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Abstract: Bioassay-guided fractionation of a chloroform extract of Valeriana wallichii  

(V. wallichii) rhizomes lead to the isolation and identification of caffeic acid bornyl ester 

(1) as the active component against Leishmania major (L. major) promastigotes  

(IC50 = 48.8 µM). To investigate the structure-activity relationship (SAR), a library of 

compounds based on 1 was synthesized and tested in vitro against L. major and  

L. donovani promastigotes, and L. major amastigotes. Cytotoxicity was determined using a 

murine J774.1 cell line and bone marrow derived macrophages (BMDM). Some 

compounds showed antileishmanial activity in the concentration range of pentamidine and 

miltefosine which are the standard drugs in use. In the L. major amastigote assay 

compounds 15, 19 and 20 showed good activity with relatively low cytotoxicity against 

BMDM, resulting in acceptable selectivity indices. Molecules with adjacent phenolic 

hydroxyl groups exhibited elevated cytotoxicity against murine cell lines J774.1 and BMDM. 

The Michael system seems not to be essential for antileishmanial activity. Based on the 

results compound 27 can be regarded as new lead structure for further structure optimization. 
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1. Introduction 

Leishmaniasis is one of the most dreadful infectious diseases worldwide. It is endemic in 98 countries 

and almost 350 million people on five continents are at risk of infection [1,2]. The disease has an 

especially high impact on the population of the disadvantaged regions of South America, Africa and 

Asia (especially India), all of them suffering from poverty and low health care standards. 

Leishmaniasis is caused by protozoan parasites, which are transmitted by the bite of the sand fly. It 

comprises a variety of diseases. Cutaneous leishmaniasis mostly caused by L. major produces skin 

sores, ulcers and eventually heals by leaving defacing scars. The most severe form is the visceral 

leishmaniasis also known as kala-azar or black fever. Here the parasites invade internal organs, 

especially the liver and the spleen. This is fatal if left untreated. The species known to cause visceral 

leishmaniasis is L. donovani which is prevalent in India and East Africa. 70% of the global burden of 

kala-azar is concentrated in India [1,3]. The estimated incidence of visceral leishmaniasis in India is 

146,700 to 282,800 cases per year [1]. 

The infection can be treated but the drugs in use like miltefosine or amphotericin B show severe 

side effects. Additionally these drugs are expensive and require adequate medicinal care which is not 

readily available in the most affected regions of India or Africa. Therefore, the need for new 

antileishmanial drugs is evident. As reported previously the chloroform extract of V. wallichii roots 

showed antileishmanial activity [4]. In this paper we describe the isolation and structure elucidation of 

one active ingredient, which was assigned to be caffeic acid bornyl ester (1). In order to analyse 

structure-activity relationship for activity optimization a library of derivatives has been synthesized. 

The respective cytotoxicity against diverse species of Leishmania promastigotes, amastigotes, and 

macrophages was determined. 

2. Results and Discussion 

2.1. Isolation 

The crude chloroform extract obtained from the pulverized rhizomes of V. wallichii was subjected 

to bioactivity-guided fractionation. The extract was roughly fractionated into twelve fractions by 

means of semi-preparative HPLC using reverse phase material and a gradient of H2O/MeOH as the 

eluent. The most active fraction was repeatedly partitioned by normal phase silica gel column 

chromatography with CHCl3/MeOH (4.8:0.2 v/v) as mobile phase. From a relatively polar sub-fraction 

with an IC50 of 11.8 µg/mL against L. major promastigotes a pure compound could be isolated.  
1H- NMR data showed two doublets for vinyl protons at 6.3 and 7.6 ppm, respectively, with the typical 

coupling constants of 15.9 Hz indicating a double bond with trans configuration. Signals for three 

aromatic protons with a characteristic coupling pattern suggested meta and para substitution in relation 

to the side chain. Characteristic for the borneol moiety were the three -CH3 singlets at 0.90, 0.95 and 
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0.99 ppm respectively. ESIMS data confirmed the assumed ester structure with two hydroxyl groups as 

substituents on the aromatic ring by giving a mass of m/z 315 [M−H]−. The obtained spectroscopic data 

are in accordance to literature data [5–7] for caffeic acid bornyl ester. Similar bornyl esters have been 

found in Conocephalum conicum (liverwort) [8,9] and some Verbesina species [7,10,11]. 

2.2. Chemistry 

Since the caffeoyl-skeleton has been described to be a valuable pharmacophore for antiviral [5,12], 

antibacterial [13] and antiprotozoal activity [14] we tried to enhance the antileishmanial activity and to 

decrease the cytotoxicity by the synthesis of a library of derivatives of 1 with systematic structure 

variations with regard to the terpenoid part on the one hand and the caffeic acid part on the other hand. 

To investigate structure-activity relationship borneol was replaced by moieties varying in size and 

bulkiness, and substituents with different properties such as hydroxyl, methoxy and nitro groups as 

well as halogen atoms were attached to the aromatic ring in varying positions. The general synthesis of 

phenolic compound 1 and its derivatives 2–13 via Knoevenagel-Doebner condensation is outlined  

in Scheme 1.  

Scheme 1. Preparation of compounds 1–13 (substituents are listed in Table 1). 

 

Activation of the corresponding alcohol with Meldrum’s acid without isolation of the activated 

product and subsequent aldol condensation using the substituted aldehyde lead to the cinnamic acid 

derivatives 1–13 in acceptable yields [5]. Compounds 14–26 were accessible by facile esterification 

using the Steglich concept composed of N,N'-dicyclohexylcarbodiimide (DCC) and 4-dimethyl-

aminopyridine (DMAP) in CHCl3 or THF (Scheme 2).  

Scheme 2. Preparation of compounds 14–26 (substituents are listed in Table 2). 

