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Abstract: This article describes our recent experimental studies on internal conversion via 

a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*)–S1(nπ*) internal 

conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses  

(264 and 198 nm). While the photoelectron kinetic energy distribution does not exhibit a 

clear signature of internal conversion, the photoelectron angular anisotropy unambiguously 

reveals the sudden change of electron configuration upon internal conversion. An 

explanation is presented as to why these two observables have different sensitivities to 

internal conversion. The 198 nm probe photon energy is insufficient for covering the entire 

Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet 

free electron laser (SCSS) producing 161 nm radiation is employed to solve this problem, 

while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2–S1 

internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation 

four-wave mixing. Conical intersections between D1(π
−1) and D0(n

−1) and also between the 

Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by 

He(I) photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and 

one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast 

S2(ππ*)–S1(ππ*) internal conversion in benzene and toluene are compared with pyrazine. 

Keywords: photoelectron spectroscopy; femtosecond; laser; filamentation; ultraviolet; 

imaging; pyrazine; benzene; toluene; internal conversion; ionization 
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1. Introduction 

The quantum mechanical equation of motions of the nuclei and electrons is not exactly solvable, so 

Born and Oppenheimer approximated the rigorous equation by separating it into the sets of equations 

of the nuclei and the electrons [1]. Based on the Born-Oppenheimer approximation, a chemical 

reaction is understood as quantum-mechanical nuclear motion on an adiabatic potential energy surface 

created by electronic motions. The approximation, however, breaks down at critical nuclear 

configurations where multiple electronic states have similar energies. Consequently, non-adiabatic 

transitions occur between different potential energy surfaces in the vicinities of these critical 

configurations. Non-adiabatic transitions are ubiquitous in the excited state dynamics of polyatomic 

molecules, because polyatomic molecules have a large number of excited electronic states within a 

narrow energy range, which cause (avoided) crossings of potential energy surfaces. The most 

important topographic feature of the surface crossings for non-adiabatic transitions is the conical 

intersection, which is funnel-shaped in two-dimensional coordinate space but actually is a seam of 

crossing between multi-dimensional potential energy surfaces [2–5]. The conical intersection facilitates 

efficient draining of a nuclear wave packet from an upper to a lower potential energy surface. 

Photoelectron spectroscopy, initiated in the late 1950s to early 1960s, [6–8] induces emission of an 

electron from a material using a photon beam (such as UV or X-ray radiation) and measures the kinetic 

energies of photoelectrons. Time-resolved photoelectron spectroscopy (TRPES) is an advanced  

form of photoelectron spectroscopy using a pair of laser pulses [9–17]. The pump pulse initiates 

photochemical and/or photophysical processes, and the probe pulse interrogates their time-evolution 

by photoemission. TRPES requires the laser pulse durations to be shorter than the time scales of the 

dynamics of interest and the pulse energies sufficiently high to induce ionization within the pulse 

durations. A highly sensitive electron detection method is also required for TRPES, because the 

number of photoelectrons generated per an optical pulse-pair must be minimized to avoid electrostatic 

repulsion between the photoelectrons, which would otherwise alter the electron kinetic energies. 

Ionization has several important advantages as a probing method of chemical reactions. First of all, the 

final state is energetically continuous, so that ionization can be induced from any part of the excited 

state potential energy surfaces as long as the photon energy is sufficient. Secondly, the ionization 

continuum is degenerate for different symmetries and spin states of photoelectrons, so that ionization  

is almost always an allowed transition; therefore, the singlet and triplet excited states are equally 

observed. Additionally, high sensitivity can be obtained by collecting photoelectrons using 

electromagnetic fields. 

Historically, photoelectron spectroscopy was first performed using electrostatic electron energy 

analyzers [6–8]. While these analyzers are still the principal instruments used in high-resolution X-ray 

photoelectron spectroscopy today, small solid angles and narrow energy windows limit the electron 

detection efficiencies. With the development of intense pulsed (nanosecond and picosecond) lasers, 

photoelectron spectroscopy using multi-photon ionization started in the 1980s, which employed  

time-of-flight (TOF) photoelectron spectrometers. A TOF spectrometer measures flight times of 

photoelectrons from a sample to a detector, and it enables measurement of the entire photoelectron 

energy spectrum on a shot-to-shot basis. Furthermore, a magnetic bottle provides an electron collection 

efficiency of 50% with the TOF analyzer, which enables the application of photoelectron spectroscopy 
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to low-density species such as molecular and metal clusters in supersonic beams [18]. However, a 

photoelectron angular distribution can hardly be measured with a magnetic bottle, as it utilizes electron 

cyclotron motions in a magnetic field. Chandler and Houston introduced the two-dimensional (2D) 

imaging technique in 1987, in which ions emitted from a small target volume in a Wiley-McLaren 

TOF mass spectrometer are accelerated and projected onto a 2D position-sensitive detector [19]. 

Eppink and Parker have modified the ion optic electrodes and enabled two-dimensional space focusing 

of ions to improve the imaging resolution [20]. Their method is now called velocity map imaging, 

because the arrival position of the ion on the detector plane is proportional to the velocity perpendicular 

to the flight axis and independent of the ionization point [21]. The performance of the acceleration 

electrodes (aberration etc.) can be further improved by increasing number of electrodes [22,23]. 

We combined the femtosecond pump-probe method and 2D electron imaging technique to develop 

time-resolved photoelectron imaging (TRPEI) in 1999 [24,25]. Figure 1 shows a schematic diagram of 

TRPEI. An ultracold gas of target molecules is created by adiabatic gas expansion into vacuum, and 

the gas jet is skimmed to create a supersonic molecular beam 2 mm in diameter. The beam is 

introduced into a photoelectron spectrometer and crossed with the pump and probe laser beams. The 

pump pulse excites molecules to induce photochemical and/or photophysical processes, and the probe 

pulse induces photoemission to create an expanding sphere of a photoelectron distribution. The 

photoelectrons are accelerated in a static electric field and projected onto the 2D detector. The detector 

consists of microchannel plates, a phosphor screen and a charge-coupled device (CCD) or a 

complementary-metal-oxide-semiconductor (CMOS) camera, and it records the arrival positions of the 

photoelectrons on the detector plane. Since both the pump and probe laser polarizations are parallel to 

each other and to the detector face, the original 3D distribution has axial symmetry around the 

polarization direction [21,26]. With this symmetry, the 3D distribution can be reconstructed from the 

projection image. We developed a 2D electron counting apparatus using a CMOS camera and real-time 

centroiding calculations on a field programmable gate array (FPGA) circuit, which captured electron 

images at 1 kHz with a uniform sensitivity over the detector area [27]. 

The photoelectron ejection angle is an important observable in photoelectron spectroscopy. Since 

the initial ensemble of molecules has an isotropic molecular axis distribution in the absence of  

an external field, it is an isotropic target for photoionization. Therefore, the anisotropy of the  

total physical system (molecule + radiation) prior to photoionization is caused by anisotropic 

electromagnetic field of radiation. This anisotropy is transferred to the PAD after photoionization. For 

linear polarization of the pump and probe pulses parallel to each other, the photoelectron kinetic 

energy and angular distribution in [1+1'] photoionization is expressed as follows (the prime means 

different color): 

 
(1)

where t, θ, and E are the pump-probe time delay, the electron ejection angle from the laser polarization 

direction, and the photoelectron kinetic energy. Pn(x) are the n-th order Legendre polynomials. σ(t,E) 

represents a photoelectron kinetic energy distribution or photoelectron spectrum. β2(t,E) and β4(t,E) are 

called anisotropy parameters, and the three scalar quantities σ(t,E), β2(t,E) and β4(t,E) in Equation (1) 

are the observables in [1+1'] TRPEI of gaseous samples. 

