
EAIP

N
EAIP

E
−++=  (26) 

Accordingly, Table 2 displays [39], respecting the defect-step evolution, the numerical values of 

these energies during the propagation of SWw defects in graphenic nanoribbons. The “best” free 

intercept correlation, as in Equation (18), with the corresponding series of Wiener topological indices 

of Table 1 is then computed for each energetic frameworks considered in Table 2, deriving the related 

correlation factor hierarchy. One notes that, in line with above observations, only the correlation output 

in the step η = 1 is systematically spurious in respect to the remaining correlation factors, most probably 

due to the dispersive effect present in the first order derivatives of the topological potential, the same 

dispersive effect being also present in the physical picture of dissipation phenomena [40].  

Also interesting, the parabolic based chemical reactivity analysis furnishes the second best results 

after the pure binding energy correlations; this behavior justifies both the pro and contra regarding its 

use in modern chemical reactivity theory, namely: 

• the pro-argument, largely advocated by Parr works in last decades of conceptual chemistry 

research with application in inorganic and organic reactivity alike [41–44], while being recently 

employed by present authors in “coloring” chemical topology with chemical reactivity 

electronic frontier information of atoms in molecules [45]; 

• the contra-argument, defended by late Szentpaly works on various inorganic systems [46], 

according which the parabolic description is slightly non-realistic neither for ground nor for 

valence state of atoms and molecules since actually not having the minimum of the parabola on 

the right realm of exchanged electrons in bonding or in ionization-affinity processed; this 

limitation was also conceptually discussed by one of the present authors in a recent paper 

advancing the cubic form of chemical reactivity as a better framework for conceptual treatment 

for electronic exchange as driven by electronegativity and chemical hardness, with an universal 

(and also Bohmian) value [47].  
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Therefore, although valuable, the parabolic reactivity calibration is also by this approach taken over 

by the cute binding energy for the correlation coefficients with topological potentials in Table 2, even 

at semi-empirical level — nevertheless in the line with the present semiclassical methodology. Once 

the correlation framework was established for according the topological with energetically passage of 

Equation (18) at its turn completing the recipe of Equation (7), one may further interpolate the creation 

and propagation of the SWw in the honey-comb nanoribbons of Figure 2 by employing the data of 

Table 1 and then appropriately calibrating the fifth order polynomials for the two cases, respectively:  

• the energetically calibrated topological potentials for the forming SW defect instance (still 

corresponding to the “0” structure) within [0-1] range of the η “steps”:  

54

32]0[
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• The polynomials for the topological potentials describing the SW waves still corresponding to 

the defective “D” structures) within [0-5] range of the η steps: 
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It is worth evidencing the advantage of this procedure which effectively allows an easy energetic 

calibration and a separate description of the 0-forming and D-propagating steps of the SWw defect by 

providing the associate polynomials that are: (i) energetically realistic and (ii) with “equal importance” 

despite the different information contained: see for instance the numeric form of the fourth order 

topological potential Equation (24) respecting those provided by Equations (30) and (34). This 

computationally-convenient method assures that higher order topological potentials will contribute in 

providing the bondonic related quantities of Equations (13), (14) and (16). 
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4.3. Bondonic Effects on Topological Defects in Group IV-Honeycomb Nanoribbons 

Nevertheless, all the present computational algorithms were implemented for graphenic structures, 

having the carbon atom as the basic motive; however they can be for further used in predicting similar 

properties also for similar atomic group like Si, Ge, Sn, through appropriate topological potential 

factorization depending on the displayed reactivity differences; since such differences are usually 

reflected in gap band or bonding distance differences, one may recall again the electronegativity as the 

atomic measure marking the passage from an atomic motive to another keeping the honeycomb structure. 