 

The α,β-unsaturated carbonyl moiety of the caffeic acid is a Michael acceptor which is highly 

reactive to nucleophilic attacks, e.g., by amino or thiol groups. To investigate whether the double bond 

is essential for antileishmanial activity compound 27 has been synthesized via a different synthesis 

route as described before [15]. By esterification of 3-phenyl propanoic acid with borneol using tosyl 

chloride, Et3N and DMAP as a catalyst (Scheme 3) product 27 was obtained. 
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Scheme 3. Preparation of compound 27. 

 

It might be possible that the catechol moiety of compound 1 contributes to cytotoxicity or 

antileishmanial activity. Hence both phenolic hydroxyl groups were acetylated by adding acetic acid 

anhydride to caffeic acid bornyl ester 1 (isolated from the plant) in pyridine at 0 °C and stirring for 24 h 

at room temperature (Scheme 4) to give compound 28. 

Scheme 4. Preparation of compound 28. 

 

2.3. Structure-Activity Relationship Investigation 

Antileishmanial activities of the synthesized compounds were evaluated in L. major promastigotes as 

described before [16] and in L. donovani promastigotes according to Hazra et al. [17]. Cytotoxicity was 

determined on a J774.1 murine cell line [16]. The antiprotozoal activities are presented in Tables 1–3 as 

inhibitory concentrations (IC50). The most active compound is the cinnamic acid bornyl ester 15 

having an IC50 value of 39.6 µM against L. major and 15.6 µM against L. donovani promastigotes, 

which is in the concentration range of pentamidine and miltefosine; both are drugs currently in use.  

2.3.1. Influence of the Bornyl Moiety  

The bornyl moiety is of particular importance of preserving antileishmanial activity. The most 

active compounds 1, 7, 15 and 27 are all esters of borneol. There is no significant change in activity 

using isoborneol (1) instead of borneol (7). Substituting borneol with a less sterically demanding 

alcohol e.g., cyclohexanol (23) or eugenol (24) gives IC50 values higher than 100 µM (L. major). 

Using thymol (10, 11, 19), menthol (12, 13, 20) or other bulky substituents like naphthol (22) or 

adamantol (21) preserves the activity. A similar pattern is found with L. donovani promastigotes. 

Again the bornyl esters show the best IC50 values, and the activity is at a similar level using thymol, 

menthol or naphthol. In contrast to L. major some of the sterically less demanding compounds exhibit 

activity against L. donovani promastigotes (e.g., 23.4 μM (23), 41.9 μM (26)). This might be due to 

biological differences between the two species. However borneol seems to be the most advantageous 

substituent fulfilling the requirement of bulkiness in this position.  
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2.3.2. The Catechol Moiety 

The caffeic acid derivative (1) isolated from V. wallichii having two hydroxyl groups in position 3 

and 4 of the aromatic ring shows an IC50 value of 48.8 μM against L. major promastigotes and 

relatively high cytotoxicity (8.3 μM) against a J774.1 cell line. The toxicity is an attribute of all meta 

and para dihydroxylated cinnamic acid derivatives (7, 10, 12) and has been reported in the literature 

for similar compounds [14,18,19]. The catechol moiety is prone to oxidation resulting in an o-quinone 

which can easily react with amino groups of proteins [20]. Hence, omitting the hydroxyl groups lead to 

15 with antileishmanial activity in the same concentration range as 1 but with a fivefold lower cytotoxicity.  

Table 1. Antileishmanial activity and cytotoxicity (compounds 1–13). 

 
 IC50 (μM) * 

Compd. R1 R2 R3 L. major  
promastigotes 

L. donovani  
promastigotes 

J774.1 

1  
 
 

 

-OH -OH 48.8 27.3 8.3 

2 -OH -OCH3 64.4 41.3 48.7 

3 -H -Cl 71.2 >100 49.5 

4 -H -Br >100 >100 54.6 

5 -H -N(CH3)2 >100 >100 >100 

6 -H >100 >100 >100 

7  

 

-OH -OH 45.8 34.8 8.8 

8 -OH -OCH3 60.6 74.5 44.3 

9 -H -NO2 >100 >100 >100 

10 

 

-OH -OH 57.6 42.1 9.5 

11 -OH -OCH3 59.8 79.6 45.6 

 
12 

 

-OH -OH 59.5 79.4 1.95 

13 -OH -OCH3 54.2 >100 44.6 

* Positive control: pentamidine 82 μM (L. major), 38.6 μM (J774.1); miltefosine: 36.2 μM (L. major),  

56.5 μM (J774.1); amphotericin B 0.4 μM (L. donovani). 
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Table 2. Antileishmanial activity and cytotoxicity (compounds 14–26 and 28). 

 

* Positive control: pentamidine 82 μM (L. major), 38.6 μM (J774.1); miltefosine: 36.2 μM (L. major),  

56.5 μM (J774.1); amphotericin B 0.4 μM (L. donovani). 

 IC50 (µM) * 

Compd. R1 R2 R3 R4 R5 L. major 
promastigotes 

L. donovani 
promastigotes 

J774.1 

14  

 

-H -H -Cl -Cl 65.6 >100 58.9 

15 -H -H -H -H 39.6 15.6 45.2 

16 -H -OCH3 -H -H 60.9 >100 42.6 

17 -H -Cl -H -Cl 80.5 >100 60.6 

18 
 

-H -H -H -H 
 

64.3 
 

51.2 
 

46.0 

19 

 
-H -H -H -H 

 
 

55.0 

 
 

>100 

 
 

44.8 

20 

 

-H -H -H -H 53.1 79.7    44.8 

21 

 

-H -H  -H -H 
 

60.0 
 

>100 
 

46.7 

 
22  

-H -H  -H -H  67.0 28.7 44.5 

 
23 

 

 

 

-H 

 

-H 

 

 -H 

 

-H 

 
 

>100 

 
 

23.4 

 
 

>100 

 
24  

 

-H 

 

-H 

 

 -H 

 

-H 

 
 

>100 

 
 

>100 

 
 

>100 

25 
 

-H -H  -H -H 
 

>100 
 

80.3 
 

32.2 

 
26 

 
-H -H  -H -H 

 
>100 

 
41.9 

 
>100 

28 
 

-OAc -OAc -H -H         30.7 -   2.1 
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The same effect is observed by replacement of the hydroxyl group in 4-position with a methoxy 

group (compounds 2, 8, 11, 13). However, the cytotoxicity is not correlating with antileishmanial 

activity, the latter stays in the same concentration range for compounds whether with or without 

hydroxyl groups. Acetylation to “mask” the catechol structure (compound 28) slightly increased 

antileishmanial activity but cytotoxicity persisted in the single-digit micromolar range.  