I(t, E, )
 t, E 

4
12 t, E P2 cos   4 t, E P4 cos  
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2. Generation of Multicolor Sub-20 fs Pulses by Filamentation Four-Wave Mixing 

Now laser requirements in TRPEI experiments will be discussed. The most fundamental aromatic 

molecule benzene has an ionization energy of 9.24 eV, so that one-photon ionization of benzene 

requires an ionization laser wavelength shorter than 134 nm, and the [1+1'] pump-probe TRPES 

requires at least one of the pump or probe wavelengths to be shorter than 268 nm. One of the 

characteristic molecular vibrations of benzene is a totally symmetric ring-breathing mode with a 

vibrational period of ca. 50 fs. In order to create a spatially-localized wave packet and observe its  

time-evolution, the pump and probe pulses should be sub-30 fs. While tunable deep UV (DUV) pulses 

down to ca. 200 nm can be generated using optical parametric amplifiers and non-linear optical 

crystals, a vacuum UV (VUV) pulse can hardly be generated by these methods. The pulse durations are 

also generally longer than 30 fs. Thus, we developed a filamentation four-wave mixing method [28–31] 

in rare gas to generate sub-20 fs DUV and VUV pulses. Filamentation is a unique propagation scheme 

of an intense laser pulse through a medium. An intense laser pulse alters the refractive index of the 

medium (optical Kerr effect), which induces self-focusing of the pulse; however, as the focused laser 

pulse induces (tunnel-)ionization of the medium, the ionized species create an opposite spatial gradient 

of the refractive index. Consequently, the laser pulse propagates through the medium as a tightly 

focused beam for a distance longer than the Rayleigh length [32], which facilitates efficient 

wavelength conversion in low density gases. 

Figure 1. (a) Schematic diagram of the experimental setup; (b) Schematic drawing of  

the differential pumping system. All dimensions are given in millimeters. ICCD:  

image-intensified charge-coupled device camera. MCP: microchannel plate. Reproduced 

with permission from Ref. [31], copyright (2013) by The Optical Society. 

 

A schematic diagram of our filamentation light source is presented in Figure 1 [31]. A cryogenically 

cooled Ti:sapphire multipass amplifier delivers ~770 nm pulses (25 fs, 1.5 mJ) at 1 kHz. The 

fundamental frequency pulse (ω) is split into two beams with a ratio of 3:7. The higher intensity beam 

is converted to the second harmonic, 2ω, in a β-barium borate crystal (β-BBO, θ = 29°, t = 0.3 mm). A 
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dielectric concave mirror (r = 2,000 mm) is used to focus the second harmonic into a neon gas cell 

through a Brewster-angled calcium fluoride (CaF2) window (t = 1 mm). This concave mirror is also 

used to separate the second harmonic from the residual fundamental. The fundamental beam is focused 

into the cell with another dielectric concave mirror (r = 2,000 mm). A flat dichroic mirror is used to 

recombine the fundamental and second harmonic beams. The relative polarization of two beams is 

parallel to each other. The pulse energies of the fundamental and the second harmonic are 0.43 and 

0.37 mJ, respectively. The laser and the optical configuration for the input beams are identical to those 

employed in our previous study [28] except that the fundamental output from the Ti:sapphire amplifier 

is 25% lower. 

When the ω and 2ω pulses overlap temporally and spatially, a bright filament (plasma column) with 

a length of ca. 120 mm appears. We use a pinhole (ca. 0.1 mmϕ) instead of an output optical window 

for the filamentation cell to enable efficient differential pumping while avoiding material dispersion. 

Behind the pinhole, a narrow channel (1.25 mm in diameter and 20 mm in length) and an aperture  

(3 mmϕ) are placed for differential pumping, as shown in Figure 1b. The pressure of neon gas in the 

gas cell is ~3.7 × 102 Torr. The neon gas leaking through the pinhole is evacuated with a dry pump 

(580 L/min). The pressure in this first differential pumping section is below 3.0 × 10−1 Torr. The 

region between the channel and the aperture is evacuated with another dry pump (500 L/min). The 

flow rate of neon gas is 0.5 Torr L/s. The laser pulses finally enter a high-vacuum optics chamber that 

houses an optical delay stage and mirrors. A UV-enhanced aluminum mirror with an aperture of 3 mm 

diameter spatially separates the central and peripheral parts of the beam. The central part is transmitted 

through this holed mirror and reflected five times with dielectric mirrors coated specifically for 5ω in 

order to attenuate other colors. The peripheral part reflected by the holed mirror is used to sample  

3ω or 4ω, using dichroic mirrors. The timing of the 5ω pulse is varied using a vacuum-compatible 

translational stage with 5 nm resolution. The vacuum UV and deep UV pulses are independently 

focused onto the molecular beam with two Al concave mirrors (r =1,000 mm). The intersection angle 

between the vacuum UV and deep UV pulses is estimated to be ca. 1°. The entire optics chamber is 

evacuated using two turbo molecular pumps (2 × 300 L/s) to maintain the pressure below 2 × 10−6 Torr 

when operating the filamentation gas cell. 

3. Two-Dimensional Electron Detector 

As mentioned in the introduction, TRPEI is photoelectron spectroscopy that employs an ultrafast 

pump–probe method and 2D position-sensitive detection of electrons. A 2D position-sensitive detector 

consists of a microchannel plate (MCP), a phosphor screen, and a digital camera. The MCP is a  

70-mm-diameter circular plate that has millions of 10-µm-diameter microchannels over its entire area; 

the total open area of the microchannels on the MCP surface is ca. 60%. When an electron enters one 

of the microchannels, an avalanche of secondary electrons occurs and an amplified electron pulse is 

emitted from the other side of the microchannel. This pulse excites a phosphor screen, visualizing the 

arrival position of the photoelectrons. The image of the light spot on the phosphor screen is recorded 

by a CCD sensor or a CMOS image sensor. The acceleration electric field is designed such that the 

arrival positions of electrons depend only on their velocity vectors and not on the spatial position of 

ionization. This method thus produces an image of the distribution in k-space (i.e., momentum space). 
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The design of our electrodes is shown in Figure 2 [23]. A large square hole in electrode 4 allows the 

propagation of laser beams or He(I) radiation. The ionization point is indicated by a cross (×). We 

designed electrodes 1–3 to reduce background photoemission due to stray light. Electrode 3 is a 

repeller plate, but it has a large hole in the center to reduce background photoemission. To flatten  

the equipotential around the hole in electrode 3, electrode 2 is held at the same voltage as electrode 3. 

Electrode 1 is used to prevent the ground potential from penetrating the acceleration electric field, 

while a high-transmission (90%) mesh minimizes its cross section and consequently the background 

photoemission from electrode 1. Electrode 1 is at a slightly higher potential than electrodes 2 and 3 to 

prevent photoelectrons emitted from electrode 1 due to stray light being transmitted toward the 

detector. Electrode 1 has a 6-mm-diameter hole in its center to allow the molecular beam to propagate 

parallel to the axis of the electrode stack. We computed electron trajectories and found that the velocity 

resolution improves when even more electrodes are used; however, the velocity resolution saturates in 

practice. The design shown in Figure 2 provides ∆υ/υ < 0.04% for a focused laser beam. 

Figure 2. Electrostatic lens system of our imaging spectrometer (all dimensions in 

millimeters). A molecular beam is introduced from the left. The ionization point is 

indicated by the cross (×). Reproduced with permission from Ref. [23], copyright (2009) 

by American Chemical Society. 