The influence of the lattice will be implemented by considering the (electronegativity dependant) 

function of the fermionic statistical type with 2-degeneracy of states spread over the graphenic type 

lattice–taken as a reference. Such a function accounts for the electronic pairing in chemical bonding is 

analytically taken as: 
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(35) 

Numerically, Equation (35) features the factorization with unity for C-C bonding, while departing 

to fractions from it when the Group A-IV of elements are considered as motives for honey-comb 

lattices with graphenic reference: Si-Si honey-comb bonding will carry statistically the Si atomic 

electronegativity χ(Si) = 4.68 [eV] in Equation (35) with X = Y = Si, and successively for Ge-Ge with 

χ(Ge) = 4.59 [eV], and Sn-Sn with χ(Sn) = 4.26 [eV] for the corresponding silicone as well as for 

similarly designed germanene and stannene nanoribbon structures. Note that atomic electronegativity 

were considered within the Mulliken type formulation of ionization potential and electronic affinity as 

in the first term of Equation (26); furthermore, their geometric mean was “measured” against the 

referential graphenic C-C chemical bonding, while their difference was normalized under exponential 

of Equation (35) to the so-called “universal” geometrical averaged form of Parr and Bartolotti, 

][1.5 eVG =χ , at its turn obtained within the electronegativity geometric equalization framework [48]. 

Note that the present approach may allow for further extension towards XY hetero-bonding arranged 

in honey-comb lattice in which cases the mixed combinations C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, and  

Ge-Sn are implemented following the same formalism. Yet, here we will be restricted to homo-bonding 

in nanoribbons only due to their specific van der Waals interaction.  

Going to have the final and most important part of discussion of the obtained bondonic observable 

properties through the present fourth order topological-potential formalism, they will be displayed 

through jointly implementing the short and medium (η = 0–7) to long (η = 0–10…50) range effect of 

the present interpolation-calibrated potentials Equations (27)–(34); in other words, although having 

obtained the working topological potentials over a finite “movie” of forming and propagating SW defects 

in Figure 2, by letting “free” the step argument η in the actual evaluated quantities of Equations (13), 

(14) and (16) one actually will explore how much the short range behavior will echo into the long 

range as well, or whether this echo will feature some distortions, peaks or valleys, equivalently with a 

predicted signal to be recorded on extended nanosystems of graphenic type. 

One starts with the topo-energetic Wiener potentials of Equations (27)–(34) with representations in 

Figure 3 noting that: 
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• The topological potentials modeling the forming (“0-to-1”) step of SWw are all monotonically 

descending, meaning their eventual release into defective structures; 

• The topological defective potentials have quite constant behavior over the entire computational 

η = 0-5 plateau, while recording quasi-critical rise for the potential “echo” spanning the long 

range behavior, meaning the rising of the defective potential barrier in fact (with more 

emphasize for the first order potential, as expected from previous discussion, see Table 1, for 

instance); this strongly suggest the real finite range for the defective SWw, i.e., the annihilation 

long-range stage that came after their creation on the short-range realm; 

• The D-to-0 difference shows some short range fluctuations for all potentials unless the first 

order one, yet ending into the D-potential definite rising barrier on the long range behavior; the 

difference for the first order potential displays such energetic barrier rise just from the short 

range, paralleling the defective “D” shape; 

• Concerning the C > Si > Ge > Sn potential (paralleling the electronegativity) hierarchy, one sees 

that the C-to-Si large energetic gap for pristine “0” structure is considerably attenuated for the 

“D” propagation of the SWw defect, manifested especially for second and 4th order, while the 

Si-to-Ge energetic curves almost coincides for these orders; even more, all Si, Ge, and Sn 

shapes are practically united under first order defective potential “D1”.  

Figure 3. The Wiener based topological potentials of Equations (27)–(34): from top to 

bottom in successive orders and from left to right for the forming (“0”) SW and for 

propagating (“D”) of the SW defects on the medium (η = 0–7) and long range (η = 0–10)  

range, respectively. 
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Figure 4. The critical (left column), forming (middle column) and transforming (right 

column) of SWw in Figure 2, as based on Equation (16) on the short (first upper row) and 

long range (second upper row), and of their respective differences. 