2.3.3. Substitution on the Aromatic Ring 

In order to analyse the influence of the substituents of the aromatic ring on antileishmanial activity 

and cytotoxicity, bornyl esters are compared in the following. Compound 15 with an unsubstituted 

benzene ring is the most promising compound with an antileishmanial activity in a low micromolar 

concentration and low cytotoxicity. The comparison of all derivatives with substituents in para 

position reveals compounds 3 (-Cl) and 16 (-OMe) to have minor antileishmanial activity against  

L. major (71.2 μM and 60.9 μM). Larger substituents are not tolerated in this location  

(compounds 4–6, 9) whereas chlorination in position 2 and 3 (compound 14), and 2 and 4 (compound 17), 

respectively, is acceptable. None of these compounds exhibited any activity against L. donovani 

promastigotes. Thus, a non-substituted aromatic ring is advantageous for a good antiprotozoal activity 

against both species. 

2.3.4. Michael System 

All compounds are characterized by the highly reactive enone Michael system, which is prone to 

unspecific covalent reactions with proteins of both parasite and host. In order to check whether the 

Michael moiety is necessary for antileishmanial activity, compound 27 characterized by a simple 

carbonyl group was synthesized. This compound is as active as the corresponding compound 15 and 

did not show cytotoxicity (Table 3). This is in contrast to the results observed for caffeic acid alkyl 

ester derivatives which were found to be inactive without the double bond [14].  

Table 3. Antileishmanial activity of compounds 15 and 27. 

 
Compound 

L. major 
promastigotes 

IC50 (µM) 

Cytotoxicity 
J774.1 

IC50 (µM) 

Selectivity index 
SI a 

 

 
39.6 

 
45.2 

 
1.1 

 

 
50.2 

 
>100 

 
>2.0 

a SI = IC50 for J774.1/IC50 for L. major. 

2.4. Amastigote Results  

The amastigote is the intracellular pathogenic form of the parasite in the vertebrate host and 

therefore the important target. Compounds 1, 2, 7, 10, 15, 19, 20 showing high activity against  
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L. major promastigotes were selected for screening against L. major amastigotes and cytotoxicity 

against BMDM. The amastigote assay was conducted as reported by Bringmann et al. [16] and the 

results are presented in Table 4. The cytotoxicity against BMDM mirrors those against the 

macrophages J774.1. With regard to antileishmanial activity cinnamic acid menthyl (20) and thymyl 

ester (19) show good activities combined with low cytotoxicity. Again the cinnamic acid bornyl ester 

(15) is the most active compound. In general, the activity lies in the range of miltefosine with an IC50 

value of 33.0 μM. Based on these results, the compounds should be tested for in vivo activity against 

Leishmania infections. 

Table 4. Antileishmanial activity and cytotoxicity of selected compounds. 

Compound 
L.major 

amastigotes 
IC50 (µM) 

Cytotoxicity 
BMDM 

IC50 (µM) 

Selectivity index 
SI a 

1 47.6 5.3 0.1 
7 47.0 10.9 0.2 

15 10.9 54.3 5.0 
2 39.2 49.0 1.2 

19 49.1 >148 >3.0 
20 19.5 >126 >6.4 
10 54.1 9.8 0.2 

Miltefosine 33.0 65.5 2.0 
a SI = IC50 for BMDM/IC50 for L. major. 

3. Experimental  

3.1. General Procedures 

Starting materials and reagents were purchased from Sigma-Aldrich (Taufkirchen, Germany) and 

VWR (Darmstadt, Germany). Solvents were of synthetic or analytical grade. Melting points were 

determined on a Stuart melting point apparatus SMP10 (Bibby Scientific, Stone, United Kingdom) and 

are uncorrected. Optical rotations were measured on a CHIRALYSER 6.3 (IBZ Messtechnik, Springe, 

Germany). IR spectra were acquired on a JASCO (Gross-Umstadt, Germany) FT/IR-6100 Fourier 

Transformation Infrared Spectrometer equipped with an ATR unit. 1H (400.132 MHz) and 13C 

(100.613 MHz) NMR spectra were recorded on a Bruker Avance 400 Ultra Shield™ (Bruker Biospin, 

Ettlingen, Germany) spectrometer. The signals of the deuterated solvents were used as internal standards 

(CDCl3: 
1H 7.26 ppm, 13C 77.0 ppm; MeOD: 1H 4.84 ppm, 13C 49.05 ppm). LC/MS was conducted on an 

Agilent 1100 analytical HPLC with DAD detection and an Agilent LC/MSD Trap (Agilent Technologies, 

Böblingen, Germany). ESIMS data was conducted in positive and negative mode. For LC/MS, following 

conditions were used: Nucleodur Sphinx RP-18 (Macherey-Nagel, Düren, Germany, 150 mm × 4.6 mm, 

5 µm, A) CH3CN + 0.1% FA, B) H2O + 0.1% formic acid (FA), gradient: 10% B (0–2 min), 30% B 

(2–3 min), 100% B (3–25 min), 80% B (25–33 min), 40% B (33–37 min), 10% B (38–40 min),  

0.8 mL/min, MS-detection: ESI, nebulizer pressure: 50 psi, drying gas: 10 L/min, drying gas 

temperature: 350 °C, capillary voltage: 3500 V. An Agilent 1100 preparative HPLC with fraction 

collector and multiple wavelength detector (MWD) was used for fractionation of the extract.  



Molecules 2014, 19 1402 

 

 

3.2. Plant Material and Preparation of Extract 

The plant material was obtained as described previously [4]. The rhizomes were pulverized and a 

portion of 10 g was refluxed for 2 h with 100 mL chloroform. Evaporation of the solvent yielded a 

black syrup with a characteristic smell.  