 

Even if velocity map imaging electrodes focus the trajectories of electrons with the same velocity, 

the light spot on the phosphor screen will be considerably larger in diameter than the microchannel 

pore diameter (10 µm), thereby causing blurring of the photoelectron image. Thus, the center of 

gravity of each light spot should be calculated to recover the ultimate spatial resolution provided by the 

velocity map imaging electrodes. The center of gravity of each light spot can be recorded only when 

the brightness and/or the area of the light spot exceeds a preset threshold for two-dimensional electron 

counting. This ensures a uniform detection sensitivity over the detector area and highly reliable 

experimental results [23,27,33]. To perform center-of-gravity calculations and electron counting for 

each laser shot, the frame rate of the camera must be comparable with or higher than the repetition rate 

(1 kHz) of the femtosecond laser. We thus constructed a 1-kHz camera using a CMOS image sensor 

and an FPGA circuit for real-time image processing. A CMOS sensor has a much faster readout than a 

CCD sensor, although it has a considerably lower sensitivity than a CCD sensor at the present time.  
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We thus use an image intensifier and booster to improve the sensitivity of our camera system; more 

details are described in the original paper [27]. 

4. Pyrazine: Ultrafast S2(
1B2u, ππ*)—S1(

1B3u, nπ*) Internal Conversion via Conical Intersection 

The S2(
1B2u, ππ*)–S1(

1B3u, nπ*) internal conversion of pyrazine (C4H4N2, D2h) is one of the  

best-known examples of ultrafast electronic deactivation via a conical intersection [34]. The 

topography of this conical intersection has been extensively studied by ab initio molecular orbital 

calculations [35–47]. Although pyrazine has 24 normal modes (see Figure 3), only a single mode, 

Q10a(b1g), mediates S2–S1 coupling due to the selection rule. Furthermore, only a few totally symmetric 

(ag) modes participate in the short-time vibrational dynamics of this system. This reduced 

dimensionality makes pyrazine a benchmark for theoretical studies of ultrafast internal conversion  

via a conical intersection. The conical intersection of pyrazine is depicted in Figure 4 for the  

two-dimensional space of Q10a and Q6a [36]. 

Figure 3. Normal modes of pyrazine calculated at the MP2/aug-cc-pVDZ level. They are 

labeled using Wilson’s numbering scheme for benzene. 

 

Figure 4. Conical intersection of the S2 and S1 adiabatic potential energy surfaces of 

pyrazine in the two-dimensional space spanned by Q10a and Q6a. Reproduced with 

permission from Ref. [19], copyright (1994) by American Institute of Physics. 
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The S2←S0 photoabsorption spectrum of pyrazine in the deep ultraviolet region, 230–280 nm, 

exhibits a broad feature, which implies ultrafast decay of the S2 state. Despite their broadness, some 

vibrational structures are discernible in these S2←S0 spectra; for example, the progressions of totally 

symmetric modes, Q1 and Q6a, are assigned based on comparison of their vibrational frequencies  

with those in the S0 state (ν1 = 1014 cm−1 and ν6a = 596 cm−1 for pyrazine-h4) [48]. Several theoretical 

studies have simulated the spectrum of pyrazine-h4. However, since an absorption spectrum is the 

Fourier transform of the autocorrelation function of the wave packet prepared by photoexcitation, the 

absorption spectrum provides limited information about outside the Franck–Condon region. Ultrafast 

photoelectron spectroscopy enables investigation of nonadiabatic wave packet dynamics over wide 

regions containing multiple potential energy surfaces. 

Figure 5 summarizes our experimental results of TRPEI of pyrazine [49–51]. Figure 5b shows  

the total photoelectron signal as a function of the pump-probe time delay. Since the spectra of our 

pump and probe pulses overlap the S2–S0 and S3–S0 bands, respectively, the 264 nm pulse excites 

ground-state molecules to S2 and the 198 nm pulse ionizes them for a positive time delay, while for a 

negative time delay, the roles of the 198 nm and 264 nm pulses are interchanged and molecules are 

ionized from S3. The signal at a positive time delay rapidly decays in less than 30 fs and exhibits a 

plateau; this plateau has a finite lifetime of 22 ps for pyrazine-h4 [25,52]. Furthermore, the plateau 

region exhibits oscillatory features due to vibrational quantum beats. The Fourier transform of the 

oscillation (t > 50 fs) exhibits a frequency component of 560 ± 40 cm−1, which agrees with the 

vibrational frequency of Q6a in S1 (583 cm−1). Similarly, pyrazine-d4 exhibits a Fourier component of 

550 ± 40 cm−1, which provides further support for the assignment to Q6a (ν6a(S1) = 564 cm−1 for 

pyrazine-d4) [53]. In the negative time range, the signal diminishes very rapidly within 100 fs (toward 

the –∞ direction). The observed profile can thus be explained by three components: the decay of 

optically excited S2, the corresponding growth of S1 populated by internal conversion from S2, and the 

decay of S3. By least-squares fitting, the S2→S1 internal conversion time constants are estimated to be 

23 ± 4 fs for pyrazine-h4 and 20 ± 2 fs for pyrazine-d4. I(t,E), shown in Figure 5a, does not exhibit any 

marked change on S2→S1 internal conversion. This is because photoionization occurs predominantly as 

D0(n
−1)←S1(n,π*) and D1(π

−1)←S2(π,π*), and the energy gaps between D1 and D0 (0.88 eV) and 

between S2 and S1 (0.86 eV) are almost the same. 

Figure 5c shows a time–energy map of β2(t,E). The positive (blue–green) and negative (red) values 

correspond to preferential ejection of an electron parallel and perpendicular to the probe laser 

polarization [see Equation (1)]. The energy dependence of β2, a colored stripe at each time delay in 

Figure 5c, is a fingerprint of the electronic character. The time–energy map clearly shows that there are 

three different components, one at a negative time delay and two at a positive time delay, which agrees 

with the analysis of σ(t,E). The most distinctive feature is the sudden change in the color at ca. 30 fs, 

which is attributed to ultrafast S2→S1 internal conversion. β2(t,E) does not change after 30 fs, 

indicating that the (n,π*) electronic character remains; no restoration of the (π,π*) character is 

identified. This lack of recurrence is possibly related to the photoexcitation energy; we excited 

pyrazine near the S2 origin. Consequently, if the vibrational energy flows into various modes in S1, the 

wave packet has no chance to return to the Franck–Condon region in S2. Photoexcitation at a shorter 

wavelength to reach higher vibronic levels in S2 may enable restoration of the (π,π*) character. 
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Figure 5. (a) Time-evolution of PKED, σ(t,E); (b) Temporal profiles of total photoelectron 

signals in (1+1') TRPEI of pyrazine-h4. The observed data are well explained by  

three components: single-exponential decay of S2 (red), corresponding increase in S1 (blue) 

at a positive time delay, and single-exponential decay of S3 (green) at a negative time delay. 

The fitting result is shown by the solid line; (c) Time-evolution of photoelectron angular 

anisotropy parameter β2(t,E). 

 

Note that ionization processes creating PKE < 0.8 eV are mainly D1←S2 ionization and D0←S1, 

while PKE > 0.8 eV is created by D0←S2 and D0←S1. Ionization from S2 in the latter region is solely 

due to D0(n
−1)←S2(ππ*). This process is forbidden for the main electron configurations of D0 and S2; 

therefore, the occurrence of this ionization process indicates that D0 and S2 consist of multiple electron 

configurations. The D0 configurations that can be created by one-photon ionization from S2 are those 

obtained by removing one electron from an orbital (ϕ) of the S2 configuration, i.e.,: 

Ψ(S2) = Ψ(D0) × ϕ (2) 

where Ψ(S2) and Ψ(D0) respectively denote the electron configurations of S2 and D0. Because Ψ(D0) × ϕ 

should have the same symmetry species as S2 [Г(S2) = Г(D0) × Г(ϕ)], ϕ must be the b2u orbital as given 

by the direct product Ag(D0) × B2u(S2). However, no b2u orbital exists among the outer valence and π* 

orbitals, which implies that D0←S2 cannot be well described by typical valence complete active space 

self-consistent field (CASSCF) wavefunctions [54]. To make the calculations tractable, we focused on 

configurations that are doubly excited with respect to the main configuration. Figure 6 shows examples 

of such configurations. The configurations shown in Figure 6b,d can be obtained by two-electron 

excitations from the D0 and S2 main configurations shown in Figure 6a,c, respectively. Ionization from 

the configuration in Figure 6d to that in 6a and from the configuration in Figure 6c to 6b is possible. 