 

These topological potential features stay at the foreground for further undertaking of the remaining 

observable properties in a comparative analysis framework. As such, when analyzing the critical 

“temperature” through the inverse of the thermal energy of Equation (16) one actually gets information 

on the phase transition specific time (via the celebrated statistical-to quantum mechanics equivalence 

facilitated by the Wick rotation, βτβ ↔ ) for SW forming, propagating and disappearing through the 

isomeric nanoribbons of Figure 2, with the dynamic representations of the Figure 4: 

• The general feature for the β signals is that it is constantly for the short range in phase 

transition (critical curve) between forming (“0-to-1”) and transforming “D” of SW waves 

and along the predicted inverse C < Si < Ge < Sn signal (pulse) hierarchy; 

• The situation changes on the long range “echo” when the critical signal may be recorded 

closer to the defective than to the pristine structures, when one should record also a shrink 

signal pulses gap between the C-to-Si-to-Ge-to-Sn; 

• The differences between the critical-to-defective-to-pristine structures’ pulses shapes 

follows on a short range the generally recorded topological potential difference in that 

range, while noticing definite cupolas for the long range behavior–especially on the critical 
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regime, meaning that indeed the SWw echo is disappearing after about 50 isomeric 

topological transformation of the considered honey-comb nanosystem (see the right bottom 

line picture of Figure 4). 

It is worth noting that the β  signals of Figure 4, when measured in seconds, through the  

[kcal/mol]-to-[Hz] transformations [49] since the Equation (16) relationship with topological potentials 

expressed in [kcal/mol] surpass the current femtosecond limit (attainable only by synchrotron 

measurements); however, one can equally asses that these shorter times are specific to isomerisations 

or topological rearrangement processes; they are however no more “theoretical” having from the 

present study an associated scale and prediction algorithm. It is equally possible to imagine other 

nanosystems for which β  has higher and therefore shorter times of detection for topological isomers. 

Figure 5. The bondonic “length” for SWw in forming (left column), defective propagation 

(middle column) along their differences (right column) behavior: on short (upper row) and 

long (lower row) ranges, upon considering critical information of Equation (16) into 

Equation (10). 

 

Even more, these times are in fact the bondonic times for concerned lattices whose periodic radii of 

action is determined upon considering the β  information in the specific Equation (10) featuring the 

Figure 5 representations and the following characteristics: 

• The identical boning length for pristine and defective structures on the short range 

transformations (up to seven topological rearrangements paralleling the SW wave propagation 

into extended lattice); notably, the bondonic lengths are correctly shorter than the detected or 

previously estimated bonding length for C-C bond (in graphene) and elongated in Si-Si bond 

(in silicene), see the Introduction, since the bondonic agent nature, in assuring the bonding 

action for the basic atomic pairing in honey-comb nanoribbons.  

• The decrease of boning length and of the consequent action on the long range dynamics, 

paralleling the decreasing of the inter-elongation difference in bonding for C-to-Si-to-Ge-to-Sn; 

• The prediction on the bondonic longest “echo” in an extended lattice, limited to 50 transformations, 

or dipole extensions steps continuing the Figure 2; this information has a practical consequence 
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in predicting the longest nano-fragment still chemically stabilized by the bondonic “echo” by 

its long range action (sustained by its inner Bohmian nature, see reference [9]); 
• The D-to-0 bondonic length differences parallels those recorded for the critical-to-D one found 

for the β  signal in Figure 4, this way confirming the finite (non-zero nor infinite) physical 

length over which the phase transition from pristine to Stone-Wales topological isomer is 

taking place; it also offers an spatial alternative to temporal (quasi-inaccessible) scale of 

measuring and detecting the bondonic effects on topological transformations and isomeric 

rearrangements. 

Figure 6. Side-by-side canonical internal energies of bondons in honey-comb supercells of 

Figure 2, as computed with the fourth order formulation of Equation (13) side by side with 

the former second order formulation of reference [16], for pristine “0” (upper row), 

defective “D” (middle row) and their differences (lower row), respectively.  