3.3. Bioactivity-Guided Fractionation and Isolation of 1 

The crude chloroform extract (10.9 g) was subjected to a bioactivity-guided fractionation (Figure 1). 

The extract was slurried in MeOH and the insoluble parts were removed by filtration over 

LiChroprep© RP-18 material (Yield: 9.5 g).  

Figure 1. Overview of bioactivity-guided fractionation.  

 

The extract was subjected to semi-preparative HPLC (250 mm × 10 mm, 5 µm, Macherey-Nagel 

Nucleosil 100-5; (A) H2O, (B) MeOH, gradient: 70% B (0 min), 75% B (7 min), 100% B (25 min), 

70% B (30 min); flow rate: 3.3 mL/min) and partitioned into 12 fractions. Fraction 4–8 exhibited 

significant antileishmanial activity against L. major promastigotes. Fraction 5 (559 mg) was further 

fractionated by column chromatography using silica gel and MeOH/CHCl3 (4.8:0.2 v/v) as mobile 

phase. Fraction 5β3 (258 mg) was partitioned a second time by column chromatography using silica gel 

and MeOH/CHCl3 (4.8:0.2 v/v) to yield three fractions (5β3a, 5β3b, 5β3c) from which the last fraction 

afforded 135 mg of caffeic acid (−)-bornyl ester (IC50 = 48.8 µM). The structure was identified by 

means of NMR and LC/MS data. 

Caffeic Acid (−)-bornyl Ester (1). Brownish solid (MeOH); m.p. 150 °C (lit.[6] 148–151 °C); [α]426 

−5.1° (c 0.1, MeOH); IR: 3444, 3165, 1661, 1604, 1273, 1186 cm−1; 1H-NMR (MeOD) δ (ppm)  

J (Hz): 0.90 (s; 3H); 0.94 (s; 3H); 0.98 (s; 3H); 1.06 (dd; 3.7; 13.7; 1H); 1.26–1.35 (m;2H); 1.70 (t; 

4.5; 1H); 1.79–1.88 (m; 1H); 2.07–2.13 (m; 1H); 2.38–2.46 (m; 1H); 5.00 (ddd; 2.2; 3.4; 9.9; 1H); 6.30 
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(d; 15.9; 1H); 6.80 (d; 8.2; 1H); 7.00 (dd; 2.1; 8.2; 1H); 7.05 (d; 2.1; 1H); 7.54 (d; 15.9; 1H); 13C-NMR 

(MeOD) δ (ppm) 13.9; 19.2; 20.1; 28.2; 29.0; 37.9; 46.4; 48.9; 49.5; 81.2; 115.1; 115.5; 116.5; 122.9; 

127.8; 146.7; 146.8; 149.6; 169.7; ESIMS: m/z 315 [M−H]−, 339 [M+Na]+. 

3.4. Synthesis 

3.4.1. General Procedure for the Synthesis of Compounds 1–13 

Synthesis was conducted according to the method of Xia et al. [5]. The alcohol (2.94 mmol) and 

Meldrum’s acid (2.94 mmol) were dissolved in toluene (20 mL) and refluxed for 4 h. To the resulting 

activated alcohol the corresponding aldehyde (2.94 mmol), pyridine (2.5 mL) and piperidine (250 µL) 

were added. This mixture was stirred at room temperature for 24–48 h. The solvent was evaporated, 

the residue dissolved in diethyl ether (20 mL) and washed three times with an aqueous saturated 

NaHCO3 solution (10 mL), 20% HCl (10 mL), and H2O (10 mL), respectively. After drying over 

MgSO4 the solvent was evaporated and the residue was chromatographed using silica gel (petroleum 

ether/ethyl acetate 60:40) to yield the desired product (overall yields of the two steps are reported). 

Synthesized Caffeic Acid (−)-bornyl Ester (1). Yield 19%; off-white solid; m.p. 150 °C; [α]426 −4.5° (c 

0.1, MeOH); IR and NMR data in accordance with above and literature [6]. 

Isoferulic Acid (−)-bornyl Ester (2). Yield 9%; colorless syrup; IR: 3384, 2952, 2877, 1698, 1631, 

1263, 1172, 1155 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.88 (s; 3H); 0.90 (s; 3H); 0.95 (s; 3H); 

1.04–1.08 (m; 1H); 1.25–1.32 (m; 2H); 1.71 (t 4.5; 1H); 1.75–1.85 (m; 1H); 2.02–2.09 (m; 1H);  

2.38–2.46 (m; 1H); 3.94 (s; 3H); 5.02 (ddd; 2.1; 3.4; 9.9; 1H); 6.30 (d; 16.0; 1H); 6.92 (d; 8.2; 1H); 7.05 (d; 

1.9; 1H); 7.09 (dd; 8.2; 1.9; 1H); 7.60 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm): 13.6; 18.9; 19.7; 27.3; 

28.1; 36.9; 45.0; 47.9; 48.9; 56.0; 79.8; 109.3; 114.7; 116.2; 123.0; 127.1; 144.3; 146.7; 147.8; 167.6. 

4-Chlorocinnamic Acid (−)-bornyl Ester (3). Yield 14%; slightly yellow solid; m.p. 80–83 °C; IR: 

2952, 2876, 1704, 1636, 1490, 1308, 1184, 820 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.88 (s; 3H); 

0.90 (s; 3H); 0.94 (s; 3H); 1.03–1.08 (m; 1H); 1.25–1.32 (m; 2H); 1.71 (t; 4.6; 1H); 1.74–1.84 (m; 1H); 

2.01–2.06 (m; 1H); 2,38–2.46 (m; 1H); 5.02 (ddd; 2.2; 3.4; 10.0; H); 6.44 (d; 16.0; 1H); 7.36 (d; 8.5; 

2H); 7.47 (d; 8.5; 2H); 7.61 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm): 13.5; 18.9; 19.7; 27.2; 28.1; 

36.9; 45.0; 47.9; 49.0; 80.2; 119.4; 129.1 (2C); 129.2 (2C); 133.1; 136.0; 142.7; 167.1. 