Including these configurations, the first-order configuration interaction calculations account for all 
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one-electron excitations from the complete active space of eight orbitals [n, π, π* (Figure 6)] From our 

calculations, we find contributions to the spectral intensity [42] of 47% from 3b2u, 27% from 4b2u, and 

26% from all virtual b2u (jb2u, j ≥ 5) [51]. This result clearly demonstrates that the electron correlation 

cannot be neglected for either D0 or S2. 

Figure 6. Electronic configurations of D0 and S2. The leading configurations of D0 and S2 

are shown in (a,c), respectively. By two-electron excitation, configurations (b,d) are 

obtained from configurations (a,c), respectively. Arrows indicate the allowed transition by 

one-photon ionization. Filled circles represent electrons. Isolated electrons at the top of 

panels (a,b) represent photoelectrons. 

 

Figure 5 shows that the PKED is rather flat at all times for kinetic energies lower than 0.5 eV. This 

clearly demonstrates that the Franck–Condon envelopes are not entirely covered for photoionization 

from S2 and S1 due to the probe photon energy being too low. VUV radiation is required to observe  

the entire envelopes. Femtosecond pulses in the VUV region are currently generated by at least  

three different methods, namely high harmonic generation using an intense femtosecond laser [55–57], 

free electron lasers [58–60], and four-wave mixing [28–31,61]. We first employed a VUV free electron 

laser (SCSS: SPring-8 Compact SASE Source) to perform TRPEI experiments in combination with a 

femtosecond UV laser [62]. Figure 7 compares the photoelectron spectrum measured using the 161 nm 

probe pulse from SCSS and the 198 nm probe pulse from a filamentation deep UV source in the 

laboratory [62]. The influence of the pump wavelength can be neglected. The former distribution 

exhibits the entire Franck–Condon envelope, clearly showing a maximum in the region ca. 1.2 eV 

above D0, which is consistent with the vibrational energy of ca. 0.9 eV in S1. Since S1 is the (n,π*) state 

and D0 and D1 are n−1 and π−1 states, the frozen-core approximation predicts ionization occurs from S1 

to D0, as discussed earlier. Thus, the peak of the photoelectron distribution corresponds to highly 

vibrationally excited levels in D0. Nevertheless, since SCSS uses self-amplification of spontaneous 

emission (SASE) and a thermal cathode, its output pulse intensity, photon energy, and timing 

inevitably fluctuate. Consequently, the timing jitter between the SCSS and a femtosecond laser is of 

the order of sub-picoseconds, which did not enable us to observe S2–S1 ultrafast internal conversion in 

pyrazine in real time. As explained above, filamentation four-wave mixing can generate VUV radiation 

by cascaded four-wave mixing. Therefore, we revisited this problem using a VUV (159 nm) 

filamentation light source, as described in Section 2. 
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Figure 7. (a) PKED in He(I) photoelectron spectroscopy of ground-state pyrazine (black). 

264-nm pump and 198-nm probe experiment (red) and 260-nm pump and 161-nm probe 

(blue); (b) Schematic energy diagram of the ionization processes. Insets show UV absorption 

spectrum of pyrazine vapor at room temperature and time-averaged spectrum of VUV FEL. 

Reproduced with permission from Ref. [62], copyright (2010) by American Physical Society. 

 

Figure 8 shows the pump–probe time profile of the photoelectron intensity observed using the 

filamentation light source. The cross-correlation between the 264 and 159 nm pulses is ca.17 fs. The 

signal intensity is considerably higher in the negative time range where the probe pulse (159 nm) 

precedes the pump pulse (264 nm). This pulse order excites pyrazine to higher valence states and 3s 

and 3p Rydberg states and then ionizes from these states. In the positive time range, there is a flat 

distribution corresponding to the decay of S1 produced by internal conversion from S2 pumped by the 

264 nm pump pulse. Figure 9 shows the photoelectron kinetic energy distribution. In the negative time 

range, three Rydberg states of 3s, 3py and 3pz exhibit sharp horizontal distributions and a valence state 

exhibits a distribution that diminishes the kinetic energy rapidly and disappears within 100 fs. In the 

positive time range, the photoionization from S2 and S1 are observed, although the signal around t = 0 

is rather congested due to both the 264 nm pump and 159 nm pump signals. The photoelectron kinetic 
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energy distribution after a pump-probe delay of 100 fs is essentially the same as that obtained using 

SCSS. More detailed accounts of these results are presented elsewhere. 

Figure 8. Photoelectron signal time-profile observed for pyrazine using 264 nm pump  

and 159 nm probe pulses. Negative delay times indicate that the probe pulse precedes the 

pump pulse. 

 

Figure 9. Photoelectron kinetic energy distribution observed for pyrazine using 264 nm 

pump and 159 nm probe pulses. Negative delay times indicate that the probe pulse 

precedes the pump pulse. The panel on the right shows the distribution integrated for the 

time delay of 50–150 fs. 

 

5. Conical Intersections in Cation and Rydberg States of Pyrazine 

Similar to S2(ππ*) and S1(nπ*), the D1(π
−1) and D0(n

−1) potential energy surfaces of pyrazine have  

a conical intersection [63]. This intersection in the cation raises some interesting questions. First, if 

ultrafast internal conversion occurs from D1(π
−1), lifetime broadening should occur in the D1(π

−1)←S0 

spectrum. The lifetime broadening, however, was not carefully examined in previous studies, because 

photoelectron spectra were measured for pyrazine vapor at room temperature and the rotational 

envelopes and vibrational hot bands were not negligible. Second, if ultrafast internal conversion occurs 
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in the cation, similar processes may occur in the Rydberg states because the Rydberg states consist of 

the same ion core as the cation and a loosely bound Rydberg electron. The question then arises as to 

whether it is possible to observe the zero kinetic energy photoelectron or pulsed field ionization 

photoelectron (PFI-PE) spectrum for the D1(π
−1) state of pyrazine. PFI-PE spectroscopy creates 

Rydberg states with extremely high principal quantum numbers and high angular momentum quantum 

numbers and field ionizes them by a pulsed electric field. By scanning the laser wavelength and 

monitoring the yield of electrons or ions on field ionization, PFI-PE spectroscopy measures an action 

spectrum that is similar to a conventional photoelectron spectrum. 

Figure 10a shows the He(I) photoelectron spectrum of jet-cooled pyrazine measured using a He 

discharge lamp and a hemispherical electron energy analyzer and Figure 10b shows the corresponding 

region of the PFI-PE spectrum [64]. While both these spectra show one-photon photoionization from 

the ground electronic state, the former shows direct photoionization, whereas the latter shows resonant 

excitation to Rydberg states that are energetically almost degenerate with the cation states. Due to the 

structural change caused by the removal of a valence electron, these spectra exhibit rich vibrational 

structures that are in remarkable agreement with each other. Close examination reveals that the 

vibrational temperature is lower in PFI-PE because it employs pulsed expansion of the gas sample to 

achieve a low vibrational temperature [64]. In contrast, He(I) photoelectron spectroscopy uses a 

continuous gas jet. The He(I) photoelectron spectrometer has resolutions of 5.5 and 9 meV for 

pyrazine and fully deuterated pyrazine, respectively, while that of PFI-PE is 1.5 cm−1 (0.2 meV). 