 

Passing to the canonical measures one has in Figure 6 the representations of the sample total energy 

representations in “0” and “D” sates, and their behavioral difference, side by side for the actual fourth 

order algorithm with the previous second order restricted treatment, see reference [16]. Accordingly, 

the specificities can be listed as follows: 

• No shape differences other than the overall scales along a quasi invariant energy-gap between 

C-to-Si-to-Ge-to-Sn related lattices are recorded between the [II] and [IV] order path-integral 

bondonic formalisms, with natural higher energetic records for the later approach since more 

interaction/interconnection effects are included, for the internal energies of honeycomb lattice 

without and with topological defects as triggered on the short range as in Figure 2; 

• The previous situation changes for the long range SW dipole transformations, noticing the 

same type of energetic increase as for the forth order topological potential/barrier in Figure 3, 

together with quasi-unifying the C with Si-to-Ge-to-Sn behaviors (being the last three atomic 

based lattices quite unified in total bondonic energetic shape); the peculiar behavior is noted 

just to [II] order treatment and in the long range pristine super cell self-arranging, when the 

energy rising displays two plateaus as well as still a C respecting Si-to-Ge-to-Sn energetic gaps 
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for their honeycomb lattices; however, the energetic rising even for the so called pristine 

structures is in accordance with the bohemian quantum nature of the bondon which accounts 

for the self-arrangements of a quantum structure even when self-symmetric, being this in 

accordance with quantum vacuum energy which is non-zero due to the energy required for 

internal self-symmetry eventually broken in the spring isomerisations of space, here represented 

by the SW topological defects and of their (also finite) propagations. 

• The D-to-0 differences are nevertheless replicating the defective behavior for both the [II] and 

[IV] order analysis on the long range, while showcasing some different types of fluctuations 

and inversions along the C-to-Si-to-Ge-to-Sn honeycomb nanosystems for the short-range of 

SW dipole evolution;  

• with special reference to [IV] short range behavior one notes the the pristine “0” state is still 

present as an “echo” over the defective “D” state, due to its energetic dominance, that 

nevertheless has the contribution in replicating “the learning” mechanism of generating SW 

defects in between each short range steps as was the case in between η = 0 and η = 1; remarkably, 

this may have future exciting consequences in better understanding the cellular morphogenesis 

by “replicating the learning” machinery of the Stone-Wales transformation, found to be present 

also at the cell-life-cycle phenomenology, see [28].  

Going to the last but the most “observable” quantity which is the caloric capacity of Equation (14) 

within the present [IV] order path integral–bondonic approach, one has the results, and comparison 

with the previous [II] order formalism of reference [16], exposed in Figure 7, with the notable 

characteristics that follow: 

• from the scale values, one obtains actual quite impressive accordance with the previously 

calculated or predicted values for the graphene and silicone networks: take for instance just the 

pristine “0” output, in [IV] other environment; for it one notes the constant results about 

77.0~]/)[/(][
0 molkcalNTC IV  for graphene and 65.0~]/)[/(][

0 molkcalNTC IV  for silicene; 

when taking account of the units transformations [49] such as 1 [kcal/mol] = 503.228 [K], one 

arrives that, for instance, for room temperature of T~300 K, and for short range transformation 

(say N = 7 bondons involved, one created per each step of topological transformation) one gets 

185.0~])[(][
0 hartreeCC IV  and respectively 156.0~])[(][

0 hartreeSiC IV , which in [eV] will 

respectively give about 09.5~])[(][
0 eVCC IV  and 24.4~])[(][

0 eVSiC IV  which nevertheless are 

quite close with previous estimations for SW rotation barriers as Eb ≈ 5 eV for graphene and Eb 

≈ 2.8 eV for silicene (see Introduction); the discrepancy may be nevertheless avoided while 

considering the semiconductor properties of Si which requires more bondons being involved 

such that the SW rotational barrier to be passed and the defective dipole triggered; as such for 

N = 10 created bondons for Si–SW super cell one refines the above result to 

96.2~])[10,(][
0 eVNSiC IV =  which fits quite well with literature results, see reference [25]. On 

the other hand, it is also apparent that for [II] order treatment the data of Figure 7 implies that 

more bondons are required to fit with the right observed or by other means estimated data, 

which leaves with the important conceptual lesson: more bondons–less connectivity relationship, 

very useful in addressing other fundamental chemical problems like crystal field theory and 

aromatic compounds, just to name a few. 
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• As previously noted the “D” effect is to shrink the energetic gap between C-to-Si-to-Ge-to-Sn 

lattice structural behavior, respecting the “0” pristine or defect forming transition state; 

• The short range D-to-O differences closely follow the previous internal energy shapes of  

Figure 6, yet with less oscillations for the [IV] treatment, thus in accordance with more 

observable character of the caloric capacity; 