4-Bromocinnamic Acid (−)-bornyl Ester (4). Yield 9%; yellow solid; m.p. 71–74 °C; IR: 2953, 2875, 

1705, 1635, 1203, 1158, 816 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.88 (s;3H); 0.90 (s;3H); 0.94 (s; 

3H); 1.03–1.08 (m; 1H); 1.25–1.32 (m;2H); 1.71 (t; 4.6; 1H); 1.74–1.84 (m;1H); 2.01–2.06 (m;1H); 

2.38–2.46 (m; 1H); 5.03 (ddd; 2.2; 3.4; 9.9; 1H); 6.44 (d; 16.0; 1H); 7.36 (d; 8.5; 2H); 7.47 (d; 8.5; 

2H); 7.61 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm): 13.5; 18.9; 19.7; 27.2; 28.1; 36.9; 45.0; 47.9; 

48.9; 80.2; 119.4; 124.4; 129.4 (2C); 132.1 (2C); 133.4; 142.7; 167.1. 

4-N-Dimethylaminocinnamic Acid (−)-bornyl Ester (5). Yield 25%; yellowish solid; m.p. 114–116 °C; 

IR: 2950, 2877, 1696, 1603, 1524, 1151, 810 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.88 (s; 3H); 

0.90 (s; 3H); 0.94 (s; 3H); 1.04–1.08 (m; 1H); 1.25–1.37 (m; 2H); 1.70 (t; 4.5; 1H); 1.74–1.84 (m; 1H); 
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2.03–2.10 (m; 1H); 2.37–2.45 (m; 1H); 3.02 (s; 6H); 5.01 (ddd; 2.0; 3.3; 9.9; 1H); 6.25 (d; 15.9; 1H); 

6.67 (d; 8.8; 2H); 7.43 (d; 8.8; 2H); 7.61 (d; 15.9; 1H); 13C-NMR (CDCl3) δ (ppm): 13.6; 18.9; 19.8; 27.3; 

28.1; 36.9; 40.1 (2C); 45.0; 47.8; 48.9; 79.4; 111.8 (2C); 113.2; 123.0; 129.7 (2C); 144.7; 151.7; 168.2. 

4-O-Benzoylcinnamic Acid (−)-bornyl Ester (6). Yield 13%; lightly yellow solid; m.p. 93–95 °C; IR: 

2951, 2878, 1695, 1627, 1600, 1510, 1255, 1171, 998 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.88 (s; 

3H); 0.90 (s; 3H); 0.95 (s; 3H); 1.04–1.08 (m; 1H); 1.25–1.37 (m; 2H); 1.70 (t; 4.5; 1H); 1.73–1.84 (m; 

1H); 2.02–2.08 (m; 1H); 2.37–2.45 (m; 1H); 5.01 (ddd; 2.0; 3.4; 9.9; 1H); 5,10 (s; 2H); 6.34 (d; 16.0; 

1H); 7.00 (d; 8.7; 2H); 7.34–7.44 (m; 5H); 7.49 (d; 8.7; 2H); 7.60 (d; 16.0; 1H); 13C-NMR (CDCl3) δ 

(ppm): 13.5; 18.9; 19.7; 27.2; 28.1; 36.9; 45.0; 47.8; 48.9; 70.1; 79.8; 115.2 (2C); 116.5; 127.4 (2C); 

127.5; 128.0; 128.7 (2C); 129.7 (2C); 136.5; 143.8; 160.4; 167.6. 

Caffeic Acid Isobornyl Ester (7). Yield 12%; brownish solid; m.p. 160–161 °C; IR: 3444, 3168, 2956, 

1666, 1604, 1439, 1277, 1182 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.86 (s; 3H); 0.89 (s;3H); 1.05 

(s; 3H); 1.09–1.25 (m; 2H); 1.55–1.62 (m; 1H); 1.68–1.88 (m; 4H); 4.80 (dd; 4.6; 6.9; 1H); 6.23 (d; 

15.9; 1H); 6.87 (d; 8.2; 1H); 6.99 (dd; 1.7; 8.2; 1H); 7.12 (d; 1.7; 1H); 7.53 (d; 15.9; 1H); 13C-NMR 

(CDCl3) δ (ppm) 11.2; 19.7; 19.8; 26.7; 33.4; 38.5; 44.8; 46.7; 48.6; 81.2; 114.1; 115.2; 115.7; 122.1; 

127.1; 143.6; 144.5; 146.3; 167.4. 

Isoferulic Acid Isobornyl Ester (8). Yield 11%; colourless syrup; IR: 3387, 2952, 2876, 1696, 1631, 

1591, 1512, 1263, 1154 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.87 (s;3H); 0.90 (s;3H); 1.07 (s;3H); 

1.09–1.26 (m;2H); 1.54–1.61 (m;1H); 1.68–1.90 (m;4H); 3.94 (s;3H); 4.80 (dd;4.3;7.4;1H); 6.25 

(d;15.9;1H); 6.91 (d;8.2;1H); 7.02 (d;1.9;1H); 7.07 (dd;1.9;8.2;1H); 7.55 (d;15.9;1H); 13C-NMR 

(CDCl3) δ (ppm) 11.5; 20.0; 20.1; 27.0; 33.8; 38.9; 45.1; 47.0; 48.9; 56.0; 81.0; 109.3; 114.7; 116.3; 

123.0; 127.1; 144.3; 146.8; 147.8; 167.0. 