Figure 10. (a) Expanded view of He(I) photoelectron spectrum of pyrazine with 

vibrational assignments; (b) VUV-PFI-PE spectra in the D0(n
−1)←S0 region. Reproduced 

with permission from Ref. [64], copyright (2008) by American Chemical Society. 

 

We examine the D1(π
−1) region in Figure 11, which compares the He(I) photoelectron spectra  

of pyrazine vapor previously reported [65], jet-cooled pyrazine and fully deuterated pyrazine. 

Comparison of the photoelectron spectrum of pyrazine vapor (Figure 11a) with our spectrum of a  

jet-cooled sample (Figure 11b) clearly reveals that the former suffers from instrumental limitations. 

Our spectra are considerably sharper than the previously obtained spectrum due to supersonic jet 

cooling of the sample and a higher spectral resolution. The difference in the spectral features in the 
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D1(π
−1) region is striking: Figure 11a shows only a few broad bands, whereas each of these bands is 

split into several bands in Figure 11b. Interestingly, the same fine splitting is not observed for fully 

deuterated pyrazine (Figure 11c). Figure 12 presents expanded views of the D1(π
−1) region in the  

three spectra measured for jet-cooled samples. The PFI-PE spectrum in Figure 12b contains sharp 

bands in the D1(π
−1) region. However, their features are completely different from those in the He(I) 

photoelectron spectrum shown in Figure 12a. This result demonstrates that it is difficult to observe a 

PFI-PE spectrum for the D1(π
−1) state that undergoes ultrafast internal conversion. We conjecture that 

the internal conversion mediates couplings with dissociative neutral states and/or ionization continua 

to induce dissociation into neutral fragments and autoionization. From spectral fitting, the lifetimes of 

the D1(π
−1) states of pyrazine and fully deuterated pyrazine are estimated to be 12 and 15 fs, respectively. 

To estimate the location of the conical intersection point, we analyzed the Franck–Condon factors 

of the D0(n
−1) and D1(π

−1) bands. As seen in Figure 9, D0(n
−1)←S0 exhibits vibrational progressions of 

6a and 8a modes. On the other hand, the D1(π
−1)←S0 spectrum exhibits a strong 0–0 band, indicating 

that the equilibrium geometry in D1 is almost the same as S0. Franck–Condon analysis provides the 

magnitudes of the displacements ∆Q, but not their signs. Therefore, we determined their signs based 

on the calculated equilibrium geometry of D0(n
−1) at the B3LYP/cc-pVTZ level. Figure 13 shows  

the harmonic potential curves along the 6a and 8a normal coordinates. Crossings of these potentials 

are clearly observed for the 6a mode. The features of the potential functions thus experimentally 

determined are in reasonable agreement with the theoretical prediction [63]. 

Figure 11. (a) He(I) photoelectron spectrum at room temperature reproduced from Ref. [65] 

with energy recalibration by 83 meV; (b) He(I) UPS of pyrazine in a supersonic jet. The 

spectral resolution is 5.5 meV; (c) He(I) photoelectron spectrum of fully deuterated 

pyrazine in a supersonic jet. The spectral resolution is 9 meV. Reproduced with permission 

from Ref. [64], copyright (2008) by American Chemical Society. 
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Figure 12. (a) Expanded view of the He(I) photoelectron spectrum of jet-cooled pyrazine 

with vibrational assignments in the D1(π
−1)←S0 region. Convolution of the observed 

spectrum with a virtual instrumental resolution of 20 meV erases structures due to fine 

splitting. The envelope of the spectral feature is reproduced using four Lorentzian functions 

for the bands indicated in the figure; (b) VUV-PFI-PE spectrum of pyrazine in the 

D1(π
−1)←S0 region; (c) He(I) photoelectron spectrum of fully deuterated pyrazine in a 

supersonic jet. Reproduced with permission from Ref. [64], copyright (2008) by American 

Chemical Society. 

 

Figure 13. Harmonic potential curves along with 6a and 8a normal coordinates for 

pyrazine determined from spectroscopic data. The equilibrium geometries in the 3s(n−1) 

and D0(n
−1) states differ significantly from that of the ground state. The equilibrium 

geometry of the 3s(n−1) state differs from that of the D0(n
−1) state. Reproduced with 

permission from Ref. [64], copyright (2008) by American Chemical Society. 
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The Rydberg states generally have similar potential energy surfaces as those of the cation since the 

Rydberg electrons with high principal and angular momentum quantum numbers penetrate little into 

the ion core. For the lowest (3s) Rydberg state, the Rydberg electron penetrates relatively deeply into 

the core, but it still has quite a similar potential energy surface to that of the cation. Our first study of 

the 3s Rydberg states of pyrazine was performed using a femtosecond laser, whereas our second study 

was performed using a picosecond laser. These (2+1) REMPI spectra of pyrazine via 3s Rydberg states 

are shown in Figure 14 along with the spectrum recorded using a nanosecond laser. All three spectra 

were recorded by scanning the laser wavelength while monitoring the photoionization signal intensity. 

The spectrum recorded using a femtosecond laser is very broad due to its wide bandwidth and possible 

power broadening. This spectrum has not been corrected for variation in the laser intensity. 

Figure 14. (2+1) REMPI spectra of pyrazine-H4 observed via 3s(n−1) and 3s (π−1) Rydberg 

states with (a) a femtosecond laser (150–200 fs); (b) a picosecond laser (2.8 ps); and (c) a 

nanosecond laser. The spectrum in (b) was measured in the present study by maintaining a 

constant laser power during the measurement. The spectra in (a,b) are of molecules in a 

supersonic jet, while that in (c) is of a vapor. The PADs observed for the bands (α)–(ε) are 

shown as polar plots. The distributions are characteristic of the vibronic bands of 3s(n−1) 

and 3s(π−1) and are useful for their assignments. Reproduced with permission from Ref. [64], 

copyright (2008) by American Chemical Society, and Ref. [66], copyright (2001) by 

American Institute of Physics. 
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The spectrum measured with a picosecond laser shown in Figure 14b exhibits a very clear 

vibrational feature for the 3s(n−1) Rydberg state and a broad feature for the 3s(π−1) Rydberg state. 

Comparison with the D0(n
−1) photoelectron spectrum reveals that the 3s(n−1) state mainly differs in that 

it exhibits lifetime broadening due to interactions with valence electronic states, whereas D0(n
−1) has 

no decay; the vibronic band of 3s(n−1)←S0 has a width of 15 cm−1. Our main interest here is the width 

of the 0–0 band of 3s(π−1)←S0; it is as large as 390 cm−1, corresponding to a lifetime of 14 fs. A similar 

width, 370 cm−1, is observed for the 3s(π−1)←S0 0–0 band of deuterated pyrazine. The estimated 

lifetimes of the 3s(π−1) Rydberg states are similar to those of D1(π
−1). Our study clearly demonstrates 

that ultrafast internal conversion in the ion core also occurs in the Rydberg states. 

Figure 14 also shows the PAD measured for each vibronic bands [66]. The PADs observed for 

3s(n−1) and 3s(π−1) differ greatly, which assists assignment of vibronic bands. PEI is expected to be 

useful for analyzing complex photoabsorption spectra of higher excited states. 