• For the long range behavior, instead, what was previously a parabolic increase in internal 

energy acquires now a plateau behavior in all [IV] and [II] order representations: “0”, “D”, and 

their “D-to-0” differences; nevertheless it seems that the “echo”/signal about η = 10 is 

particularly strong in [IV] order modeling of D-to-0 differences in caloric capacities, while we 

notice for the “D” state the graphenic apex curvature about η = 7 followed by that of silicone at 

η = 10, in full consistency with above bondonic energetic analysis (N = 7 for C-lattice, and  

N = 10 for Si lattice), thus confirming it. Further signals are also visible, for accumulation of 

bondons (as the SW dipole evolve and extends over the nanostructure) at η = 15 in pristine 

structure, as well as for the further plateaus within the [II] order analysis, again in accordance 

with the above discovered rule of more bondons being required for acquiring the same effect 

with less connectivity (long-range-bonding neighboring) analysis. 
Figure 7. The same type of representations as in Figure 6, here for caloric capacity of 

Equation (14) and of former formulation of reference [16], in the fourth and second order 

path integral of bondonic movement, respectively. 

 

The present results fully validate bondonic analysis as a viable tool for producing reliable 

observable characters, while modeling and predicting the complex, and subtle, chemical phenomenology 

of bonding in isomers and topological transformations in the space of chemical resonances. Further 

works are therefore called in applying the present algorithm and bondonic treatment for other 

nanosystems as well as in deep treatment for the symmetry-breaking in chemical bonding formation of 

atoms-encountering in molecules and in large nanosystems. 
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5. Conclusions  

The current article aims to contribute in advancing the fascinating quantum topological theory  

by treating the 1D hexagonal meshes (nanoribbons) with original studies of peculiar topological,  

large-scale defects and quantitative predictions for the collective bosonic-like electronic behaviors for 

C, Si, Ge and Sn systems, while paving the way also for further hetero and alloy nanosystems, 

honoring Novoselov’s Nobel Lecture who invokes for all the magic one may (hopefully) encounter in 

Flatlandia [50]. 

Highly intriguing novel properties are theoretically derived here, namely: the topological potentials 

up to the fourth order, the so called beta-signal accounting for the time scale of bondonic pulses in a 

lattice supercell of graphenic type, the associate length of action, along the total internal energy of 

topological isomers and the remarkable behavior of the caloric capacity of the nanosystems. These 

quantities were evaluated and discussed for a critical regime by modeling the phase transition from 

pristine to defective nanoribbons with Stone-Wales dislocation dipoles and the creation of isomeric 

bondons; anti-bonding particle creation have been also described. 

As an overall comment, the ability to indicate peculiar scale-threshold (like the η scale) for a given 

process in nanosystems, represents a relevant computational result which provides an increasing 

importance to topological simulation algorithms. Ab-initio models hardly compete with topological 

modeling in selecting/proposing interesting configurations in extended nanosystems involving hundreds 

or thousands of atoms like the structures studied here; they have nevertheless a key role of refining the 

physical characterization of those proposed configurations, assessing their physical-chemical 

relevance. The typical example is the Stone-Wales wave isomeric mechanism that produces η-extended 

dislocation dipoles in graphene-to-silicene nanoribbons; future computational studies, especially at 

DFT level, will be necessary to describe and cross-check the actual bondonic findings regarding the 

energetic barriers and thermodynamic stability of SW topological defects in Group-IV elemental 

honeycomb and related hetero structures. 

Nevertheless, future applications triggered by the present study of graphenic systems are extendible 

to the design of reactive supports for pharmaceutical and cosmetic compounds, due to their unique 

electronic, magnetic and chemical saturation properties (recognized by the Nobel Prize in Physics  

in 2010), while the technological passage downward Group-IV elements is expected to enrich the 

moletronics field with semi-conductor and quantum electronic exotic properties. 