4-Nitrocinnamic Acid Isobornyl Ester (9). Yield 16%; yellowish solid; m.p. 121–123 °C; IR: 2950, 

2876, 1700, 1516, 1340, 1301, 1163, 842 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.87 (s; 3H); 0.90 (s; 

3H); 1.06 (s; 3H); 1.07–1.25 (m; 2H); 1.54–1.61 (m; 1H); 1.70–1.92 (m; 4H); 4.83 (dd; 4.1; 7.5; 1H); 6.53 

(d; 16.0; 1H); 7.65 (d; 16.0; 1H); 7.67 (d; 8,7; 2H); 8.24 (d; 8.7; 2H); 13C-NMR (CDCl3) δ (ppm) 11.5; 

20.0; 20.1; 27.0; 33.8; 38.8; 45.1; 47.0; 49.0; 81.8; 123.2; 124.1 (2C); 128.6 (2C); 140.7; 141.3; 165.6. 

Caffeic Acid Thymyl Ester (10). Yield 14%; brownish solid; m.p. 115–117 °C; IR: 3339, 2960, 1726, 

1695, 1616, 1514, 1235, 1136, 1114 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 1.20 (s; 3H); 1.21 (s; 

3H); 2.32 (s; 3H); 3.03 (sept; 6.9; 1H); 5.84 (br s; -OH); 5.89 (br s; -OH); 6.48 (d; 15.9; 1H); 6.87 (d; 

8.2; 1H); 6.87 (d; 0.9; 1H); 7.04 (dd; 0.9; 7.9; 1H); 7.07 (dd; 2.0; 8.2; 1H); 7.22 (d; 7.9; 1H); 7.77 (d; 

15.9; 1H); 13C-NMR (CDCl3) δ (ppm) 20.5; 22.7 (2C); 26.9; 114.2; 114.4; 115.2; 122.4; 122.5; 126.2; 

126.9; 127.0; 136.3; 136.9; 143.5; 146.3; 146.4; 147.6; 166.2. 

Isoferulic Acid Thymyl Ester (11). Yield 15%; colourless syrup; IR according to ref. [21]; 1H-NMR 

(CDCl3) δ (ppm) J (Hz): 1.21 (s; 3H); 1.23 (s; 3H); 2.32 (s; 3H); 2.34 (s; 3H); 3.05 (sept; 6.9; 1H); 

3.96 (s; 3H); 6.52 (d; 15.9; 1H); 6.89 (d; 0.9; 1H); 6.96 (d; 8.2; 1H); 7.05 (dd; 0.9; 7.9; 1H); 7.11 (d; 

1.9; 1H); 7.12 (dd; 1.9; 8.2; 1H); 7.23 (d; 7.9; 1H); 7.81 (d; 15.9; 1H); 13C-NMR (CDCl3) δ (ppm) 
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21.2; 23.4 (2C); 27.5; 56.3; 109.8; 114.9; 115.1; 123.2; 123.7; 126.7; 127.1; 127.4; 136.8; 137.5; 

146.8; 147.1; 148.3; 148.6; 166.3. 

Caffeic Acid Menthyl Ester (12). Yield 25%; colourless syrup; IR: 3384, 2953, 2868, 1694, 1632, 

1591, 1511, 1264, 1170 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.78 (d; 6.9; 3H); 0.90 (d; 2.7; 3H); 

0.90 (d; 2.7; 3H); 1.00–1.15 (m; 2H); 1.42–1.55 (m; 2H); 1.69–1.72 (m; 2H); 1.87–1.95 (m; 1H); 

2.03–2.06 (m; 1H); 4.8 (dt; 4.4; 10.9; 1H); 6.25 (d; 15.9; 1H); 6.87 (d; 8.2; 1H); 6.99 (dd; 1.9; 8.2; 

1H); 7.11 (d; 1.9; 1H); 7.57 (d; 15.9; 1H); 13C-NMR (CDCl3) δ (ppm) 16.8; 21.1; 22.4; 24.0; 26.8; 

31.8; 34.7; 41.4; 47.6; 75.1; 114.8; 115.8; 116.2; 122.7; 127.8; 144.4; 145.4; 147.0; 168.2. 

Isoferulic Acid Menthyl Ester (13). Yield 24%; colourless syrup; IR: 3398, 2953, 2926, 2868, 1695, 

1513, 1263, 1158 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 0.79 (d; 6.9; 3H); 0.91 (d; 2.9; 3H); 0.92 (d; 

2.6; 3H); 1.00–1.16 (m; 2H); 1.40–1.55 (m; 2H); 1.67–1.73 (m; 2H); 1.90–1.99 (m; 1H); 2.03–2.09 

(m; 1H); 3.93 (s; 3H); 4.82 (dt; 4.4; 10.9; 1H); 6.28 (d; 15.8; 1H); 6.91 (d; 8.2; 1H); 7.04 (d; 1.8; 1H); 

7.07 (dd; 1.8; 8.2; 1H); 7.60 (d; 15.8; 1H); 13C-NMR (CDCl3) δ (ppm) 16.4; 20.8; 22.0; 23.6; 26.3; 

31.4; 34.3; 41.1; 47.3; 55.9; 74.1; 109.2; 114.7; 116.1; 123.0; 127.1; 144.4; 146.7; 147.8; 166.8. 

3.4.2. General Procedure for the Synthesis of Compounds 14–27 

Cinnamic acid (500 mg, 3.37 mmol) and the respective alcohol (3.37 mmol) were dissolved in THF or 

CHCl3 (20 mL). After addition of DCC and DMAP the resulting mixture was stirred for 16 h at room 

temperature. After evaporation and column chromatography on silica gel (CHCl3/MeOH 4.8:0.2) the 

desired product was obtained. 

2,3-Dichlorocinnamic acid (−)-bornyl ester (14). Yield 18%; colourless crystals; m.p. 86–87 °C; IR: 

2930, 2875, 2118, 1711, 1635, 1315, 1178 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 0.89 (s; 3H); 0.90 

(s; 3H); 0.95 (s; 3H); 1.05–1.09 (m; 1H); 1.25–1.38 (m; 2H); 1.72 (t; 4.5; 1H); 1.75–1.83 (m; 1H); 

2.00–2.06 (m; 1H); 2.39–2.47 (m; 1H); 5.03 (ddd; 2.2; 3.4; 9.9; 1H); 6.44 (d; 16.0; 1H); 7.22 (t; 7.9; 

1H); 7.48 (dd; 1.5; 7.9; 1H); 7.54 (dd; 1.5; 7.9; 1H); 8.09 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm) 

13.2; 18.6; 19.4; 26.9; 27.7; 36.5; 44.6; 47.6; 48.6; 80.1; 122.3; 125.5; 127.0; 131.1; 132.6; 133.7; 

134.9; 139.7; 166.2. 