6. Internal Conversion of Benzene and Toluene: Comparison with the Case of Pyrazine 

Benzene is a prototypical aromatic molecule and considered a benchmark for theoretical and 

experimental studies of organic compounds. The lifetime of the S1(
1B2u) state of benzene is 50–100 ns 

near the origin, while the S2(
1B1u) lifetime is much shorter (<100 fs) owing to ultrafast S2–S1 internal 

conversion. Similar to the case of pyrazine, the ultrashort S2 lifetime implies that photoexcited benzene 

easily accesses an S2/S1 conical intersection region. In fact, theoretical calculations predicted that the 

minimum-energy S2/S1 conical intersection point (a prefulvenic form) is close, in energy and structure, 

to the S2 potential minimum [67–69]. The minimum, however, is at a non-planar structure  

(a boat form) that differs from the planar structure of benzene (D6h) in S0 [67–69]. Consequently, a 

photoexcited benzene molecule rapidly deforms from a planar structure in the Franck-Condon region 

toward a non-planar structure along the steepest descent of the S2 potential energy surface and 

undergoes a non-adiabatic transition in the vicinity of the S2/S1 seam of crossings. This is a different 

feature from the pyrazine case in which the Franck-Condon region is close to the minimum energy 

conical intersection point. The hot S1 benzene produced by S2–S1 internal conversion is further 

funneled down to S0 via S1/S0 conical intersection in <10 ps [69–71]. 

Figure 15a,b shows the time profiles of the photoionization signal intensity observed for benzene 

and toluene using the 198 nm pump pulse and 264 nm probe pulse, respectively. The broken lines are 

the best-fit single exponential decay function convoluted with the cross-correlation of the pump and 

probe pulses. The effective lifetime estimated from the fit for benzene and toluene were 48 ± 4 and  

62 ± 4 fs respectively. Close examination of our experimental results, however, reveals that a single 

exponential decay model does not adequately reproduce the observed time profiles in either case. The 

observed non-exponential profiles are, in fact, reproduced better by assuming molecular response 

functions considering propagation of a wavepacket from the Franck-Condon region to the seam of 

crossings during which time no population decay occurs from S2. The arrival times of the wave packets 

at the seam of crossings are estimated as 33 fs for benzene and 41 fs for toluene: the subsequent decay 

time is 32 fs for benzene and 43 fs for toluene. 
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Figure 15. The time profiles of the photoionization signal intensity for (a) benzene and  

(b) toluene. Photoelectron signals are indicated by green dots with error bars. Time-energy 

maps of the photoelectron intensity, σ(t,E), for (c) benzene and (d) toluene. Time-energy 

maps of the photoelectron angular anisotropies, β2(t,E), for (e) benzene and (f) toluene and 

β4(t,E) for (g) benzene and (h) toluene. Data points for β2 and β4 with standard deviations 

smaller than 0.2 are shown (see text). Reproduced with permission from Ref. [72]. 

 

The photoelectron kinetic energy distributions at each time delay, σ(t,E), are extracted as shown  

in Figure 15c,d for benzene and toluene, respectively. The distributions consist of the S2 and S1 

components that are largely different from each other. The S2 component mainly appears in 0–1.5 eV, 

while S1 < 0.3 eV: the difference of kinetic energies originate from the fact that the electronic energy 

difference between S2 and S1 is transformed into the vibrational energy in S1, and the vibrational energy 

is approximately conserved upon ionization [70–72]. Since the probe photon energy of 264 nm is 

insufficient to cover the entire Franck-Condon envelope in ionization from S1, the quantum yield of  

S2–S1 internal conversion cannot be evaluated accurately from our result. 

For both benzene and toluene, close examination of the high-energy (1–1.5 eV) region of the S2 

component reveals vibrational wave packet dynamics. The molecules are planar in the Franck-Condon 

region of S2, and therefore ionization at t = 0 occurs to low vibrational levels of the cation, which also 

has a planar structure. As the vibrational wave packet moves out from the Franck-Condon region, 
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ionization starts occurring to vibrationally excited states of the cation, lowering the entire distribution 

in energy from the moment the photoelectron signal initially appears. Another interesting feature is an 

oscillatory component that appears as a red triangular shape in Figure 15c and a red-yellow region in 

Figure 15d. Close examination of Figure 15e for benzene reveals that β2 varies with time, most clearly 

around 0.7 eV; β2 is negative at t = 0 and gradually increases with time to be positive around ca. 30 fs. 

Similar time dependence of β2 is also seen in Figure 15f for toluene, for example at around 1.0 eV. 

These rapid changes of β2(t,E) with time indicate variation of the electronic character along the  

out-of-plane distortion. When benzene undergoes out-of-plane distortion, it loses the planarity and, 

consequently, distinction between the σ and π electrons. Thus, the electronic characters of the S2 and S1 

states gradually change along the reaction pathway. This is contrasted with the case of pyrazine, which 

has a conical intersection near the minimum of the diabatic S2 surface and the subsequent dynamics 

primarily occur in the planar geometry (Figure 16). 

Figure 16. Comparison of conical intersections in pyrazine and benzene. The vertical 

arrows indicate photoexcitation, and the horizontal axes are the reaction coordinates. The 

red and green correspond respectively to the diabatic S2 and S1 states, and blue indicates 

contribution of other zero-order electronic states. 

 

7. Summary 

Ultrafast internal conversion via conical intersections plays a crucial role in the photophysics and 

photochemistry of aromatic molecules. These processes can be studied in the time and frequency 

domains by various types of photoelectron spectroscopies. Although theoretical studies have been 

performed on the S2–S1 internal conversion in pyrazine as a benchmark system, its real-time 

observation was only enabled by the development of sub-20 fs ultrafast lasers operating in the deep 

UV region. The most useful observable for studying the nonadiabatic electronic dynamics of pyrazine 

is the time–energy map of photoelectron anisotropy. On the other hand, the observation region of the 

excited state surfaces depends on the probe laser wavelength. We expanded the observation region 

using a vacuum ultraviolet free electron laser; however, fluctuation of the laser pulses due to the 

principle of self-amplification of the spontaneous emission restricted the time resolution. Filamentation 

four-wave mixing successfully generates sub-20 fs 159 nm pulse at 1 kHz, which allowed vacuum 
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ultraviolet time-resolved photoelectron imaging with an ultimate time-resolution of 17 fs. A conical 

intersection similar to the S2–S1 system is observed for the cation states of D1 and D0. Pulsed field 

ionization photoelectron spectroscopy is affected by the strong vibronic coupling mediated by the 

conical intersection and its spectral feature for D1 differs strikingly from that in He(I) photoelectron 

spectroscopy. Because the molecular Rydberg states have essentially the same electronic potentials as 

the cation states, conical intersections occur between the Rydberg states with the n−1 and π−1 ion cores. 

Benzene and toluene have the S2–S1 conical intersection at non-planar geometries. When these 

molecules are photoexcited to S2, the nuclear wave packet travels more than 50 fs to reach the conical 

intersection region at non-planar geometry, and they undergo internal conversion. Along the reaction 

pathway, the loss of the planarity induces gradual change of the electronic character, which is 

manifested by time-evolution of the photoelectron anisotropy parameter. 

Acknowledgments 

The authors thank T. Horio, Y.-I. Suzuki, T. Fuji and M. Oku for their essential contributions  

to the studies presented in this article. We express our gratitude to V. Bonačić-Koutecký, R. Mitric, and 

C.-Y. Ng for very fruitful collaboration. 

Conflicts of Interest 

The author declares no conflict of interest. 

References 

1. Born, M.; Oppenheimer, R. Quantum theory of molecules. Ann. Phys. 1927, 84, 457–484. 

2. Teller, E. Internal conversion in polyatomic molecules. Isr. J. Chem. 1969, 7, 227–235. 

3. Salem, L. Surface crossings and surface touchings in photochemistry. J. Am. Chem. Soc. 1974, 96, 

3486–3501. 

4. Salem, L.; Leforestier, C.; Segal, G.; Wetmore, R. Avoided surface crossings. J. Am. Chem. Soc. 

1975, 97, 479–487. 