Finally, the bondonic quantum condensate distribution picture allows the computation of the 

energetic (observable) energies involved in the isomeric nanostructures with the exciting perspective 

of simulating the creation and dissipation of SWw defects in the graphenic-like regions characterizing 

the surface of large fullerenes, by modeling at the same time the creation and the annihilation of 

bondons. So far, defective fullerenes modified by sequences of isomeric SWw topological transformations 

are totally unexplored and their bondonic modeling will be soon investigated. The isomerisation of 

honeycomb nanostructures by the application the generalized Stone-Wales transformations formalism 

is fully extendable to the case of non-spiral fullerenes as demonstrated by the recent study [51]. 
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Appendix 

Appendix 1: Derivation of the 4th Order Path Integral Based Quantum Propagator  

Path integrals quantum formalism represents the viable integral alternative to the differential orbital 

approaches of many-electronic systems at nanoscale; accordingly, by employing path integral formalism 

one actually avoids the cumbersome computation and modeling of the orbital wave-function. Current 

method is therefore best suited for the path integral approach to the extended systems in which 

topological and bondonic chemistry appropriately describe long-range structures and the long-range 

interactions, respectively. 
Accordingly, one looks for evaluating the space-time quantum amplitude/propagator ( )aabb xx ττ ,,  

rather than the wave-function or electronic density for a characteristic potential of a given system. The 

quantum propagator can be analytically expressed by considering the parameterized quantum paths 

( ) ( )τητ += xx  where the classical path is replaced by the fixed (non time-dependent) average 

( ) 2/ba xxx += , while the fluctuation path ( )τη  remains and accounts for the whole path integral 

information to the actual different endpoint values ( ) 2/xaa Δ−== τηη , ( ) 2/xbb Δ+== τηη ; the working 

quantum statistical path integral representation of the time evolution amplitude has therefore the  

input form [52]: 
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 (A1) 

that turns into its semiclassical form upon the potential expansion respecting the path fluctuations, here 

up to the fourth order contributions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )τητητητη jijiii xVxVxVxV ∂∂+∂+=+
2

1
)(  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...
24
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1 +∂∂∂∂+∂∂∂+ τητητητητητητη lkjilkjikjikji xVxV  (A2)
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Note that we have maintained here the physical constants appearances so that the semiclassical 

expansion procedure is clearly understood in orders of Planck’s orders, see below. As such, the path 

integral propagator representation can be summarized as: 

( ) ( )[ ] [ ]ηττβττ SCabQSaabb F
xx

xVxx
)0(2

;
2

exp; 





 Δ−Δ−=  (A3) 

by introducing the so called free imaginary time amplitude: 
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readily given by the free-propagator solution [53]: 
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while having the normalization role for averaging the semiclassical factor contribution: 

[ ] ( )

( )
[ ]

)0(

2
2/

2/

2
;

2

)(
2

1
exp)(







 Δ−Δ









 



−

=


Δ+=

Δ−=

ab

SC

x

x
SC xx

d
M

FD

F

b

a

b

a

ττ

ττηητη
η

τ

τ

τη

τη




 (A6) 

All in all, the semiclassical form of path integral representation of evolution amplitude looks in the 

fourth order of Planck constant’s expansion: 
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Now, we are faced with expressing the averaged values of the fluctuation paths in single or multiple 

time connection, i.e., ( )τηi , ( ) ( )τητη ji , ( ) ( )'τητη ji , etc. For that, it can be readily shown that the 

first order of the averaged fluctuation path resembles the classical (observed) path: 

( ) ( )11 τητη cl
ii =  (A8) 

while the higher orders can be unfolded in connection with the Green functions/propagators according 

to the so called cluster decomposition or cumulant expansion: 
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However, by involving the pair-wise (Wick) decomposition of the n-points correlated function: 
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One can easily obtain the higher orders of correlations, however observing that all connected orders 

of events are reduced to the combinations of pair-connected events. For instance, we get for the 

second, third and fourth order fluctuations the respective average contributions: 
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With ijδ  type being the delta-Kronecker tensor. Next, for the quantum objects in question, i.e., for 

the classical path and connected Green function, the computing procedure consists of three major 

stages [52,53]: (i) Considering and solving the associate real time harmonic problem; (ii) Rotating the 

solution into imaginary time picture; (iii) Taking back the “free harmonic limit”, this way providing 

the respective results: 
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With the Heaviside step-function: 
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With expressions (A14) and (A15) back in Equations (A8), (A11)–(A13) some imaginary-time 

integrals vanish, namely: 
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while for the non-vanishing imaginary-time integrals appearing in Equation (A7), one obtains: 
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xxd δτττητητ