Cinnamic Acid (−)-Bornyl Ester (15). Yield 7%; colourless syrup; spectral data are in accordance with 

data reported in ref. [22,23]. 

4-Methoxycinnamic Acid (−)-Bornyl Ester (16). Yield 25%; crystalline solid; m.p. 87–90 °C; IR: 2952, 

2929, 2117, 1701, 1627, 1602, 1513, 1152 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 0.87 (s; 3H); 0.88 

(s; 3H); 0.94 (s; 3H); 1.03–1.08 (m; 1H); 1.24–1.39 (m; 2H); 1.70 (t; 4.5; 1H); 1.73–1.80 (m; 1H); 

2.02–2.08 (m; 1H); 2.37–2.45 (m; 1H); 3.84 (s; 3H); 5.02 (ddd; 2.2; 3.4; 9.9; 1H); 6.34 (d; 15.9; 1H); 

6.90 (d; 8.7; 2H); 7.49 (d; 8.7; 2H); 7.63 (d; 15.9; 1H); 13C-NMR (CDCl3) δ (ppm) 13.2; 18.6; 19.4; 

26.9; 27.7; 36.6; 44.7; 47.5; 48.6; 55.0; 79.4; 114.0 (2C); 116.0; 127.0; 129.3 (2C); 143.5; 160.9; 167.3. 

2,4-Dichlorocinnamic Acid (−)-bornyl Ester (17). Yield 85%; colourless crystalline solid; m.p. 90–92 °C; 

IR: 2930, 2882, 2118, 1712, 1638, 1469, 1312, 1177 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz): 0.90 (s; 3H); 
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0.92 (s; 3H); 0.97 (s; 3H); 1.07–1.11 (m; 1H); 1.27–1.40 (m; 2H); 1.74 (t; 4.5; 1H); 1.76–1.85 (m; 1H); 

2.02–2.09 (m; 1H); 2.41–2.49 (m; 1H); 5.03 (ddd; 2.2; 3.4; 9.9; 1H); 6.44 (d; 16.0; 1H); 7.22 (t; 7.9; 1H); 

7.48 (dd; 1.5; 7.9; 1H); 7.54 (dd; 1.5; 7.9; 1H); 8.09 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm) 13.5; 18.9; 

19.7; 27.2; 28.0; 36.8; 44.9; 47.9; 49.0; 80.4; 121.8; 127.5; 128.3; 130.0; 131.4; 135.5; 136.2; 138.8; 166.5. 

Cinnamic Acid Isobornyl Ester (18). Yield 14%; colourless syrup; IR: 2952, 2877, 1708, 1637, 1309, 

1160 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 0.88 (s; 3H); 0.90 (s; 3H); 1.07 (s; 3H); 1.09–1.24 (m; 

2H); 1.55–1.62 (m; 1H); 1.68–1.91 (m; 4H); 4.81 (dd; 4.3; 7.3; 1H); 6.41 (d; 16.0; 1H); 7.36–7.40 (m; 

3H); 7.00–7.54 (m; 2H); 7.63 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm) 11.5; 20.0; 20.1; 27.0; 33.8; 

38.9; 45.1; 47.0; 48.9; 81.1; 118.9; 128.0 (2C); 128.8 (2C); 130.1; 134.5; 144.2; 167.0.  

Cinnamic Acid Thymyl Ester (19). Yield 24%; colourless solid; m.p. 64 °C; spectral data are in 

accordance with data reported in ref. [24]. 

Cinnamic Acid Menthyl Ester (20). Yield 25%; colourless crystals; m.p. 51–53 °C; spectral data are in 

accordance with data reported in ref. [25–27]. 

Cinnamic Acid Adamantyl Ester (21). Yield 10%; colourless powder; m.p. 66 °C [lit. [28]: 63–65 °C]; 

IR: 2896, 2866, 2848, 1703, 1687, 1641, 1170 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 1.70 (m; 6H); 

2.20 (s; 9H); 6.36 (d; 15.9; 1H); 7.36–7.38 (m; 3H); 7.49 (m; 2H); 7.57 (d; 15.9; 1H); 13C-NMR 

(CDCl3) δ (ppm) 30.9 (3C); 36.2 (3C); 41.4 (3C); 80.6; 102.4; 128.0; 128.8; 129.9; 134.7; 143.4; 166.0. 

Cinnamic Acid Naphthyl Ester (22). Yield 15%; colourless crystalline solid; m.p. 109–110 °C [lit. [24] 

106–107 °C]; spectral data are in accordance with data reported in ref. [24]. 

Cinnamic Acid Cyclohexyl Ester (23). Yield 33%; colourless liquid; spectral data are in accordance 

with data reported in ref. [29–31]. 

Cinnamic Acid Bisabolyl Ester (24). Yield 11%; yellowish syrup; IR: 2962, 2924, 1703, 1636,  

1160 cm−1; 1H-NMR (CDCl3) δ (ppm) J (Hz) 1.28–1.33 (m; 1H); 1.41 (s; 3H); 1.53 (s; 3H); 1.58 (s; 

3H); 1.59 (s; 3H); 1.74–2.00 (m; 9H); 5.04 (br m; 1H); 5.31 (br m; 1H); 6.32 (d; 16.0; 1H); 7.29–7.32 

(m; 3H); 7.43–7.46 (m; 2H); 7.52 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm) 17.6; 20.6; 22.1; 23.3; 

23.7; 25.7; 26.4; 30.9; 35.7; 40.5; 87.3; 120.1; 120.3; 124.1; 128.0 (2C); 128.8 (2C); 130.0; 131.6; 

134.1; 134.7; 143.5; 166.1. 