5. Michl, J.; Bonacic-Koutecky, V. Electronic Aspects of Organic Photochemistry; Wiley-Interscience 

Publication: Hoboken, NJ, USA, 1990. 

6. Nordling, C.; Sokolowski, E.; Siegbahn, K. Precision method for obtaining absolute values of 

atomic binding energies. Phys. Rev. 1957, 105, 1676–1677. 

7. Turner, D.W.; Al-Joboury, M.I. Determination of ionization potentials by photoelectron energy 

measurement. J. Chem. Phys. 1962, 37, 3007–3008. 

8. Vilesov, F.I.; Terenin, A.N.; Kurbatoy, B.L. Electron distribution over energies in photoionization 

of aromatic amines in gaseous phase. DAN SSSR 1961, 138, 1329–1332. 

9. Seel, M.; Domcke, W. Femtosecond time-resolved ionization spectroscopy of ultrafast  

internal-conversion dynamics in polyatomic molecules: Theory and computational studies.  

J. Chem. Phys. 1991, 95, 7806–7822. 

10. Knee, J.L. High Resolution Laser Photoionization and Photoelectron Studies; Powis, I., Baer, T., 

Ng, C.-Y., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1995. 



Molecules 2014, 19 2430 

 

 

11. Hertel, I.V.; Radloff, W. Ultrafast dynamics in isolated molecules and molecular clusters.  

Rep. Prog. Phys. 2006, 69, 1897–2003. 

12. Seideman, T. Time-resolved photoelectron angular distributions: Concepts, applications, and 

directions. Annu. Rev. Phys. Chem. 2002, 53, 41–65. 

13. Reid, K.L. Picosecond time-resolved photoelectron spectroscopy as a means of gaining insight 

into mechanisms of intramolecular vibrational energy redistribution in excited states. Int. Rev. 

Phys. Chem. 2008, 27, 607–628. 

14. Stolow, A.; Bragg, A.E.; Neumark, D.M. Femtosecond time-resolved photoelectron spectroscopy. 

Chem. Rev. 2004, 104, 1719–1757. 

15. Suzuki, T. Modern Trends in Chemical Reaction Dynamics: Theory and Experiment (Part I);  

Ng, C.-Y., Ed.; World Scientific: Singapore, 2004. 

16. Suzuki, T. Femtosecond time-resolved photoelectron imaging. Ann. Rev. Phys. Chem. 2006, 57, 

555–592. 

17. Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas 

and liquid phases. Int. Rev. Phys. Chem. 2012, 31, 265–318. 

18. Kruit, P.; Read, F.H. Magnetic-field parallelizer for 2p electronspectrometer and electron-image 

magnifier. J. Phys. E Sci. Instrum. 1983, 16, 313–324. 

19. Chandler, D.W.; Houston, P.L. Two-dimensional imaging of state-selected photodissociation 

products detected by multiphoton ionization. J. Chem. Phys. 1987, 87, 1445–1447. 

20. Eppink, A.T.J.B.; Parker, D.H. Velocity map imaging of ions and electrons using electrostatic 

lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen.  

Rev. Sci. Instrum. 1997, 68, 3477–3484. 

21. Whitaker, B.J. Imaging in Molecular Dynamics; Cambridge University Press: Cambridge, UK, 2003. 

22. Lin, J.J.; Zhou, J.G.; Shiu, W.C.; Liu, K.P. Application of time-sliced ion velocity imaging to 

crossed molecular beam experiments. Rev. Sci. Instrum. 2003, 74, 2495–2500. 

23. Liu, S.Y.; Alnama, K.; Matsumoto, J.; Nishizawa, K.; Kohguchi, H.; Lee, Y.P.; Suzuki, T.  

He I ultraviolet photoelectron spectroscopy of benzene and pyridine in supersonic molecular 

beams using photoelectron imaging. J. Phys. Chem. A 2011, 115, 2953–2965. 

24. Suzuki, T.; Wang, L.; Kohguchi, H. Femtosecond time-resolved photoelectron imaging on 

ultrafast electronic dephasing in an isolated molecule. J. Chem. Phys. 1999, 111, 4859–4861. 

25. Wang, L.; Kohguchi, H.; Suzuki, T. Femtosecond time-resolved photoelectron imaging.  

Faraday Discuss. 1999, 113, 37–46. 

26. Garcia, G.A.; Nahon, L.; Powis, I. Two-dimensional charged particle image inversion using a 

polar basis function expansion. Rev. Sci. Instrum. 2004, 75, 4989–4996. 

27. Horio, T.; Suzuki, T. Multihit two-dimensional charged-particle imaging system with real-time 

image processing at 1000 frames/s. Rev. Sci. Instrum. 2009, 80, 013706. 

28. Fuji, T.; Horio, T.; Suzuki, T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing 

through filamentation in neon gas. Opt. Lett. 2007, 32, 2481–2483. 

29. Fuji, T.; Suzuki, T.; Serebryannikov, E.E.; Zheltikov, A. Experimental and theoretical 

investigation of a multicolor filament. Phys. Rev. A 2009, 80, 063822. 



Molecules 2014, 19 2431 

 

 

30. Zuo, P.; Fuji, T.; Horio, T.; Adachi, S.; Suzuki, T. Simultaneous generation of ultrashort pulses at 

158 and 198 nm in a single filamentation cell by cascaded four-wave mixing in Ar. Appl. Phys. B 

2012, 108, 815–819. 

31. Horio, T.; Spesyvtsev, R.; Suzuki, T. Simultaneous generation of sub-20 fs deep and vacuum 

ultraviolet pulses in a single filamentation cell and application to time-resolved photoelectron 

imaging. Opt. Express 2013, 21, 22423–22428. 

32. Chin, S.L. Femtosecond Laser Filamentation; Springer Series on Atomic, Optical and Plasma 

Physics; Springer: New York, NY, USA, 2010. 

33. Ogi, Y.; Kohguchi, H.; Niu, D.; Ohshimo, K.; Suzuki, T. Super-resolution photoelectron imaging 

with real-time subpixelation by field programmable gate array and its application to NO and 

benzene photoionization. J. Phys. Chem. A 2009, 113, 14536–14544. 

34. Schneider, R.; Domcke, W. S1–S2 conical intersection and ultrafast S2–S1 internal-conversion in 

pyrazine. Chem. Phys. Lett. 1988, 150, 235–242. 

35. Seidner, L.; Stock, G.; Sobolewski, A.L.; Domcke, W. Abinitio characterization of the S1–S2 

conical intersection in pyrazine and calculation of spectra. J. Chem. Phys. 1992, 96, 5298–5309. 

36. Woywod, C.; Domcke, W.; Sobolewski, A.L.; Werner, H.J. Characterization of the S1–S2 conical 

intersection in pyrazine using ab-initio multiconfiguration self-consistent-field and multireference 

configuration-interaction methods. J. Chem. Phys. 1994, 100, 1400–1413. 

37. Gerdts, T.; Manthe, U. A microscopic description of dissipation in systems with strong vibronic 

coupling: The S1 and S2 absorption spectra of pyrazine. Chem. Phys. Lett. 1998, 295, 167–174. 

38. Raab, A.; Worth, G.A.; Meyer, H.D.; Cederbaum, L.S. Molecular dynamics of pyrazine after 

excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 

1999, 110, 936–946. 

39. Thoss, M.; Miller, W.H.; Stock, G. Semiclassical description of nonadiabatic quantum dynamics: 

Application to the S1–S2 conical intersection in pyrazine. J. Chem. Phys. 2000, 112, 10282–10292. 

40. Coletti, C.; Billing, G.D. Quantum dressed classical mechanics: Application to the photo-absorption 

of pyrazine. Chem. Phys. Lett. 2003, 368, 289–298. 