τ

612

2

11

0

1

+ΔΔ=  (A18) 

( ) ( ) ( ) ( ) lkjilkji xxxxd ΔΔΔΔ= 801111
0

1
ττητητητητ

τ
 

( )ilkjikljijlkjklijlkiklji xxxxxxxxxxxx
M

δδδδδδτ ΔΔ+ΔΔ+ΔΔ+ΔΔ+ΔΔ+ΔΔ+
120

2
 

( )ikiljlikklijM
δδδδδδτ +++

30

3

2

2
, (A19)

( ) ( ) ijji M
dd δττητηττ

ττ

12

3

21

0

2

0

1

= , (A20) 

( ) ( ) ( ) ( ) ( )kiljjlikkljiljik xxxx
M

xxxxdd δδτττητητητηττ
ττ

ΔΔ+ΔΔ+ΔΔΔΔ= 72144

32

2211

0

2

0

1


 

( )kljikjliijlkiljk xxxxxxxx
M

δδδδτ ΔΔ+ΔΔ+ΔΔ+ΔΔ+
720

3
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( )ijklilkjjlki MM
δδδδτδδτ +++

9036

4

2

24

2

2 
, (A21)

( ) ( ) ( ) ( ) ( )ljikkjilijkljikl xxxxxx
M

dd δδδττητητητηττ
ττ

ΔΔ+ΔΔ+ΔΔ= 240

3

2111

0

2

0

1


 

( )kiljkjliijlkM
δδδδδδτ +++

60

4

2

2
, (A22)

( ) ( ) ( ) ( ) jklijkilkjil M
xx

M
ddd δδτδττητητητητττ

τττ

72144

5

2

24

3211

0

3

0

2

0

1

 +ΔΔ=  

( )ijlkikljM
δδδδτ ++
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5

2

2
, (A23)

( ) ( ) ( ) ( ) ( )jkiljlikklijlkji M
dddd δδδδδδττητητητηττττ

ττττ

++= 144

6

2

2

4321

0

4

0

3

0

2

0

1


 (A24) 

With these, the earlier form Equation (A7) takes the particular expression for the propagator as in 
Equation (3), for βτ =  [30]. 

Appendix 2: Gauss Type Relationships for Higher Order Integrals  

One may apply the Gauss theorem successively for integrals of gradient of a given long range 

defined quantity (∴), successively as: 

[ ]{ } [ ] [ ] ∴∇+∴∇∴=∴∇∴∇= xdxdxd 220  (A25) 

{ } [ ][ ] [ ] ∴∇∴+∴∇∴∇=∴∇∴∇= xdxdxd 4330  (A26) 

[ ]{ }[ ] [ ] [ ]{ } [ ] ∴∇+∴∇∴+∴∇∴∇∇=∴∇∴∇∇= xdxdxd
223220  

[ ] [ ][ ] [ ] ∴∇∴+∴∇∴∇+∴∇= xdxdxd 4322 22  

[ ] [ ][ ] ∴∇∴∇+∴∇= xdxd 3222  

[ ] [ ] ∴∇∴−∴∇= xdxd 4222  (A27)

[ ]{ } [ ] [ ] ∴∇∇∴+∴∇=∴∇∴∇= xdxdxd 3430  

[ ] [ ] [ ] ∴∇∴∇∴+∴∇= xdxd 224 3  (A28)

then specializing them for the attractive (bonding) potential to the working relationships: 

( )[ ] ( ) ( ) ∇=







∇−=∇ xdxVxdxVAbsxdxV 222 11

ββ
 (A29) 

( ) ( ) ( ) ( )[ ] ∇=∇∇−=∇ xdxVxdxVxVxdxV
2234 2

1

β
 (A30) 



Molecules 2014, 19 4185 

 

 

( ) ( )[ ] ( )[ ] ( )[ ] ∇=





 ∇−=∇∇ xdxVxdxVAbsxdxVxV 4422

33

ββ
 (A31) 

with the help of which the working Equation (5) for 4th order partition function is provided. 
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