Cinnamic Acid Eugenyl Ester (25). Yield 50%; colourless plates; all data are in accordance with data 

reported in ref. [21,32]. 

Cinnamic Acid Geranyl Ester (26). Yield 28%; colourless liquid; spectral data are in accordance with 

data reported in ref. [33]. 

3.4.3. Synthesis of Phenyl Propanoic Acid (−)-Bornyl Ester (27) 

Propanoic acid (700 mg, 4.66 mmol) was dissolved in NEt3 (3.2 mL, 5 eq.) and cooled in an ice 

bath. 4-Dimethylaminopyridine (114 mg, 0.2 eq.) in CH3CN (2 mL) and tosyl chloride (1.07 g, 1.2 eq.) 
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in CH3CN (3 mL) were added and the solution stirred for 30 min until a red colour developed. Then 

(−)-borneol (719 mg, 4.66 mmol) dissolved in CH3CN (2 mL) was added to the solution. The mixture 

was allowed to warm up to room temperature and stirred for two hours. After evaporation of the 

solvent the reaction mixture was suspended in water (10 mL) and extracted three times with diethyl 

ether (10 mL). The organic phase was washed three times each with water, brine and Na2SO4. After 

drying the organic phase over MgSO4 the product was purified twice by column chromatography on 

silica gel using ethyl acetate/petroleum ether (60:40) as eluent to yield 278 mg of 27. Yield 21%; 

colourless liquid; IR: 2952, 2877, 1730 cm−1; 1H-NMR (MeOD) δ (ppm) J (Hz) 0.78 (s; 3H); 0.89 (s; 

3H); 0.91 (s; 3H); 0.84–0.88 (m; 2H); 1.14–1.20 (m; 1H); 1.26–1.34 (m; 1H); 1.63 (t; 4.5; 1H);  

1.72–1.80 (m; 1H); 1.87–1.94 (m; 1H); 2.26–2.34 (m; 1H); 2.67 (t; 7.4; 2H); 2.95 (t; 7.4; 2H); 4.84 (m; 

1H); 7.11–7.29 (m; 5H); 13C-NMR (MeOD) δ (ppm) 13.8; 19.2; 20.1; 28.1; 28.9; 32.2; 37.0; 37.7; 

46.3; 48.8; 49,7; 81.4; 127.3; 129.4 (2C); 129.5 (2C); 141.8; 175.0. 

3.4.4. Synthesis of 3-(3,4-Bis(acetyloxy))phenyl Propenoic Acid (−)-Bornyl Ester (28) 

Compound 1 (20 mg) was suspended in pyridine (2 mL) at 0 °C. One equivalent of acetic acid 

anhydride was added and the solution stirred for 2 h at room temperature. After evaporation the residue 

was subjected to column chromatography on silica gel using CHCl3/MeOH (4.8:0.2 v/v) as eluent to 

yield the desired product. Yield 51%; orange syrup; IR: 2953, 2877, 1771, 1707 cm−1; 1H-NMR 

(CDCl3) δ (ppm) J (Hz) 0.87 (s; 3H); 0.90 (s; 3H); 0.94 (s; 3H); 1.03–1.07 (m; 1H); 1.25–1.35 (m; 

2H); 1.71 (t; 4.5; 1H); 1.75–1.81 (m; 1H); 1.99–2.05 (m; 1H); 2.30 (s; 3H); 2.31 (s; 3H); 2.37–2.47 (m; 

1H); 5.01 (ddd; 2.1; 3.4; 9.9; 1H); 6,41 (d; 16.0; 1H); 7.22 (d; 8.4; 1H); 7.38 (d; 2.0; 1H); 7,42 (dd; 2.0; 

8.4; 1H); 7.60 (d; 16.0; 1H); 13C-NMR (CDCl3) δ (ppm) 13.5; 18.9; 19.7; 20.6; 20.7; 27.2; 28.0; 36.8; 45.0; 

47.9; 49.0; 80.2; 120.0; 122.7; 123.9; 126.3; 133.5; 142.2; 142.4; 143.4; 166.9; 168.0; 168.1. 

3.5. Biological Assays 

Materials and methods for the biological assays have been described before by the authors. 

AlamarBlue assays for investigation of antileishmanial activities against L. major promastigotes, 

amastigotes and J774.1 and BMDM cytotoxicity were conducted as previously reported [16]. The 

protocol for the L. donovani quantitative colorimetric assay is outlined by Hazra et al. [17]. The IC50 

values are presented as mean values of two independent experiments against the parasite and macrophages. 

4. Conclusions 

In summary, caffeic acid bornyl ester (1) was isolated as the antileishmanial component of the 

chloroform extract of V. wallichii rhizome. Structure-activity relationships of a compound library of  

27 derivatives were analysed and revealed the size of the non-cinnamyol part of the molecule to have a 

significant influence on antileishmanial activity. Hydroxyl groups in the 3 and 4 positions of the 

aromatic ring increase cytotoxicity and the Michael system in the side chain is not essential for 

antiprotozoal activity against L. major promastigotes (Table 3). The cinnamic acid bornyl ester 15 

showed the best activity with regards to L. major and L. donovani promastigotes with acceptable 
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cytotoxicity. Compound 27 with no Michael acceptor moiety was almost as active as compound 15. Since 

27 is less toxic it presents an attractive new lead structure derived from nature for further optimization.  

Additionally esters of caffeic and ferulic acid under certain conditions may face the problem of 

limited bioavailability because of the possible formation of a polar phenolate ion which prevents the 

compound from penetrating the cell membrane. By omitting the hydroxyl groups and thereby 

increasing the lipophilicity this problem should be avoided.  

Since bornyl hydroxycinnamic esters have been shown to inhibit the trypanosomal rhodesain [10] it 

is tempting to speculate whether they are able to inhibit the corresponding leishmanial proteases. 

Preliminary experiments using L. major promastigote full-lysate in a cysteine-cathepsin fluorescence 

activity assay [16,34] showed protease inhibitory activity of compound 1 and 15 and, thus, point to  

this target. 
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