41. Shalashilin, D.V.; Child, M.S. Real time quantum propagation on a Monte Carlo trajectory guided 

grids of coupled coherent states: 26D simulation of pyrazine absorption spectrum. J. Chem. Phys. 

2004, 121, 3563–3568. 

42. Chen, X.; Batista, V.S. Matching-pursuit/split-operator-Fourier-transform simulations of  

excited-state nonadiabatic quantum dynamics in pyrazine. J. Chem. Phys. 2006, 125, 124313. 

43. Puzari, P.; Sarkar, B.; Adhikari, S. A quantum-classical approach to the molecular dynamics of 

pyrazine with a realistic model Hamiltonian. J. Chem. Phys. 2006, 125, 194316. 

44. Puzari, P.; Swathi, R.S.; Sarkar, B.; Adhikari, S. A quantum-classical approach to the 

photoabsorption spectrum of pyrazine. J. Chem. Phys. 2005, 123, 134317. 

45. He, R.X.; Zhu, C.Y.; Chin, C.H.; Lin, S.H. Ab initio studies of excited electronic state S2 of 

pyrazine and Franck-Condon simulation of its absorption spectrum. Chem. Phys. Lett. 2009, 476, 

19–24. 

46. Werner, U.; Mitric, R.; Suzuki, T.; Bonacic-Koutecky, V. Nonadiabatic dynamics within the time 

dependent density functional theory: Ultrafast photodynamics in pyrazine. Chem. Phys. 2008, 

349, 319–324. 



Molecules 2014, 19 2432 

 

 

47. Werner, U.; Mitric, R.; Bonacic-Koutecky, V. Simulation of time resolved photoelectron spectra 

with Stieltjes imaging illustrated on ultrafast internal conversion in pyrazine. J. Chem. Phys. 

2010, 132, 174301. 

48. Yamazaki, I.; Murao, T.; Yamanaka, T.; Yoshihara, K. Intramolecular electronic relaxation and 

photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine and 

pyrimidine. Faraday Discuss. 1983, 75, 395–405. 

49. Horio, T.; Fuji, T.; Suzuki, Y.I.; Suzuki, T. Probing ultrafast internal conversion through conical 

intersection via time-energy map of photoelectron angular anisotropy. J. Am. Chem. Soc. 2009, 

131, 10392–10393. 

50. Suzuki, Y.I.; Fuji, T.; Horio, T.; Suzuki, T. Time-resolved photoelectron imaging of ultrafast 

S2→S1 internal conversion through conical intersection in pyrazine. J. Chem. Phys. 2010, 132, 

174302. 

51. Suzuki, Y.-I.; Suzuki, T. Effect of electron correlation and shape resonance on photoionization 

from the S1 and S2 states of pyrazine. J. Chem. Phys. 2012, 137, 194314. 

52. Stert, V.; Farmanara, P.; Radloff, W. Electron configuration changes in excited pyrazine 

molecules analyzed by femtosecond time-resolved photoelectron spectroscopy. J. Chem. Phys. 

2000, 112, 4460–4464. 

53. Udagawa, Y.; Ito, M.; Suzuka, I. Single vibronic level fluorescence from n, p* state of pyrazine 

vapor. Chem. Phys. 1980, 46, 237–249. 

54. Fülscher, M.P.; Andersson, K.; Roos, B.O. Toward an accurate molecular orbital theory for 

excited states: The azabenzenes. J. Phys. Chem. 1992, 96, 9204–9212. 

55. Nisoli, M.; Sansone, G. New frontiers in attosecond science. Prog. Quantum Electron. 2009, 33, 

17–59. 

56. Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. 

57. Pfeifer, T.; Spielmann, C.; Gerber, G. Femtosecond X-ray science. Rep. Prog. Phys. 2006, 69, 

443–505. 

58. Barty, A.; Soufli, R.; McCarville, T.; Baker, S.L.; Pivovaroff, M.J.; Stefan, P.; Bionta, R. 

Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source 

(LCLS) X-ray free electron laser. Opt. Express 2009, 17, 15508–15519. 

59. Shintake, T.; Tanaka, H.; Hara, T.; Tanaka, T.; Togawa, K.; Yabashi, M.; Otake, Y.; Asano, Y.; 

Bizen, T.; Fukui, T.; et al. A compact free-electron laser for generating coherent radiation in the 

extreme ultraviolet region. Nat. Photonics 2008, 2, 555–559. 

60. Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; 

Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to 

the water window. Nat. Photonics 2007, 1, 336–342. 

61. Zuo, P.; Fuji, T.; Suzuki, T. Spectral phase transfer to ultrashort UV pulses through four-wave 

mixing. Opt. Express 2010, 18, 16183–16192. 

62. Liu, S.Y.; Ogi, Y.; Fuji, T.; Nishizawa, K.; Horio, T.; Mizuno, T.; Kohguchi, H.; Nagasono, M.; 

Togashi, T.; Tono, K.; et al. Time-resolved photoelectron imaging using a femtosecond UV laser 

and a VUV free-electron laser. Phys. Rev. A 2010, 81, 031403. 

63. Seidner, L.; Domcke, W.; von Niessen, W. X̃2AG—Ã 2B1g conical intersection in the pyrazine 

cation and its effect on the photoelectron-spectrum. Chem. Phys. Lett. 1993, 205, 117–122. 



Molecules 2014, 19 2433 

 

 

64. Oku, M.; Hou, Y.; Xing, X.; Reed, B.; Xu, H.; Chang, C.; Ng, C.Y.; Nishizawa, K.; Ohshimo, K.; 

Suzuki, T. 3s Rydberg and cationic states of pyrazine studied by photoelectron spectroscopy.  

J. Phys. Chem. A 2008, 112, 2293–2310. 

65. Fridh, C.; Asbrink, L.; Jonsson, B.O.; Lindholm, E. XV. Photoelectron, UV, mass and electron 

impact spectra of pyrazine. Int. J. Mass Spectrom. Ion Phys. 1972, 8, 101–118. 

66. Song, J.K.; Tsubouchi, M.; Suzuki, T. Femtosecond photoelectron imaging on pyrazine: 

Spectroscopy of 3s and 3p Rydberg states. J. Chem. Phys. 2001, 115, 8810–8818. 

67. Meisl, M.; Janoschek, R. The dynamics of low-lying excited-states of benzene—The biradicaloid 

structure of the S2 state. J. Chem. Soc. Chem. Commun. 1986, 1986, 1066–1067. 

68. Palmer, I.J.; Ragazos, I.N.; Bernardi, F.; Olivucci, M.; Robb, M.A. An Mc-Scf study of the S1 and 

S2 photochemical-reactions of benzene. J. Am. Chem. Soc. 1993, 115, 673–682. 

69. Toniolo, A.; Thompson, A.L.; Martinez, T.J. Excited state direct dynamics of benzene with 

reparameterized multi-reference semiempirical configuration interaction methods. Chem. Phys. 

2004, 304, 133–145. 

70. Radloff, W.; Freudenberg, T.; Ritze, H.H.; Stert, V.; Noack, F.; Hertel, I.V. Lifetime of the 

benzene dimer in the S2 electronic state. Chem. Phys. Lett. 1996, 261, 301–306. 

71. Radloff, W.; Stert, V.; Freudenberg, T.; Hertel, I.V.; Jouvet, C.; Dedonder-Lardeux, C.; Solgadi, D. 

Internal conversion in highly excited benzene and benzene dimer: Femtosecond time-resolved 

photoelectron spectroscopy. Chem. Phys. Lett. 1997, 281, 20–26. 

72. Suzuki, Y.I.; Horio, T.; Fuji, T.; Suzuki, T. Time-resolved photoelectron imaging of S2S1 

internal conversion in benzene and toluene. J. Chem. Phys. 2011, 134, 184313. 

© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


